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Abstract

Background: Label-free quantitative proteomics holds a great deal of promise for the future study of both
medicine and biology. However, the data generated is extremely intricate in its correlation structure, and its proper
analysis is complex. There are issues with missing identifications. There are high levels of correlation between many,
but not all, of the peptides derived from the same protein. Additionally, there may be systematic shifts in the
sensitivity of the machine between experiments or even through time within the duration of a single experiment.

Results: We describe a hierarchical model for analyzing unbiased, label-free proteomics data which utilizes the
covariance of peptide expression across samples as well as MS/MS-based identifications to group peptides—a
strategy we call metaprotein expression modeling. Our metaprotein model acknowledges the possibility of
misidentifications, post-translational modifications and systematic differences between samples due to changes in
instrument sensitivity or differences in total protein concentration. In addition, our approach allows us to validate
findings from unbiased, label-free proteomics experiments with further unbiased, label-free proteomics experiments.
Finally, we demonstrate the clinical/translational utility of the model for building predictors capable of
differentiating biological phenotypes as well as for validating those findings in the context of three novel cohorts of
patients with Hepatitis C.

Conclusions: Mass-spectrometry proteomics is quickly becoming a powerful tool for studying biological and
translational questions. Making use of all of the information contained in a particular set of data will be critical to
the success of those endeavors. Our proposed model represents an advance in the ability of statistical models of
proteomic data to identify and utilize correlation between features. This allows validation of predictors without
translation to targeted assays in addition to informing the choice of targets when it is appropriate to generate
those assays.
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Background
Mass spectrometry proteomics
The field of proteomics has made remarkable advances
in analytical hardware and software which have provided
increasingly sensitive and robust analyses on platforms
capable of detecting low abundance proteins from com-
plex mixtures, such as serum and cell lysates. The nano-
scale liquid chromatography and mass spectrometry
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(LC-MS) proteomic technology, which has become the
state-of-the-art for differential expression proteomic
studies in most major laboratories around the world,
typically uses a ‘bottom-up’ approach, where the samples
are subjected to a total proteolytic digestion, and the
peptide ‘surrogates’ of the protein are quantified and
identified using tandem mass spectrometry. There are
two general approaches used for bottom-up differential
expression proteomics via LC-MS, those based on the
use of stable isotope labeling or tagging of the peptides,
and the so-called label-free methods (shotgun proteo-
mics) [1-4]. Advances in both approaches have occurred
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in recent years such that currently both relative and ab-
solute quantitation of proteins is possible from complex
mixtures by either labeled or label-free methodologies
[5].
Although a specific advantage of the labeling

approaches is the ability to heavily fractionate the sam-
ples to “dig deeper” into the proteome while maintaining
quantitative capabilities, extensive fractionation of the
sample is often impractical in the context of a clinical
study with tens or even hundreds of samples. The pro-
teomics community has seen a significant increase in the
use of the label free approach due to increased instru-
ment stability and software sophistication, and it is
emerging as the method of choice for larger clinically-
based studies where use of the labeling strategies is im-
possible or impractical. In particular, an advantage of
label-free strategies which measure area-under-the-curve
(AUC) of the LC-MS peak is that any of a number of
commercial or open-source software packages can be
used to extract ion intensities from each individual ana-
lysis, and statistical analysis on the relative abundance of
these ions can be performed even in the absence of a
peptide identification. The ability to precisely and repro-
ducibly quantify thousands of proteolytic peptides using
the label-free method was demonstrated by Wang, et al.
and has been since employed and reproduced in a num-
ber of laboratories [4,6].
Techniques for aggregating peptides into larger units

generally revolve around protein identifications. A variety
of approaches exist to combine individual peak areas to
generate a relative or absolute aggregate expression levels.
Once peptides are assigned to their parent proteins, using
an algorithm such as ProteinProphet, either the peptide
frequency of observation (ßpectral counting) or MS inten-
sity is used to estimate protein abundance [7]. The spec-
tral counting approaches have gained a fairly large
degree of use in the community due to their ease of
implementation, however they generally suffer from a
limited dynamic range and they are insensitive to
small changes in expression level due to the large
number of species which have peptides observed only
1–3 times [5]. Label-free AUC approaches generally
overcome these limitations by locating a peak in the
retention-time and accurate-mass matrix using sophis-
ticated software, and extracting the area under the
LC-MS peak. An important characteristic of AUC
label-free studies is that they need to be performed on
high resolution instruments for the best results, which
limits the application of this approach to more expen-
sive QToF, FT-ICR, or Orbitrap instruments.

