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Abstract

rapid reconstruction of new ones.

relational database models (MySQL).

Background: Increasingly, metabolite and reaction information is organized in the form of genome-scale
metabolic reconstructions that describe the reaction stoichiometry, directionality, and gene to protein to reaction
associations. A key bottleneck in the pace of reconstruction of new, high-quality metabolic models is the inability
to directly make use of metabolite/reaction information from biological databases or other models due to
incompatibilities in content representation (i.e, metabolites with multiple names across databases and models),
stoichiometric errors such as elemental or charge imbalances, and incomplete atomistic detail (e.g., use of generic
R-group or non-explicit specification of stereo-specificity).

Description: MetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by
integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified
data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique
structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a
workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of
standardized versions of existing genome-scale metabolic models and the use of metabolic information for the

Conclusions: The standardization in description allows for the direct comparison of the metabolite and reaction
content between metabolic models and databases and the exhaustive prospecting of pathways for
biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating
in more than 72,000 reactions (including unresolved entries). MetRxn is hosted on a web-based platform that uses

Background

The ever accelerating pace of DNA sequencing and
annotation information generation [1] is spearheading
the global inventorying of metabolic functions across all
kingdoms of life. Increasingly, metabolite and reaction
information is organized in the form of community [2],
organism, or even tissue-specific genome-scale meta-
bolic reconstructions. These reconstructions account for
reaction stoichiometry and directionality, gene to pro-
tein to reaction associations, organelle reaction localiza-
tion, transporter information, transcriptional regulation
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and biomass composition. Already over 75 genome-scale
models are in place for eukaryotic, prokaryotic and
archaeal species [3] and are becoming indispensable for
computationally driving engineering interventions in
microbial strains for targeted overproductions [4-7], elu-
cidating the organizing principles of metabolism [8-11]
and even pinpointing drug targets [12,13]. A key bottle-
neck in the pace of reconstruction of new high quality
metabolic models is our inability to directly make use of
metabolite/reaction information from biological data-
bases [14] (e.g., BRENDA [15], KEGG [16], MetaCyc,
EcoCyc, BioCyc [17], BKM-react [18], UM-BBD [19],
Reactome.org, Rhea, PubChem, ChEBI etc.) or other
models [20] due to incompatibilities of representation,
duplications and errors, as illustrated in Figure 1.
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1) Naming Inconsistencies

Escherichia coli iAF1260 [c] : akg
Acinetobacter baylyiiAbaylyi 1 GLT +1PYR
Leishmania major iAC560 [m] : akg
Mannheimia succiniciproducens PYR

2) Elemental and charge imbalances

2-Oxoglutarate + L-Alanine <=> Pyruvate + L-Glutamate

KEGG C00026 + C00041 <=>C00022 + C00025
BRENDA alpha-ketoglutarate + L-alanine <=> L-glutamate + pyruvate

Balanced
KEGG (R)-Lactate + NAD+ <=> Pyruvate + NADH + H+
Escherichia coli iAF1260 [c] : lac-D + nad --> h + nadh + pyr
Unbalanced
Acinetobacter baylyi iAbaylyi 1 D-LACTATE + 1 NAD <=>1 NADH + 1 PYRUVATE

+ ala-L --> glu-L + pyr
UVATE <-> 1 2-KETOGLUTARATE + 1 L-ALPHA-ALANINE
+ala-L -> glu-L + pyr
+ GLU --> AKG +ALA

3) Errors/incompleteness/ambiguity in structural information
models
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Figure 1 Typical incompatibilities and inconsistencies in genome-scale models and databases. Roadblocks to using genome-scale models
and databases include ambiguities and differences in naming conventions,

# structures

lack of balanced reactions, and incompleteness of structural

A major impediment is the presence of metabolites
with multiple names across databases and models, and
in some cases within the same resource, which signifi-
cantly slows down the pooling of information from mul-
tiple sources. Therefore, the almost unavoidable
inclusion of multiple replicates of the same metabolite
can lead to missed opportunities to reveal (synthetic)
lethal gene deletions, repair network gaps and quantify
metabolic flows. Moreover, most data sources inadver-
tently include some reactions that may be stoichiometri-
cally inconsistent [21] and/or elementally/charge
unbalanced [22,23], which can adversely affect the pre-
diction quality of the resulting models if used directly.
Finally, a large number of metabolites in reactions are
partly specified with respect to structural information

and may contain generic side groups (e.g., alkyl groups
-R), varying degree of a repeat unit participation in oli-
gomers, or even just compound class identification such
as “an amino acid” or “electron acceptor”. Over 3% of
all metabolites and 8% of all reactions in the aforemen-
tioned databases and models exhibit one or more of
these problems.

