BMC
Bioinformatics

Chromosome 1

Tumor Samples

PeptideAtlas Density

|PeptideAtlas Observations

1"'-;}'!:5‘-'}"‘!.'“:"'7'" # e ol
el AP .‘f'.'-x:'i:ﬁ':'h - R L B g i
' [SwissProt Protein| Locations
| | | | |
wl\ll (T R URVEUTE Ot L i 111 1) |
| DU 0 MU N | 1 O [0 | 0 OO0 0 | |
200 80 200 1,000 1200 1,400

b e L e b Bedagl i
Eok dRpauit wiair s drs) 8 o MMl 2 Pandee dalik 24
® (=1 1 T e

1000 1,200 1600 1600 1800 2000 2200 2,400

Toggle) O HE

.......

Methods for visual mining of genomic and

proteomic data atlases
Boyle et al.

( BioMed Central Boyle et al. BMC Bioinformatics 2012, 13:58
http://www.biomedcentral.com/1471-2105/13/58 (23 April 2012)



Boyle et al. BMC Bioinformatics 2012, 13:58
http://www.biomedcentral.com/1471-2105/13/58

BMC
Bioinformatics

CORRESPONDENCE Open Access

Methods for visual mining of genomic and
proteomic data atlases

John Boyle’, Richard Kreisberg, Ryan Bressler and Sarah Killcoyne

Abstract

Background: As the volume, complexity and diversity of the information that scientists work with on a daily basis
continues to rise, so too does the requirement for new analytic software. The analytic software must solve the
dichotomy that exists between the need to allow for a high level of scientific reasoning, and the requirement to
have an intuitive and easy to use tool which does not require specialist, and often arduous, training to use.
Information visualization provides a solution to this problem, as it allows for direct manipulation and interaction
with diverse and complex data. The challenge addressing bioinformatics researches is how to apply this
knowledge to data sets that are continually growing in a field that is rapidly changing.

Results: This paper discusses an approach to the development of visual mining tools capable of supporting the
mining of massive data collections used in systems biology research, and also discusses lessons that have been
learned providing tools for both local researchers and the wider community. Example tools were developed which
are designed to enable the exploration and analyses of both proteomics and genomics based atlases. These atlases
represent large repositories of raw and processed experiment data generated to support the identification of
biomarkers through mass spectrometry (the PeptideAtlas) and the genomic characterization of cancer (The Cancer
Genome Atlas). Specifically the tools are designed to allow for: the visual mining of thousands of mass
spectrometry experiments, to assist in designing informed targeted protein assays; and the interactive analysis of
hundreds of genomes, to explore the variations across different cancer genomes and cancer types.

Conclusions: The mining of massive repositories of biological data requires the development of new tools and
techniques. Visual exploration of the large-scale atlas data sets allows researchers to mine data to find new
meaning and make sense at scales from single samples to entire populations. Providing linked task specific views
that allow a user to start from points of interest (from diseases to single genes) enables targeted exploration of
thousands of spectra and genomes. As the composition of the atlases changes, and our understanding of the
biology increase, new tasks will continually arise. It is therefore important to provide the means to make the data
available in a suitable manner in as short a time as possible. We have done this through the use of common
visualization workflows, into which we rapidly deploy visual tools. These visualizations follow common metaphors
where possible to assist users in understanding the displayed data. Rapid development of tools and task specific
views allows researchers to mine large-scale data almost as quickly as it is produced. Ultimately these visual tools
enable new inferences, new analyses and further refinement of the large scale data being provided in atlases such
as PeptideAtlas and The Cancer Genome Atlas.

main driving force behind these advances, and has pri-
marily encompassed measurement types.

