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Abstract

Background: In many genomes, a clear preference in the usage of particular codons exists. The mechanisms that
induce codon biases remain an open question; studies have attributed codon usage to translational selection,
mutational bias and drift. Furthermore, correlations between codon usage within host genomes and their viral
pathogens have been observed for a myriad of host-virus systems. As such, numerous studies have investigated
codon usage and codon bias in an effort to better understand how species evolve. Numerous metrics have been
developed to identify biases in codon usage. In addition, a few data repositories of codon bias data are available,
differing in the metrics reported as well as the number and taxonomy of strains examined.

Description: We have created a new web resource called the Codon Bias Database (CBDB) which provides
information regarding the codon bias within the set of highly expressed genes for 300+ bacterial genomes. CBDB
was developed to provide a resource for researchers investigating codon bias in bacteria, facilitating comparisons
between strains and species. Furthermore, the site was created to serve those studying adaptation in phage; the
genera selected for this first release of CBDB all have sequenced, annotated bacteriophages. The annotations and
sequences for the highly expressed gene set are available for each strain in addition to the strain’s codon bias
measurements.

Conclusions: Comparing species and strains provides a comprehensive look at how codon usage has been shaped
over evolutionary time and can elucidate the putative mechanisms behind it. The Codon Bias Database provides a
centralized repository of look-up tables and codon usage bias measures for a wide variety of genera, species and
strains. Through our analysis of the variation in codon usage within the strains presently available, we find that most
members of a genus have a codon composition most similar to other members of its genus, although not
necessarily other members of its species.
Background
Why does codon bias exist?
The redundancy within the genetic code accommodates a
variable number of codons to encode for the same amino
acid. Codon usage biases have been found to exist, ranging
from relatively neutral to extremely strong [1-6]. Debate
within the scientific community continues as to exactly
why codon biases exist. Theories based on translational se-
lection, mutational biases, and drift have all been found to
contribute to codon biases [7-11]. Sequence-based analysis
revealed that within organisms having a biased genome,
the most frequently occurring codons often reflect the
most abundant transfer RNA (tRNA) available [12-15].
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Furthermore, through direct molecular manipulation pro-
tein-throughput was increased by designing coding
sequences to utilize the most abundant tRNAs [16-18].
These bioinformatic and experimental studies suggest that
translational selection may be the primary factor shaping
codon usage.
Correspondences between codon usage and tRNA

availability may signify selection for translational accur-
acy, selection for translational efficiency, or both [19-30].
Theories for selection for translational accuracy assume
that the codon with the highest tRNA abundance has a
lower missense error rate than its synonymous codons,
considering tRNA gene copy numbers of both cognate
and near-cognate tRNA abundances (e.g. [11,31]). If
codon bias exists as a result of selection to maximize
protein-throughput, codon usage often reflects available
tRNAs. Because codon bias is often strongest within
highly expressed genes and there exists a correspondence
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between generation time and the strength of codon bias
within these highly expressed genes [6], it is believed that
selection for translational efficiency plays some role in
determining a species’ codon usage. Moreover, recent
studies have shown that the usage of particular synonym-
ous codons can also impact protein folding or misfolding
[32-34].
As the abundances of individual tRNAs vary from one

species to the next, so too do the preferences in codons.
Translational selection seems most prevalent in viral spe-
cies. Correspondence in virus-host codon usage has been
observed in DNA-based, RNA-based, and retro-tran-
scribing viruses (e.g. [35-39]). This observation is not
isolated to eukaryote-infecting viruses; bacteriophages
also exhibit codon biases similar to their host species (e.
g. [40-42]). Given that viruses are heavily dependent
upon their host for biosynthesis, utilizing the most
prevalent tRNAs within the host would likely give the
virus a translational advantage.