There have already been a number of efforts aimed at
addressing some of these limitations. The Rhea database,
hosted by the European Bioinformatics Institute, aggre-
gates reaction data primarily from IntEnz [24] and
ENZYME [25], whereas Reactome.org is a collection of
reactions primarily focused on human metabolism
[26,27]. Even though they crosslink their data to one or
more popular databases such as KEGG, ChEBI, NCB]I,
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Ensembl, Uniprot, etc., both retain their own representa-
tion formats. More recently, the BKM-react database is
a non-redundant biochemical reaction database contain-
ing known enzyme-catalyzed reactions compiled from
BRENDA, KEGG, and MetaCyc [18]. The BKM-react
database currently contains 20,358 reactions. Addition-
ally, the contents of five frequently used human meta-
bolic pathway databases have been compared [28]. An
important step forward for models was the BiGG data-
base, which includes seven genome-scale models from
the Palsson group in a consistent nomenclature and
exportable in SBML format [29-31]. Research towards
integrating genome-scale metabolic models with large
databases has so far been even more limited. Notable
exceptions include the partial reconciliation of the latest
E. coli genome scale model iAF1260 with EcoCyc [32]
and the aggregation of data from the Arabidopsis thali-
ana database and KEGG for generating genome-scale
models [33] in a semi-automated fashion. Additionally,
ReMatch integrates some metabolic models, although its
primary focus is on carbon mappings for metabolic flux
analysis [34]. Also, many metabolic models retain the
KEGG identifiers of metabolites and reactions extracted
during their construction [35,36]. An important recent
development is the web resource Model SEED that can
generate draft genome-scale metabolic models drawing
from an internal database that integrates KEGG with 13
genome scale models (including six of the models in the
BiGG database) [37]. All of the reactions in Model
SEED and BiGG are charge and elementally balanced.

In this paper, we describe the development and high-
light applications of the web-based resource MetRxn
that integrates, using internally consistent descriptions,
metabolite and reaction information from 8 databases
and 44 metabolic models. The MetRxn knowledgebase
(as of October 2011) contains over 76,000 metabolites
and 72,000 reactions (including unresolved entries) that
are charge and elementally balanced. By conforming to
standardized metabolite and reaction descriptions,
MetRxn enables users to efficiently perform queries and
comparisons across models and/or databases. For exam-
ple, common metabolites and/or reactions between
models and databases can rapidly be generated along
with connected paths that link source to target metabo-
lites. MetRxn supports export of models in SBML for-
mat. New models are being added as they are published
or made available to us. It is available as a web-based
resource at http://metrxn.che.psu.edu.

Construction and Content

MetRxn construction

The construction of MetRxn largely followed the follow-
ing steps, as illustrated in Figure 2: 1) download of pri-
mary sources of data from databases and models, 2)
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integration of metabolite and reaction data, 3) calcula-
tion and reconciliation of structural information, 4)
identification of overlaps between metabolite and reac-
tion information, 5) elemental and charge balancing of
reactions, 6) successive resolution of remaining ambigu-
ities in description.

Step 1: Source data acquisition

Metabolite and reaction data was downloaded from
BRENDA, KEGG, BioCyc, BKM-react and other data-
bases using a variety of methods based on protocols
such as SOAP, FTP and HTTP. We preprocessed the
data into flat files that were subsequently imported into
the knowledgebase. All original information pertaining
to metabolite name, abbreviations, metabolite geometry,
related reactions, catalyzing enzyme and organism
name, gene-protein-reaction associations, and compart-
mentalization was retained. For all 44 initial genome-
scale models listed, the online information from the cor-
responding publications was also imported. The source
codes for all parsers used in Step 1 are available on the
MetRxn website.