Background
Systems biology is a field that relies on both technical

and scientific innovations. The technical innovations
enable new scientific questions to be asked, and these in
return make further demands for advances in technol-
ogy. High throughput experimentation has been the
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Two measurement types that have seen a vast increase
in utility and volume are high-throughput sequencing
(HTS) and mass spectrometry based proteomics. The
dramatic increase in the volumes of data are due to
changes in instrumentation. In proteomics the adoption
of new techniques, principally targeted approaches and
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high resolution instruments, means that there is a need
to capture and mine vast quantities of high resolution
spectra to enable the design of new assays. In genomics
the cost of HTS is now at a scale where populations of
genomes and transcriptomes can be captured, and this
is being done in a number of projects (e.g. The Cancer
Genome Atlas, 1000 Genome, International Cancer
Genome Consortium). This paper outlines an approach
to the development of visual tools that have been devel-
oped to allow for the direct mining and usage of data
derived from these two technologies. Development of
such tools requires an understanding of both the scale
of data and the typical needs of the user in any explora-
tion. The basic approach involves providing interactive
high level overviews of the data, and then allowing for
the selection and drill down into smaller data sets. Sepa-
rate visualization tools are used at each level of data
exploration and linked to enable users to quickly move
between data views. The fast moving pace of research
means that these tools must be put in place quickly, and
so they have been built on top of a series of rapid appli-
cation development technologies, and are delivered as
web applications.

The example tools support two major systems biology
projects, the PeptideAtlas [1] and The Cancer Genome
Atlas (TCGA) [2]. The PeptideAtlas, encompasses SRM
(Selected Reaction Monitoring) data across multiple spe-
cies as well as shotgun based identifications, and the
TCGA is a multi-institution effort to genomically char-
acterize ten thousand cancer genomes across 20 differ-
ent cancers.

Methods

High throughput visualization tools are required to
allow for the exploration of large data sets. The data
sets in question consist of thousands of genomic
sequences and protein mass spectra. As these atlases are
relatively new, work to provide visual mining is in its
infancy, however there has been a large amount of work
in visualizations in the areas of network and gene
expression visualization that is being adapted and
learned from.

Systems biology generally requires the integrated ana-
lysis of different data types [3,4]. In systems biology the
majority of information visualization has tended to focus
on direct representations of networks [5]. This is due to
the fact that networks are often used to describe the
dynamics of living systems (as an integrated and inter-
acting network of genes, proteins and biochemical reac-
tions). Network visualization has been studied in a large
number of disciplines (e.g. software visualization, includ-
ing complex dynamics of systems [6,7] and the interac-
tions of components [8,9]). The interest in networks
and molecular interactions has resulted in the
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progression of network visualization techniques, in par-
ticular involving the portrayal of the complexities of
relationship characteristics using number of edge techni-
ques [10] (e.g. edge bundles [11] and edge lenses [12]).
Additionally, the context in which parts of the network
exist, either through the discovery of motifs or through
semantic similarities, have been used to reduce the
graph’s visual complexity [13] (e.g. different levels of
focus on a network [14], use of magic/document lens
[15], and provision of identified landmarks to aid navi-
gation [16,17]). These ideas are being applied to visuali-
zations of systems biology networks [18,19].

Alternative metaphors for the representation of com-
plex data have also been explored. Gene expression
array based experiments have provided a rich area for
the development of visual tools. In particular visualiza-
tion of gene expression data has extended a number of
popular n-dimensional data techniques: projecting high
dimensional data down to two dimensions e.g. pair-wise
scatter plots [20] and parallel coordinates [21]; encoding
aspects of the data onto intrinsic and (non-positional)
extrinsic properties (e.g. Spotfire [22]); and using dimen-
sion reduction techniques, which transforms the data
onto a small number of dimensions (e.g. PCA, best-fit
approaches [23-25]). Innovations have also arisen from
these investigations in terms of improved representation
of the data [26] and the provision of specialised visuali-
sations which present the data in a relevant context (e.g.
[27]). A number of visualization suites have been devel-
oped which combine these approaches (e.g. [28-30]).

Due to their scale and complexity the visualizations of
large repositories of genomic and proteomic data do
represent new challenges, however it is possible to use
many of the general information visualization techni-
ques. We provide details of the visualizations that have
been used across data from both the PeptideAtlas and
TCGA to enable users to explore the large-scale, highly
dimensional data.

Thousands of genomes
The Cancer Genome Atlas (TCGA) will, over the next
three years, generate 10,000 patient genomic sequences
across 20 different cancers. The goal is to provide a
map of large-scale, genomic mutations, both between
difference cancers (e.g. Ovarian and Glioblastoma) and
across patients within a single cancer. Using these data,
maps of normal variation, disease related disruptions
and disease progression can be created for further analy-
sis. Ultimately this atlas will provide a rich set of data to
enable better characterization of disease sub types and
the development of targeted therapies.