Examining codon bias
In order to quantify the bias present within a species, a
number of metrics have been developed. Calculating the
codon usage frequencies within the genome can reveal
biases, in particular when comparing these usage profiles
to expected usage patterns and/or the usage profiles of
synonymous codons, e.g. the frequency of preferred
codons (FOP) metric [13], the synonymous codon usage
order (SCUO) metric [43], and the %MinMax algorithm
[44]. In order to compare the strength of biases within
and between species, the relative synonymous codon
usage (RSCU) and the geometric mean of the RSCU
values, the codon adaptation index (CAI), were devel-
oped in which codon usage frequencies within highly
expressed genes (HEGs) are specifically examined
[6,23,45]. Numerous extensions of the CAI metric have
been proposed, e.g. the self-consistent codon index
(SCCI) [46] and relative codon adaption index (rCAI)
[47]. Rather than looking at the codons themselves to as-
certain biases, a second approach exists in which biases
are assessed relative to individual tRNA abundances. The
tRNA adaptation index (tAI), also inspired by the CAI
metric, considers not only the gene copy number of the
tRNA with the perfectly matched anticodon but also
those tRNAs which can bind imperfectly [24]. The “local
tAI” metric takes a similar approach, however the tAI
measure is averaged for sliding windows across the gene
rather than for the whole gene sequence [26]. In many
species the codon usage in HEGs matches tRNA abun-
dance [12,48].
Given the information encoded within the usage of

codons, a number of tools and databases have been devel-
oped for analyzing the codon and tRNA content of genic
and genomic sequences. CAIcal [49], CodonExplorer [50],
and CodonW [51] calculate CAI values for user input
sequences while E-CAI [52] calculates the expected CAI
values by generating random sequences with a G+C con-
tent and amino acid composition similar to the user input
sequence. The application CodonO [53] can analyze indi-
vidual genomes or compare genomes using the SCUO
metric. JCat [54] and GCUA [55] both calculate the RSCU
values of user input sequences relative to a reference
organism’s usage profile. The RSCU values for many spe-
cies are contained in the Codon Usage Database [56]; this
collection, however, does not appear to have been updated
since June 15, 2007. The Microbial Genome Codon Usage
Database [57] and Prokaryotes Codon Usage Database [58]
have lookup tables of codon counts and frequencies for
over 500 and 800 species, respectively (as of June 2011).
The most comprehensive database of codon statistics for
individual microbial strains can be found in the Codon
Usage Bias Database (CUB-DB) [59]; individual links guide
the user to individual strain values for many of the afore-
mentioned metrics as well as two metrics developed by the
database’s author [60].

The codon bias database
We have developed a new web resource called the
Codon Bias Database (CBDB) which lists RSCU, normal-
ized RSCU, and frequency biases (FB) values for 300+
and counting bacterial strains. The genera selected for
this first release of CBDB all have sequenced, annotated
bacteriophages, thus providing a reference for those
studying adaptation in phage. Following the metric pro-
posed by Paul Sharp and collaborators [6,23,45], analysis
is performed for the set of highly expressed genes
(HEGs) and these gene sets have been manually curated.
CBDB is organized in such a way to easily accommodate
codon usage comparisons between strains and species.

Construction and content
In this initial release, over 300 strains belonging to 17
genera were selected. The FASTA format (*.fna) and pro-
tein coding gene (*.ptt) files were downloaded from the
NCBI FTP site [60]. Code developed in C++ generated *.
ptt files containing only the annotations of the HEGs
which includes 40 genes previously used for analysis of
codon bias [6]; these genes encode for the translation
elongation factor Tu (tufA), Ts (tsf ) and G (fusA) as well
as 37 ribosomal proteins (rplA-rplF, rplI-rplT, and rpsB-
rpsT). Each HEG file was then manually inspected to ac-
count for variations in naming conventions. The HEG *.
ptt files, which include information regarding the loca-
tion of the gene within the genome, the gene name, and
information about the protein product, are available for
download for each strain.
Using code developed in C++, the frequency of each