Step 2: Source data parsing

The “raw data” from both databases and models was
unified using standard SQL scripts on a MySQL server.
The description schema for metabolites includes source,
name, abbreviations used in the source, chemical for-
mula, and geometry. The schema for reactions accounts
for source, name, reaction string (reactants and pro-
ducts), organism designation, associated enzymes and
genes, EC number, compartment, reversibility/direction,
and pathway information. Once a source has been
imported into the MySQL server, a data source-specific
dictionary is created to map metabolite abbreviations
onto names/synonyms and structures and metabolites to
reactions.

Step 3: Metabolite charge and structural analysis

We used Marvin (Chemaxon) to analyze all 218,122 raw
metabolite entries containing structural information (out
of a total of 322,936, including BRENDA entries). Incon-
sistencies were found in 12,965 entries typically due to
wrong atom connectivity, valence, bond length or stereo
chemical information, which were corrected using APIs
available in Marvin. A final corrected version of the
metabolite geometries was calculated at a fixed pH of
7.2 and converted into standard Isomeric SMILES for-
mat. The structure/formula used corresponded to the
major microspecies found during the charge calculation,
which effectively rounds the charge to an integer value
in accordance with previous model construction conven-
tions. This format includes both chiral and stereo infor-
mation, as it allows specification of molecular
configuration [38-40]. Metabolites were also annotated
with Canonical SMILES using the OpenBabel Interface
from Chemspider. The canonical representation encodes
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Figure 2 Flowchart outlining the construction of MetRxn. After download of primary sources of data from databases and models, we
integrated metabolite and reaction data, followed by calculation and reconciliation of structural information. By identifying overlaps between
metabolite and reaction information, we generated elemental and charge balancing of reactions. The procedure for developing MetRxn was
iterative with subsequent passes making use of previous associations to resolve remaining ambiguities.

Elemental & charge
balancing

At least one
metabolite lacks

only atom-atom connectivity while ignoring all confor-
mers for a metabolite. Using bond connectivity informa-
tion from the primary sources and resources such as
PubChem and ChemSpider we used Canonical SMILES

[41,42] to resolve the identity of 34,984 metabolites and
32,311 reactions. Another 6,100 metabolites and 11,401
reactions involved, in various degrees, lack of full ato-
mistic detail in their description (e.g., use an R or x as
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side-chains, are generic compounds like “amino acid” or
“electron acceptor”). Over 25,000 duplicate metabolites
and 27,000 reaction entries were identified and consoli-
dated within the database. The metabolites and reac-
tions present in the resolved repository were further
classified with respect to the completeness of atomistic
detail in their description.

Step 4: Metabolite synonyms and initial reaction
reconciliation

Raw metabolite entries were assigned to Isomeric
SMILES representations whenever possible. If insuffi-
cient structural information was available for a down-
loaded raw metabolite then it was assigned temporarily
with the Canonical SMILES and revisited during the
reaction reconciliation. Canonical SMILES retain atom
connectivity but not stereo-specificity and are used as
the basic metabolite topology descriptors as many meta-
bolic models lack stereo-specificity information. After
generating the initial metabolite associations, we identi-
fied reaction overlaps using the reaction synonyms and
reaction strings along with the metabolite SMILES
representations. Directionality and cofactor usage were
temporarily ignored. During this step, reactions were
flagged as single-compartment or two-compartment (i.e.,
transport reactions). MetRxn internally retains the origi-
nal compartment designations, but currently only dis-
plays these simplified compartment designations. In
analogy to metabolites, reactions were grouped into
families that shared participants but in the source data
sets occurred in different compartments or differed only
in protonation.

Step 5: Reaction charge and elemental balancing

Once metabolites were assigned correct elemental com-
position and protonation states, reactions were charge
and elementally balanced. To this end, for charge balan-
cing we relied on a linear programming representation
that minimizes the difference in the sum of the charge
of the reactants and the sum of the charge on the pro-
ducts. The complete formulation is provided in the doc-
umentation at MetRxn.