The data gathered by TCGA includes both full and
exon-only genome sequences, epigenetic and transcrip-
tomic data, and clinical information (e.g. age, clinical
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sub type). At the scale of thousands of patients this
means that providing effective ways to visually explore
this data is necessary for the development of useful ana-
lyses or in targeting areas for investigation. Such
exploration requires the use of visual tools specifically
adapted to data exploration at multiple scales. As the
aim of TCGA is to provide genomic data across entire
populations of patients and diseases, visual tools must
enable exploration using specific knowledge (e.g. starting
from a gene of interest) as well as providing for discov-
ery of new information.

Various analyses are being performed across this data
including pathway analysis, identification of functionally
significant mutations and SNVs, tissue biopsy and ima-
ging, microRNA regulation, and gene dosage analysis (to
name a few). Each of these focuses on a different set of
data within the atlas. Providing a generic visualization
would result in a visual tool too abstract to be easily
useful. Instead a set of tools targeted toward the specific
analysis and underlying data is necessary. In developing
tools for the analysis of gene disruptions, specifically
structural variation, a linked set of interactive visual
mining tools is used to directly compare the underlying
genomic data. Each tool in the set is interactive so that
genomic events can be discovered through exploration
and used to find further information at each level (e.g.
across cancers, across patients within a cancer, within a
single patient).

The user starts from a high level parallel coordinates
view [31] for exploration of differences in specific gene
disruptions across multiple cancers (see Figure 1). Pro-
viding this view first requires that the underlying geno-
mic data is processed with this exploration in mind.
Structural variations (SV) were detected using a number
of analysis tools such as Breakdancer [32], and the
resulting data was then processed to remove biases.
Coverage biases were removed using a biclustering tech-
nique, and mutual information was used to filter sets of
genes that had strong dependencies (e.g. gene clusters
such as protocadherins). The transformed data was then
visualized using an interactive parallel coordinates view
to show the proportion of patients where a given gene
showed structural variation in each cancer. This cross-
cancer view can then be mined for genes that are inter-
esting across one or more cancers. The list of genes
found to be interesting in this high-level visualization
can be used to drill further into the data. The genes
found in the high level view are then used to provide a
visualization that focuses on a single cancer. The Circos
[33] based tool shown in Figure 2 provides an interac-
tive view of the similarities and differences across
patient samples within a single cancer. The circular view
enables an intuitive layout of chromosomes, while the
connections between them display associations that can
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include various features, scores or other gene related
information. This allows for the mining and integration
of gene data with patient information to locate gene dis-
ruption locations in a manner that is easily understood.
The final linked tool (Figure 3) provides a single sample
level view to allow exploration of genes identified in the
cross-cancer (Figure 1) and single cancer (Figure 2)
tools. This zoom level focuses on a short chromosomal
location (e.g. a gene) for a set of patients. The normal
and cancer samples are shown side by side, allowing for
the direct comparison of the structural variations within
that location. At each level within the hierarchy of visual
tools, the mining and filtering of the provided informa-
tion enables a user to drill into the genes and samples
that may provide the most information. Additionally, it
should be noted that a different type of visualization
was used at each level. This ensured that the scale of
the data being viewed could be quickly comprehended
(e.g. thousands of patients across multiple cancers vs.
single patient sample pairs), enabling context appropri-
ate views at each step of analysis.

Millions of spectra

The PeptideAtlas repository contains thousands of
experiments and is designed to provide a compendium
of the likelihood of a given peptide being detected on
mass spectrometers. The repository contains informa-
tion from thousands of mass spectrometry experiments
(millions of spectra) across numerous species, tissues
and disease conditions. The goals in providing this repo-
sitory are both to annotate genomic information with
observable peptides, and to provide an integrated view
on a given proteome so it can be used as the basis of
Selected Reaction Monitoring (SRM) experiments. Pepti-
deAtlas can be used to identify representative (proteoty-
pic) peptides that are unique to an individual protein.
Mining the data it contains makes it possible to identify
which transition patterns could be used to uniquely
identify any set of proteins in the proteome. This allows
for the design of targeted proteomic experiments, where
the experimenter defines a priori which proteins they
wish to detect and using the atlas, find which specific
transitions should be scanned for. Targeted approaches
can monitor at low mass/charge (m/z) levels, and have
been shown to detect protein concentrations at low
copy number [43]. As SRM can be used on complex tis-
sues, a minimum of separation chemistry is needed.
This means that experiments can more accurately detect
smaller amounts of protein in complex samples.