codon within each strain’s set of HEG sequences was
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calculated. These frequencies were then used to calculate
three metrics representing the codon usage patterns: the
relative synonymous codon usage (RSCU), normalized
relative synonymous codon usage (NRSCU) and fre-
quency bias (HEG FB) values. The RSCU metric, intro-
duced by Sharp et al. [45], is the observed frequency of
the codon divided by the frequency expected under the
assumption of equal usage of synonymous codons. The
commonly used metric of quantifying codon bias, the
CAI value, is derived by referencing the set of RSCU
values for a species’ HEG sequence set. RSCU values can
vary from zero to the number of synonymous codons
available for a particular amino acid. The NRSCU value
scales the RSCU values such that each codon’s value is
between zero and one. Thus, each amino acid is
weighted equally while still retaining the variance in
usage between synonymous codons. The last metric, the
HEG FB metric, is the relative frequency of the codon
within the set of all codons present in the HEG
sequences. The FB values also reflect the variation in
synonymous codon usage, but in contrast to the NRSCU
metric it also captures biases in amino acid usage within
the HEG set. These metrics are calculated as follows:

RSCUij ¼ xij
1
ni
∑
ni

j¼1
xij
NRSCUij ¼ xij

∑
ni

j¼1
xij

HEG FBij ¼ xij

∑
20

i¼1
∑
ni

j¼1
xij

where xij is the number of occurrences of the jth codon
for the ith amino acid and ni is the number of synonym-
ous codons which encode for the ith amino acid. The
user can download a table containing the results of these
calculations for each strain available through CBDB as
well as a table containing these values for all strains of
the selected genus.
The nucleotide and protein sequences of the HEGs for

each strain are also available for download from CBDB
in FASTA format.

Utility & discussion
The motivation behind creating the CBDB site was two-
fold. Firstly, this site was designed to provide a resource of
codon frequency look-up tables for researchers who are in-
vestigating translational selection and codon bias in bac-
teria. Researchers can assess if a nonsynonymous mutation
observed is for a codon which is more/less preferred. Sec-
ondly, a number of groups, including our own, utilize the
phage-host system to explore viral evolution. In particular,
CBDB is a resource for recognizing selection within evolv-
ing species.
While CUB-DB [59] includes much of the same data

included in CBDB, we wanted to present the data in such
a way that one could easily compare the variation in
biases between strains and species within a genus.
Secondly, CBDB also contains the FASTA format
sequences of the highly expressed genes as well as the
gene annotation information, which could then be subse-
quently analyzed by any of the aforementioned codon
analysis software tools. Thus, researchers can go to one
repository for this data. In contrast with the resource of
the Highly Expressed Genes Database or HEG-DB [61],
CBDB includes only the set of HEG identified by Sharp
et al. [6] and the calculation of CAI values. Furthermore,
this initial release of CBDB contains more species than is
available through HEG-DB [61].
Figure 1 shows a screen shot of the CBDB website,

showing the results for the first strain listed for the
genus Acinetobacter. Each strain’s name and NCBI
RefSeq number, which includes a hyperlink to the NCBI
genome record, is listed followed by links to download:
the data table (format *.xls), the tab-delimited gene an-
notation file for the HEG (format *.ptt), the FASTA for-
mat amino acid sequences of the HEG set, and the
FASTA format nucleotide sequences of the HEG set.
Below these links is the data table containing the amino
acid abbreviation for each codon and each codon’s
RSCU, NRSCU, and HEG FB values. At the top of each
genus’ page is a link to download all of the data tables in
a single MS Excel document. Also included is a link to a
single MS Excel file which contains the RSCU values for
each codon for each strain and an interactive graph to
compare biases between strains. The list of all of the
available genera appears in the navigation on the left
pane of each page and all of the species available for a
selected genus. Moreover, the navigation pane includes a
link describing the codon bias metrics used and asso-
ciated references.
While in this release of the database only 300+ species

are available, additional species will be added on a regu-
lar basis; all of the annotated bacterial species available
through NCBI will be included over the coming months.
Furthermore, we are in the process of developing and
making publicly available through the site functionality
for conducting inter- and intra-species as well as phage-
host comparisons of codon usage profiles.