Step 6: Iterative reaction reconciliation

Reactions with one (or more) unresolved reactants and/
or products were string compared against the entire
resolved collection of reactions. This step was succes-
sively executed as newly resolved metabolites and reac-
tions could enable the resolution of previously
unresolved ones. After the first pass 164 metabolites
were resolved, while subsequent passes (up to 18 for
some models) helped resolved a total of 8,720 entries.
Reactions with significant (but not complete) overlap-
ping sets of reactants/products are additionally sent to
the curator GUI including phonetic information. Briefly,
the phonetic tokens of synonyms with known structures
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were compared against the ones without any associated
structure. The algorithm suppresses keywords/tokens
depicting stereo information such as cis, trans, L-, D-,
alpha, beta, gamma, and numerical entries because they
change the phonetic signature of the synonym under
investigation. In addition, the algorithm ignores non-
chemistry related words (e.g., use, for, experiment) that
are found in some metabolite names. Certain tokens
such as “-ic acid” and “-ate” are treated as equivalent.
PubChem and Chemspider sources were accessed
through the GUI so that the curator gets as much infor-
mation as possible to identify the data correctly. Pho-
netic matches provided clues for resolving over 159
metabolites. The iterative application of string and pho-
netic comparison algorithms resolved as many as 8,879
metabolites after 18 rounds of reconciliation.

Upon completion of this workflow, all genome-scale
models are reformatted into a computations-ready form
and Flux Balance Analysis [43] is performed on both the
source model and the standardized model in MetRxn to
ascertain the ability of the model to produce biomass
before and after standardization. We performed the cal-
culations using GAMS version 12.6. MetRxn is accessi-
ble through a web interface that indirectly generates
MySQL queries. In order to facilitate analysis and use of
the data, a number of tools are provided as part of
MetRxn.

Data export and display

MetRxn supports a number of export capabilities. In
general, any list that is displayed contains live links to
the metabolite or reaction entities. These lists can con-
sist of an entire model, data from a comparison, or
query results. All items can be exported to SMBL for-
mat. In addition, the public MySQL database will be
made available upon request. Because of licensing lim-
itations, the BRENDA database cannot be exported and
is not part of the public MySQL database. However, we
plan to provide Java source code that allows for the
integration of a local copy of the public MySQL data-
base with the BRENDA database (provided upon
request).

Source comparisons and visualization

In addition to listing the content (number of metabo-
lites, reactions, etc.) of the selected data source(s),
MetRxn contains tools for comparing two or more mod-
els and visualizing the results. These associations can be
for metabolites or reactions. During these comparisons
compartment information and reversibility are sup-
pressed. Comparison tables are generated by comparing
the associations between the selected data source(s)
using the canonical structures.
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MetRxn Scope

An initial repository of reaction (i.e., 154,399) and meta-
bolite (i.e., 322,936) entries were downloaded from 8
databases and 44 genome-scale metabolic models. We
compiled a non-redundant list of 42,540 metabolites
and 35,474 reactions (after consolidating duplicate
entries) containing full atomistic and bond connectivity
detail. Another 6,100 metabolites and 11,401 reactions
have partial atomistic detail typically containing generic
side-chains (R) and/or an unspecified number of poly-
mer repeat units. Finally, 5,436 metabolites in metabolic
models and 8,000 metabolites in databases are retained
with no atomistic detail. In some cases lack of atomistic
detail reflects complete lack of identity specificity (e.g.,
electron donor) whereas in other cases even though the
chemical species is fully defined, atomistic level descrip-
tion is not warranted (e.g., gene product of dsbC protein
disulfide isomerase II (reduced)). Figure 3 shows the
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distribution of metabolite resolution across models and
databases in MetRxn. In general, metabolites without
fully-specified structures tend to participate in a rela-
tively small number of reactions.

The workflow followed in the creation of the MetRxn
knowledgebase identified a number of inconsistencies.
For instance, the same metabolite name may map to
molecules with different numbers of repeat units (e.g.,
lecithin) or completely different structures (e.g., AMP
could refer to either adenosine monosphate or ampicil-
lin). Notably, even for the most well-curated metabolic
model, E. coli iAF1260 [32], we found minor errors or
omissions (a total of 17) arising from inconsistencies or
incompleteness of representation in the data culled from
other sources. For example, the metabolite abbreviation
arbtn-fe3 was mistakenly associated with the KEGG ID
and structure of aerobactin instead of ferric-aerobactin.
The number of inconsistencies is dramatically increased