Mining this data requires the use of a number of inte-
gration strategies and information theoretic approaches
to connect the peptide data with information from
genomic sources (e.g. TCGA), disease literature (e.g.
MEDLINE), and pathways (e.g. IntAct [44], MINT [45]).
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Figure 1 Cancer comparator. The cancer comparison macro view uses a parallel coordinates [31] to provide a cross disease comparison. In this
case the visualizations are used to show the differences in gene disruptions, measured by examining structural aberration, between a carcinoma
(Colon Cancer), a sarcoma (Ovarian Cancer) and GlioBlastoma (GBM). The values shown on each axis are the number of patients in which the
specific gene has been disrupted. The visualization uses the Protoviz libraries, and provides blending and color coding to portray the trends of
gene disruptions across the cancers. The visualization allows for range selection across the different axis, so that specific patterns across the
cancers can be identified. The parallel coordinates allows for the queries to be performed directly on the data set. In the example (1a) the
question being asked is which set of genes show a high level of structural aberration in GBM and a low level of structural aberration in ovarian
cancer. The range selection tool has been used to select all genes that have shown aberrations in more than 27 (out of 43) patients in GBM,
and also only show aberrations in less than 6 of the ovarian patients. The genes that show these characteristics are HYDIN, DNAH3 and OR2L13.
HYDIN aberrations [34,35] are known to cause Hydrocephalus (water on the brain), and so the disruption of this gene in the brain produces a
aberration that induces a survival physiological change. DNAH3 produces a Dynein protein and has been shown to be over expressed in ovarian
cancer, under expressed in GBM [36] and also to be important in APC mutation based carcinogenesis in colon adenocarcinoma [37]. The OR2L13
olfactory gene is one without obvious function, however it is one of the main 44 recurrently mutated genes in this disease [38]. Figure 1b
shows a second query, where the selection tool is used to identify all genes that show a high level of structural aberration across all three
cancers. All the genes have been identified by others as being important in cancer and generally appear on multiple gene lists as complied by
the MSKCC TCGA gene ranker tool [39]. The three genes that score lowest on this tool are PKHD1 [40] which is known to be involved in
colorectal adenocarcinoma, DYNA9 which is involved in cilia transduction signals related to tumorgenesis important in Hedgehog and Wnt
pathways [41], and SYNE1 which has recently been implicated in GBM [42]. SYNE1 is followed through the linked tools in Figures 2 and 3 to
show the types of information that can be discovered and visualized.
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Figure 2 Single cancer view. The genome visualization provides a
high level (macro) view to show similarities and differences across
samples within a single cancer (Ovarian Cancer). This visualization is
based around Circos [33], and allows for the display of high level
aggregated features as concentric circles, with connecting arches
showing identified associations, in this case common translocations.
The concentric rings show, in this instance, information about the
genes and karyotypes, and can include experiment information (e.g.
identified mutations, methylation, expression). The associations are
calculated, and in this instance show genes that have similar levels
of disruptions. Selection of information allows for drill down into
the related data sets, and filters can be applied which allow for
control over the amount of information displayed.

Providing visual tools that access this integrated data
allows for refinement of biomarker or transition target
lists from many thousands to the tens or hundreds that
are detectable. The purpose is typically to identify pep-
tides that will be suitable biomarkers for a specific dis-
ease or disease sub type. The mining tasks are rarely
initiated without prior knowledge, instead they are typi-
cally initiated either through associations with other
measurement types or through the literature
information.

As with the genomic visualizations, those developed
for exploring the PeptideAtlas are linked and interactive
to allow for greater detail to be provided at the appro-
priately zoomed level. mspecLINE [46] (see Figure 4) is
the first level mining tool which combines knowledge
about human disease from MEDLINE with empirical
data about the detectable human proteome from spec-
tral libraries. It associates diseases with proteins by cal-
culating the semantic distance, based on the co-
occurrence of disease and protein terms in the MED-
LINE bibliographic database, between annotated terms
from a controlled biomedical vocabulary. This associa-
tion allows for the exploration of relationships between
human diseases and parts of the proteome that are