Exploring codon bias with CBDB
Previous analysis of the variation in codon usage be-
tween bacterial species selected just a few representatives
of a genus and species [6]. We were interested to see
how codon usage varied between species in the same
genus as well as between different strains of the same
species. For each of the three metrics included in CBDB,
we calculated the correlation in codon usage for each
pair of strains. A distance matrix was then computed as
(1-r)/2 such that the instance of a pair being anticorre-
lated has a distance of 1 and a perfectly correlated pair
has a distance of 0. The FITCH application of the



Figure 1 CBDB interface, the results for the first species of the Acinetobacter genus.
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PHYLIP package [62] was used to derive a tree to
visualize similarities/dissimilarities in codon usage. Fig-
ure 2A shows the tree derived when the NRSCU values
were compared for all strains. (Clades were collapsed
when the subtree contained only one genus. Shigella was
found to group both with Escherichia and Salmonella.
Chlamydia and Chlamydophila were also collapsed into
single nodes as some strains were closer to strains of the
other species than of their own species.) From Figure 2A,
we also identified two branches including Pseudomonas
(maroon circle) and Salmonella & Shigella (orange
square) species. The leftmost Salmonella & Shigella
branch, separating the pseudomonads is a single species –
Salmonella enterica subsp. arizonae serovar 62:z4,z23:–
str. RSK2980 (GenBank: NC_010067). Also from this
visualization of codon usage bias we noticed that the
34 Bacillus strains are interspersed amongst other
species in the tree. The two B. lincheniformis and single B.
clausii strain show a more similar codon usage pattern to
the Vibrio fisheri sequences than they do to the other ba-
cilli, as is shown in Figure 2B. Looking at the Bacillus genus
data file available from CBDB which includes statistics for
all of the strains, one can see variation in usage between
species.
The genera included in this first release vary in the

strength of their bias. For instance, as has been previ-
ously documented [6], the Chlamydiae phylum does
not exhibit a significant bias. The eight Chlamydia and
Chlamydophila species examined here do not show a
strong bias. ANOVAs were performed for all three sta-
tistics revealing that the variation between the species is
not statistically significant. The Vibrio species, however,
are strongly biased [6] and exhibit differences in codon
usage between species. For instance, Figure 3 shows the
biases for the 11 Vibrio species examined for the six
leucine codons. Referring to the Genomic tRNA data-
base [63], one can find that the non-cholerae species
have more TAG-anticodon tRNAs (blue) than any other
Leucine tRNAs. This thus can explain the preference
within these species for CTA codon. The V. cholerae
species also have more TAG-anticodon tRNAs than any
other Leucine tRNAs, but in contrast to the non-cho-
lerae species they also have CAG-anticodon tRNAs
(green) [63].
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Figure 2 Visualization of similarity/dissimilarity of codon usage biases between strains and species. (A) The majority of species appears
most similar to other species/strains within their genus and thus is represented by a single branch in the tree. (B) Visualization of the Bacillus
strains and their placement in the tree; several different species form their own clades.
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Conclusions
As recent research has found, the use of particular
codons can improve translational accuracy and efficiency
in addition to serving as a signal for co-translational pro-
tein folding [11,19-34]. Comparing usage between
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Figure 3 Variation in the usage of Leucine synonymous codons in Vib
species and strains can expose variation in usage be-
tween closely related organisms. Furthermore, this site
serves as a resource for studying the mechanisms shap-
ing codon usage within bacteriophages. The Codon Bias
Database (CBDB) provides a centralized repository of
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look-up tables and codon usage bias measures for a wide
variety of genera, species and strains, facilitating compar-
isons in codon usage between closely related species
such as the one presented here.
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