Zea mays iRS1563

Arabidopsis thaliana iRS1597
Pseudomonas aeruginosa
Pseudomonas putida KT2440 iJN746
Bacillus subtilis iBsu1103
Leishmania major

Aspergillus oryzae

Escherichia coli iAF1260
Salmonella typhimurium

Rhizobium etli

Mycobacterium tuberculosis H37Rv
Aspergillus nidulans
Saccharomyces cerevisiae iFF708
Geobacter metallireducens
Acinetobacter baylyi

Shewanella oneidensis iSO783
Saccharomyces cerevisiae IND750
Staphylococcus aureus

source

Porphyromonas gingivalis
Halobacterium salinarum
Methanosarcina acetivorans
Methanosarcina barkeri
Lactobacillus plantarum WCFS1
Mycoplasma genitalium
Saccharomyces cerevisiae iLL672
Geobacter sulfurreducens
Clostridium thermocellum
Mannheimia succiniciproducens
Streptomyces coelicolor
Clostridium acetobutylicum
Neisseria meningitidis
Corynebacterium glutamicum
Mus musculus cardiomyocyte
Saccharomyces cerevisiae iIMH805

M full
M partial
M none
BRENDA
BKM-react
ChEBI
KEGG
MetaCyc
HMDB
BiGGDB

ChemSpider

0 10000 20000 30000 40000

Figure 3 Various levels of structural information was available for models (main) and databases (inset). For every model, the majority of
metabolites had full atomistic detail (blue). The smaller number of metabolites with partial atomistic detail (orange) such as genetic side chains,
or with no atomistic detail (green) such as gene products, participated in few reactions.
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for less-curated metabolic models. We used a variety of
procedures to disambiguate the identity of metabolites
lacking structural information ranging from reaction
matching to phonetic searches. For example, in the Cor-
ynebacterium glutamicum model [44], 7,8-aminopelargo-
nic acid (DAPA) has no associated structural
information. Reaction matching found the same reaction
in the E. coli iAF1260 model.

C. glutamicum DAPA + ATP + CO2 < DTBIOTIN + ADP + PI

iAF1260([c]: atp + co2 + dann — adp + dtbt + (3) h + pi

which implies that 7,8-aminopelargonic acid (DAPA)
is identical to 7,8-Diaminononanoate (dann). Examina-
tion of pelargonic acid and nonanoate reveals that they
were indeed known synonyms. In many cases, we were
also able to assign stereo-specific information to meta-
bolite entries in models (e.g., stipulate the L-lysine iso-
mer for lysine). We made use of an iterative approach
that allowed us to map structures from models with
explicit links to structures (e.g. to KEGG or CAS num-
bers) to models that only provided metabolite names.
Furthermore, by using a phonetic algorithm that uses
tokens for equivalent strings in metabolite names (e.g.,
‘-ic acid’ and ‘-ate’ are equivalent) we were able to
resolve more than an additional 159 metabolites. For
example, phonetic searches flagged cis-4-coumarate and
COUMARATE in the Acinetobacter baylyi model [45]
as potentially identical compounds. Additional checks
revealed that indeed both metabolites should map to the
same structure. A more complex matching example
involved 1-(5’-Phosphoribosyl)-4-(N-succinocarboxa-
mide)-5-aminoimidazole from the Bacillus subtilis
model [46] and 1-(5-Phosphoribosyl)-5-amino-4-(N-suc-
cinocarboxamide)-imidazole from the Aspergillus nidu-
lans model [47]. We note that the phonetic algorithm
only makes suggestions and orders the possible matches
for the curator. Next, we detail three examples that pro-
vide an insight into the type of tasks that MetRxn can
facilitate.