Normal Samples

Tumor Samples

gl ”t i £

Figure 3 Individual sample comparator. The individual sample
comparison tool allows for sets of patients to be explored. It shows
disruptions at the gene or sub chromosome level and shows the
complexity of gene disruptions between patients and normal/
disease pairs. Using the cancer comparison (Figure 1) and genome
focused (Figure 2) views, regions or genes of interest can be mined
from hundreds of samples and then smaller sets of samples can be
visually compared. In this instance on the right hand side are cancer
samples, and on the left hand side are the matched normal tissues.
The visualization displays the level of rearrangement at the chosen
loci. The rearrangements can be complex and involve multiple
crossovers or translations across different loci. To accommodate
such complexity a nested layout procedure is used, where the main
x-axis shows the scaffold chromosome, and the graph that is drawn
directly from this shows represents how the rearrangement has
resulted in connections between new non-contiguous portions of
the chromosome (the thickness of the connecting curves gives an
indication as to the portion of reads that show this level of
structural variation). For complex multi-site rearrangements this
branching procedure is repeated using nested graphs. The amount
of disruption, and degree of gene fusion or similar, can then be
visually compared. Color coding is used to show different
chromosomes, and coverage information is displayed below the x-
axis. The system is interactive so selecting on different loci will allow
for further exploration filters can also be applied to change the

patients being viewed.

detectable using current instrumentation. Given a dis-
ease, the tool will find proteins and peptides from Pepti-
deAtlas that may be associated, and display relevant
literature information from MEDLINE. These associa-
tions can be visually explored, and the results directly
exported to the experiment design pipeline ATAQS [47]
or explored at subsequent levels of visualization with
additional data.

The next visualization, called CircAtlas (see Figure 5),
provides a high level view of observed proteomic data in
PeptideAtlas overlaid with genomic information and the
concordance between multiple feature types. Again
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Figure 4 mspecLINE Tool. The mspecLINE tool [46] enables the
mining of associations between literature information regarding
specific diseases and observed peptide spectra. The resulting
peptide lists can then be used to generate transition lists for new
experiments. The user starts exploration from a specific disease and
then all proteins associated with that disease are then discovered.
Associations are discovered using an information theory based
measure called Normalized Medline Distance. The evidence for the
associations, and identified proteotypic peptides can then be
retrieved or displayed in Cytoscape.
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using the circular view of the genome (as in the Figure
2), observed peptides and protein information is overlaid
on chromosomal locations. The zoomed in “track” view
of a specific chromosome provides more detailed infor-
mation regarding the observed data and feature annota-
tions. Finally, this data can be integrated with pathway
information and TCGA analytical data to provide a
Cytoscape [48] network view (see Figure 6) that provides
clinically relevant information about possible disease
biomarkers.

Results

One of the important aspects of this work is that the
tools must support active research, where the data sets
are continually growing and often changing in scale and
complexity [49]. This means that the requirements con-
tinually change, and this must be factored into the
design of visual analytic tools and the associated soft-
ware technology choice [50,51]. In most cases informa-
tion visualizations require a costly investment in terms
of expertise, user feedback, and developer time. Such
investment is beyond most research groups, who must
put tools in place quickly, and so often a simple, mini-
mal functionality approach needs to be adopted. Instead
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Figure 5 Visualizing PeptideAtlas. The PeptideAtlas can be explored through literature and disease associations (Figure 4) as well as through
gene centered views. The genome visualization on the left allows a user to mine observed spectra based on chromosome location, and drill
down can be undertaken by selecting a location of interest and viewing available genomic and proteomic annotations. The user starts
exploration of the repository through the main genome browser to find genes of interest, information about relationships between genes can
be displayed in the center of the viewer. Information about the protein products of the genes, relating to information stored in PeptideAtlas, is
shown in the concentric rings. The display on the right provides further details about the protein products, including detectability.
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Figure 6 Cytoscape detectable proteins. Using Cytoscape,
PeptideAtlas information can be overlaid on TCGA data in a
network context, allowing users to locate potential biomarkers
within the context of a given cancer network. In this instance genes
that have been identified as having being important in cancer
progression, through changes in gene dosage, are shown. The
diamonds show loci of the genes, and the circles show the genes
themselves. Information from PeptideAtlas, relating to if it is known
if the corresponding protein is detectable, is overlaid.

of focusing on the best solution, we have found that
visualizations must be used together, as each visualiza-
tion has specific strengths in terms of: ability to work
with different sizes of data (e.g. responsiveness); portray-
ing generic aspects of information so that they can be
used with multiple data sources; ease of use and under-
standing; and their suitability for specific tasks (e.g. fea-
ture identification).