Utility and Discussion

1. Charge and elementally balanced metabolic models
The standardized description of metabolites and
balanced reactions afforded by MetRxn enables the
expedient repair of existing models for metabolite nam-
ing inconsistencies and reaction balancing errors. Here
we highlight one such metabolic model repair for Acine-
tobacter baylyi iAbaylyi** [45]. We identified that 189
out of 880 reactions are not elementally or charge
balanced. Most of the reactions with charge balance
errors involved a missed proton in reactions involving
cofactor pairs such as NAD/NADH. For example, a
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proton had to be added to the reactants side in the reac-
tion (R, R)-Butanediol-dehydrogenase in which butane-
diol reacts with NAD to form acetoin. In addition, the
stoichiometric coefficient of water in GTP cyclohydro-
lase I was erroneously set at -2 which resulted in an
imbalance in oxygen atoms. The re-balancing analysis
changed the coefficient to -1 (as listed in BRENDA) and
added a proton to the list of reactants (absent from
BRENDA) in order to also balance charges.

We performed flux balance analysis (FBA) on both the
published and MetRxn-based rebalanced version of the
Acinetobacter baylyi model using the uptake constraints
listed in [45] to assess the effect of re-balancing reaction
entries on FBA results. We found that the maximum
biomass using the glucose/ammonia uptake environ-
ment decreased by 9% primarily due to the increased
energetic costs associated with maintaining the proton
gradient. This result demonstrates the significant effect
that lack of reaction balancing may cause in FBA calcu-
lations. Overall, we found that nearly two-thirds of the
models had at least one unbalanced reaction, with over
2,400 entities across all models that were either charge
or elementally imbalanced. Frequently, the same reac-
tion was imbalanced in multiple models (each occur-
rence was counted separately).

2. Contrasting existing metabolic models

At the onset of creating MetRxn, we conducted a brief
preliminary study to quantify the extent/severity of nam-
ing inconsistencies by contrasting the reaction informa-
tion contained in an initial collection of 34 of the most
popular genome-scale models spanning 21 bacterial, 10
eukaryotic and three archaeal organisms. Across all
branches of life, most metabolic processes are largely
conserved (e.g., glycolysis, pentose phosphate pathway,
amino acid biosynthesis, etc.) therefore we expected to
uncover a large core of common reactions shared by all
models. Surprisingly, we found that only three reactions
(i.e., phosphoglycerate mutase, phosphoglycerate kinase,
and CO, transport) were directly recognized as common
across those 34 models using a simple string match
comparison. Even when examining models for only a
few bacterial organisms (Bacillus subtilis, Escherichia
coli, Mycobacterium tuberculosis, Mycoplasma genita-
lium, and Salmonella Typhimurium) simple text
searches recognized only 40 common reactions (out of a
possible 262, which is the size of the M. genitalium
model). The reason for this glaring inconsistency is that
differing metabolite naming conventions, compartment
designations, stoichiometric ratios, reversibility, and
water/proton balancing issues prevents the automated
recognition of genuinely shared reactions across models.
Using the glucose-6-phosphate dehydrogenase reaction
as a representative example, Table 1 reveals some of the
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Table 1 Representation of glucose-6-phosphate dehydrogenase in selected metabolic models

Reaction

Model/Citation

[cl: g6p + nadp < = = > 6pgl + h + nadph

Escherichia coli [32]; Lactobacillus plantarum [48]; Pseudomonas aeruginosa [49]; Staphylococcus aureus

(50]

[cl: g6p + nadp — > 6pgl + h + nadph

Bacillus subtillis [51]; Mycobacterium tuberculosis [13]; Pseudomonas putida [52]; Rhizobium etli [53];

Saccharomyces cerevisiae [54]

[clg6p + nadp < = = > 6pgl + h + nadph

Saccharomyces cerevisiae [55]; Escherichia coli [56]

[c]: f420-2 + gbp — > 6pgl + f420-2h2

Methanosarcina barkeri [57]

G6P + NADP < - > D6PGL + NADPH

Escherichia coli [58]; Mus musculus [59]; Saccharomyces cerevisiae [60,61]

G6P + NADP - > D6PGL + NADPH

Aspergillus nidulans [47]; Mannheimia succiniciproducens [62]; Streptomyces coelicolor [63]

G6P + NAD - > D6PGL + NADH

Helicobacter pylori [64]

C01172 + C00006 = C01236 + CO0005 +
C00080

GSM mouse [35]

C00092 + C00006 < = > C01236 + CO0005
+ C00080

Halobacterium salinarum [36]

reasons for failing to automatically recognize common
reactions across selected models [13,32,35,36,47-64]. As
many as nine different representations of the same reac-
tion exist due to incomplete elemental and charge bal-
ancing, alternate cofactor usage among different
organisms, and lack of universal metabolite naming con-
ventions. We have found that this level of discord
between models is representative for most metabolic
reactions. This lack of consistency renders direct path-
way comparisons across models meaningless and the
aggregation of reaction information from multiple mod-
els precarious. This deficiency motivated the develop-
ment of MetRxn. Given standardization in metabolite
naming and elementally/charge balanced reaction entries
MetRxn allows for the identification of shared reactions
as well as differences between any two metabolic models
(assuming that all the metabolites in the compared reac-
tion entries have full atomistic information). When mak-
ing the comparison of those same metabolic models,
MetRxn found an additional 15 reactions in common
(for a total of 55 — a 38% increase) and that 142 reac-
tions are shared by B. subtilis, E. coli and Salmonella
Typhimurium.

The Web interface of MetRxn allows for any number
of models to be simultaneously compared. As a demon-
stration of this capability we selected to contrast the
metabolic content of two clostridia models: Clostridium
acetobutylicum [65] and Clostridium thermocellum [66].
Figure 4 shows the results in the form of a Venn dia-
gram. Some of the differences between the clostridia
species are not surprising arising due to their differing
lifestyles (C. acetobutylicum contains solventogenesis
pathways and a CoB12 pathway, whereas C. thermocel-
lum contains cellulosome reactions). However, we found
many differences that appear to reflect different conven-
tions adopted when the two models were generated
rather than genuine differences in metabolism. In

particular, in the C. thermocellum model [66] charged/
uncharged tRNA metabolites are explicitly tracked
whereas they are not included in the C. acetobutylicum
model [65]. Surprisingly, both clostridia models are
more similar, at the metabolite level, to the Bacillus sub-
tilis iBsul103 model [46] rather than to each other (see
Figure 4). Charged/uncharged tRNA metabolites
account for most of the increased overlap between C.
thermocellum and B. subtilis. Most of the reaction over-
laps are in the amino acids biosynthesis pathways, car-
bohydrate metabolism, and nucleoside metabolism. It is
important to note that 48 reactions in C. acetobutyli-
cum, 67 reactions in C. thermocellum, and 120 reactions
in B. subtilis lack full atomistic information (see Figure
3) and thus were excluded from any comparisons. It is
possible that additional shared reactions between the
two models can be deduced by further examining com-
parisons between not fully structurally specified metabo-
lite entries. The string/phonetic comparison algorithms
described under Step 6 along with assisted curation
could be adapted for this task.

3. Using MetRxn to Bio-Prospect for Novel Production
Routes

A “Grand Challenge” in biotechnological production is
the identification of novel production routes that allow
for the conversion of inexpensive resources (e.g., various
sugars) into useful products (e.g., succinate, artemisinin)
and bio-fuels (e.g., ethanol, butanol, biodiesel etc.).
Selected production routes must exhibit high yields,
avoid thermodynamic barriers, bypass toxic intermedi-
ates and circumvent existing intellectual property
restrictions. Historically, the incorporation of heterolo-
gous pathways relied largely on human intuition and lit-
erature review followed by experimentation [67,68].
Currently, rapidly expanding compilations of biotrans-
formations such as KEGG [69] and BRENDA [70] are
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Figure 4 Comparison of metabolite and reaction overlaps for C. acetobutylicum and C. thermocellum, and B. subtilis. Although the two
Clostridium organisms are same genus, the models of these two species had significant numbers of unique metabolites (left) and reactions
(right), and comparisons revealed that there was more similarity in metabolite usage with a model of B. subtilis than with each other. In part,
these overlaps were driven by the explicit accounting for charged tRNA species in C. thermocellum and B. subtilis models, which was also
reflected in the reaction overlaps through reactions involving these metabolites.