In addition to good and scalable design, we have
found that there are three important facets to the devel-
opment of visualizations for large scale data repositories
which allow for suitable functionality to be put in place:

1. Rapid development and deployment of visualiza-
tions, which allows for the development of tools to suit
specific tasks through the use of software technologies.

2. Nested task specific views, which allows for the
adoption of best information visualization practices
without dramatically increasing development time.

3. Common understandable metaphors, which allows
for acceptance as intuitive understanding minimizes
learning time.

Rapid development and deployment of visualizations

Visualization is a crucial mechanism for discovering
meaningful information from research data. The high
volumes, complexity and heterogeneity of the proteo-
mics and genomic data repositories means that repre-
sentations that simply mirror the data are not
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appropriate. As research is not a static process, but
rather an ongoing dynamic investigative endeavour, the
visualizations must be able to deal with highly diverse
and continually changing types of information. This
means that it is difficult, or in many cases impossible, to
provide one visualization that suits all users and usage.
Instead, it is more effective to adopt a task based
approach, where visualizations are provided for specific
tasks (or analysis). If required, common visualizations
can then be developed and refined. As data production
and research are a constantly moving target, any tools
provided to mine the data must be developed as quickly
as the data is being produced.

As creating entirely new tools is a time and developer
intensive process, using rapid application development
(RAD) techniques, appropriate visual analytics can be
quickly provided. By adapting tools and using appropri-
ate frameworks, rather than creating entirely new ones,
it becomes practical to create views that are specific to a
particular task or research direction. For the work dis-
cussed in this paper we adopted a number of standard
software frameworks. A number of web-based frame-
works for both data and visual development were used
that enable both rapid application development and
rapid data delivery. These include: the Google Data
Source libraries for simple, standard data access using
SQL database-like language; Ext]S and GXTJS (Java-
Script frameworks) for quickly creating intuitive, web-
based user interfaces; and web-based visual libraries
such as Protovis [52]. Well-known and understood desk-
top tools such as Cytoscape are also adopted and inte-
grated where appropriate. The use of existing libraries
and visual tools has enabled the development of interac-
tive, usable tools (see Figures 4, 5, and 6) within days or
weeks rather than months or more.

Nested task specific views

While it is necessary to enable general exploration,
researchers often need to explore the data from a parti-
cular starting point. Our visualizations are generally
dedicated to a limited set of tasks however, so providing
multiple levels of linked visualization for the data
becomes necessary (e.g. cross-population, whole gen-
ome, chromosomal location). Information visualization
has advocated common workflows and scopes for the
development of visualizations which are useful when
accessing massive data sets. The macro and micro view
[53] ideas have more recently evolved into the informa-
tion seeking mantra [54] workflow (overview, filter, data
on demand). Such a workflow offers a practical
approach to the delivery of visualizations, so that they
can be accessed using desktop and web based tools.
However, development of initial “overview” or macro
visualizations is not straightforward with large research
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data sets, and depends largely on the task that is going
to be undertaken. For this reason we have typically pro-
vide a number of macro views which can be used to
start filtering or analyzing the data.

In the PeptideAtlas project the visual tools provide
three different “overview” starting points to explore the
underlying data. Using the mspecLINE tool (see Figure
4) users can mine literature associations through a dis-
ease of interest (e.g. breast neoplasm) and find observed
peptide spectra that are linked within the literature.
These spectra can then be viewed in the context of the
genome or directly viewed. Using the PeptideAtlas Cir-
cos visualization, spectra can also be searched by a gene
of interest or chromosomal location (see Figure 5) then
viewed or exported to other tools. Alternatively, data
from other experiments (e.g RNASeq) or network infer-
ence analysis can be imported into Cytoscape, and then
information about the suitability of the associated pro-
teins to act as biomarkers can be overlaid (see Figure 6).

Using data from TCGA analyses a separate set of
macro visualizations provides users with several meth-
ods to search through the data. Starting from the Can-
cer Comparator (see Figure 1), a user can explore gene
disruption rates across multiple diseases. This list of
genes can then be used to mine a single cancer across
multiple samples as within the genome visualization (see
Figure 2). The genome visualization can then lead
further to specific samples where the gene of interest
can be compared across tens of patient samples with the
disruptions annotated (see Figure 3).