reactions

C. acetobutylicum C. thermocellum

B. subtilis

increasingly being prospected using search algorithms to
identify biosynthetic routes to important product mole-
cules. Several optimization and graph-based methods
have been employed to computationally assemble novel
biochemical routes from these sources. OptStrain [71]
used a mixed-integer linear optimization representation
to identify the minimal number of reactions to be added
(i.e. knock-ins) into a genome-scale metabolic model to
enable the production of the new molecule. However
the combinatorial nature of the problem poses a signifi-
cant challenge to the OptStrain methodology as the
number of reaction database entries increase from a few
to tens of thousands. At the expense of not enforcing
stoichiometric balances, graph-based algorithms have
inherently better-scaling properties for exhaustively
identifying all min-path reaction entries that link a
source with a target metabolite. Hatzimanikatis ez. al.
[72] introduced a graph-based heuristic approach
(BNICE) to identify all possible biosynthetic routes from
a given substrate to a target chemical by hypothesized
enzymatic reaction rules. In addition, the BNICE frame-
work was used to identify novel metabolic pathways for
the synthesis of 3-hydroxypropionate in E. coli [73].
Based on a similar approach, a new scoring algorithm
[74] was introduced to evaluate and compare novel
pathways generated using enzyme-reaction rules. In
addition, several techniques such as PathMiner [75],

PathComp [76], Pathway Tools [77,78], MetaRoute [79],
PathFinder [80] and UM-BBD Pathway Prediction Sys-
tem [81] have been used to search databases for biocon-
version routes.

We recently published [82] a graph-based algorithm
that used reaction information from BRENDA and
KEGG to exhaustively identify all connected paths from
a source to a target metabolite using a customized min-
path algorithm [83]. We first demonstrated the min-
path procedure by identifying all synthesis routes for 1-
butanol from pyruvate using a database of 9,921 reac-
tions and 17,013 metabolites manually extracted from
both BRENDA and KEGG. Here, we re-visited the same
task using the full list of reactions and metabolites pre-
sent in MetRxn to assess the discovery potential of
using MetRxn. Figure 5 illustrates all identified pathways
from pyruvate to 1-butanol before MetRxn (29, shown
in blue) and the ones discovered after using MetRxn
(112, shown in green). As many as 83 new avenues for
1-butanol production were revealed as a consequence of
using the expanded and standardized MetRxn resource.
In addition, the search algorithm recovered known
[84-88] synthesis routes using E. coli for the production
of 1-butanol (shown in orange). The first pathway
involves the fermentative transformation of pyruvate
and acetyl-CoA to 1-butanol using enzymes from C.
acetobutylicum [89]. The second pathway uses ketoacid
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precursors [84]. This example demonstrates how the
biotransformations stored in MetRxn can be used to tra-
verse a multitude of production routes for targeted
bioproducts.

Conclusions

MetRxn enables the standardization, correction and uti-
lization of rapidly growing metabolic information for
over 76,000 metabolites participating in 72,000 reactions
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(including unresolved entries). The library of standar-
dized and balanced reactions streamlines the process of
reconstructing organism-specific metabolism and opens
the way for identifying new paths for metabolic flux
redirection. Moreover, the standardization of published
genome-scale models enables the rapidly growing com-
munity of researchers who make use of metabolic infor-
mation to understand metabolism at an organism-level
and re-deploy it for various biotechnological objectives.
By removing standardization and data heterogeneity bot-
tlenecks the pace of knowledge creation and discovery
from users of this resource will be accelerated. MetRxn
is constructed in a way that allows for quick updating
and tracking of changes that occur in the primary data-
bases, as well as available parsing tools that allow for
rapid import of new genome-scale metabolic models as
they become available. By having exports in SBML,
MetRxn’s output can be directly interfaced with software
packages such as the COBRA toolbox.

During the construction of the initial release of
MetRxn, we managed to associate structures for over
8,800 metabolites and re-balanced more than 2,400
reaction instances across 44 metabolic models. This
enables the genuine comparison of metabolic content
between metabolic models. Preliminary results reinforce
that that discrepancies between metabolic models echo
not only genuine differences in metabolism but also
assumptions and workflow followed by the model crea-
tor(s). Going forward, we will continue to expand
MetRxn to include more genome-scale metabolic mod-
els and add additional tools to aid in their analysis.
Because we anticipate that the scope and number of
models will rapidly expand, we plan to invite and encou-
rage the community to offer comments about metabolite
and reaction information as well as provide feedback on
MetRxn itself.

Availability and requirements
MetRxn is available at http://metrxn.che.psu.edu. Its use
is freely available for all non-commercial activity.
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