Common understandable metaphors

Information visualization provides a means for the non-
expert user to mine, interrogate and interact with infor-
mation at a highly conceptual level. This conceptualiza-
tion is through a mental model (or metaphor) of the
data which is shared by both the developer of the visua-
lization and the end-user. The majority of information
visualizations are based around the idea of providing a
metaphor which is easily and immediately understand-
able enables rich interactions with complex and diverse
data sets.

In the development of the visualizations discussed
above it was found that immediate understanding, typi-
cally through the use of common metaphors or positive
knowledge transfer, were an important facet of the suc-
cess of the visualization in portraying information. Rapid
understanding and user acceptance of a visualization is
important, as it allows scientists to immediately under-
stand what is being portrayed. For example, the Circos
plot suffers due to problems associated with the use of
atypical non-rectangular based interactions, making it
more difficult to use standard mouse drag based opera-
tions. However, the familiarity of the metaphor means
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that people are willing to accept these limitations as
they understand both the visual encoding of the infor-
mation, and are familiar with the layout. Conversely
other visualizations, such as the structural variation
visualization, are less easy to immediately understand
and so general acceptance is limited. In our experience,
easy to understand visualizations are those that are used
widely, as the researchers themselves typically seek to
apply the visualization to other data sets. The metaphors
that are familiar are frequently those that are popularly
and generically used in visualization (e.g. parallel coordi-
nates) or those that are commonly used in a specific
domain (e.g. pathway diagrams, circular genome plots).

Conclusions

Biology is a big data science with the added complexity
that there is no clear understanding as to how the data
may be used. Supporting the scale of data that is being
generated has led to the development of a number of
large scale repositories, and the need to provide visuali-
zation tools to mine this data. This paper discusses
work that has been undertaken to provide such visual
mining tools, and also discusses lessons that have been
learned providing tools for both local researchers and
the wider community.

We have developed a number of bespoke visual tools,
but have preferred to adopt more commonly used
designs. In this paper we have discussed a number of
visualizations, including: an interactive Circos viewer
with context sensitive zooming provided through the
track viewer, which shows genomic features and their
interactions; Parallel Coordinates, which is used to show
and analyze comparisons of genes that are disruptions
in different cancers; a table based view, for exploring
proteins which are associated with specific diseases and
are detectable; and a gene rearrangement viewer, which
shows the complexity of localized rearrangements that
have been identified through anomalies in read-pairs.
We have found that delivery using web technologies is
preferable, both due to the low admin requirements and
the diverse community using the data. These visualiza-
tions each have advantages and disadvantages. The
macro views, such as Circos and the parallel coordi-
nates, are relatively easy to understand and use as they
provide a high level overview. The nested views, such as
the track and gene rearrangement views tend to be
more specialized and therefore require some level of
learning. Interactivity suffers with the high level views
due to the number of items being displayed, this is espe-
cially true due to the limitations in web based delivery.
Where possible principles of information visualization
have been adopted which have been used extensively
elsewhere to visualize biological data (e.g. context sensi-
tive displays, multiple encoding of information using
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intrinsic and extrinsic properties, boundaries and brush-
ing [18,29,55,56]). However, practicalities due to the
demands of research (i.e. short time scales, small devel-
opment teams) means that good design always has to be
weighed against rapidly delivering multiple visualizations
with the required functionality.

Visual exploration of the large-scale atlas data sets
being produced by the PeptideAtlas projects and to sup-
port TCGA analysis allows researchers to mine data to
find new meaning and make sense at scales from single
samples to entire populations. Providing task specific
views that allow a user to start from points of interest
(from diseases to single genes) allows targeted explora-
tion of thousands of spectra and genomes. As the com-
position of the atlases changes, and our understanding
of the biology increase, new tasks will continually arise.
It is therefore important to provide the means to make
the data available in a suitable manner in as small a
time as possible. We have done this through the use of
common visualization workflows, into which we rapidly
deploy visual tools which follow common metaphors
where possible to assist in understanding. Rapid devel-
opment of tools and task specific views allows research-
ers to mine large-scale data almost as quickly as it is
produced. Ultimately these visual tools enable new infer-
ences, new analyses and further refinement of atlas level
data.
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