Analysis of shotgun proteomics
Error in protein-level quantitation can first occur due to
incorrect peptide identifications. Even at a relatively low
peptide false-discovery rate (i.e. 1%), the fraction of pro-
teins detected that contain at least one false peptide
identification is much higher because multiple peptides
match back to the same protein. If a false-positive pep-
tide is included in the protein level quantitation it can
cause increased error in the protein-level quantitation.
This can be partially overcome utilizing only the high-
est-quality or best-ionizing peptides for protein quantita-
tion, however in current implementations of “Top 3”
quantitation, the individual peptide confidence is not
utilized as an inclusion parameter [8,9]. A second type
of error in protein quantitation occurs when many
homologues share a common peptide. In this situation
the protein grouping algorithm, such as ProteinProphet,
makes an informed decision about which parent
sequence a peptide belongs to and typically associates all
of the peptide intensity to that parent sequence. This
can deliver erroneous protein quantitation results when
multiple homologues are present. A final challenge is
with protein isoforms, post-translationally modified or
proteolytically processed peptides, which may show a
biologically relevant and different expression pattern
than the proteotypic peptides. In these cases, they
should not be grouped together with the other peptides
for the purposes of modeling expression.
This paper describes a statistical model which is

designed to allow the inclusion and modeling of correl-
ation structure for the problem of differential expression
in mass spectrometry proteomics. There are a number
of different approaches designed for protein level quanti-
tation. The simplest of these use direct summarization
of all features/isotope groups/peptides that are iden-
tified for each protein, such as averaging or robust
summarization based on quantiles [10], or averaging
only the most abundant three peptides from a protein
[8,9]. In addition to these algorithms, there are ANOVA
approaches for protein quantitation [11] and differential
expression [12,13]. These are regression models that
variously include or exclude fixed effects for experimen-
tal group and random effects to handle repeated mea-
surements of the same sample (technical replicates). All
of these approaches rely on protein identifications and
none make explicit use of correlations between isotope
groups. While we do not consider the introduction of
fixed effects for biological phenotypes or the introduc-
tion of random effects for cases in which we have repli-
cate measurements from the same sample, the factor
model we describe is a regression model. Therefore, one
might introduce these features in a relatively straightfor-
ward way.
We present here a metaprotein classification approach

which demonstrates the use of coexpression in addition
to identification of peptides to assist in grouping with
similarly-quantified peptides. We note here the specific
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use of the term metaprotein. This is because, while many
metaproteins obtained from fitting our model are domi-
nated by peptides from a single protein, it is entirely
possible that a “metaprotein” is not representative of a
single protein at all. Rather, a metaprotein may contain
peptides from multiple proteins. In such a case, the
metaprotein is representative of the activity of a path-
way. The extent to which the model is able to distin-
guish individual proteins within a pathway will depend
on the sample size of the data set, however, even for very
large sample sizes this may be impossible for proteins
that have highly correlated expression. We would argue
that distinguishing these is somewhatacademic in this
case, and that noting that they are highly correlated,
which is a feature of our approach, offers advantages in
terms of higher power in subsequent hypothesis testing
and model fitting (because the resulting metaproteins
will be more independent than the results of protein
level quantitation). Our approach has the following fea-
tures, some of which are shared by the models described
above:

� Allows for the subtraction of large scale correlation
structure between proteins that likely arise from
technical rather than biological variability (batch
effects).

� Appropriately models both identified and
unidentified features of the LC-MS output

� Utilizes feature identifications from MS/MS spectra,
but allows for the probability that some of those
identifications will be incorrect

� Produces a full posterior distribution on the model
parameters, which leads to the quantification of
uncertainty in the results.

� Admits the possibility that sections of a protein will
be post-translationally modified and therefore may
not be representative of the expression pattern of
the protein as a whole.

� Makes use of correlation structure across samples,
which provides significant information about feature
relationships that is unused in many other
approaches.

� Can be used in the creation of predictive models
based on multiple proteins, rather than just the
enumeration of proteins associated with a particular
outcome.

We recognize that there are many excellent approaches
to modeling label-free proteomic data that share some of
these properties, however our proposed model is unique
in its ability to concurrently model all of them.
In addition to advances in statistical modeling of label-

free, unbiased proteomics data, this paper presents a novel
pre-clinical predictor of response to therapy in patients
with Hepatitis C. Finally, we demonstrate the validation of
that predictor in two separate cohorts. First, we show that
the approach generates a predictor that is reproducible
between two different labs that are utilizing entirely differ-
ent mass spectrometry technologies. Second, we show that
the predictor is able to accurately differentiate clinical
responders from non-responders in a novel cohort of
pediatric patients with Hepatitis C. In both cases, the pre-
dictor is based on unbiased, label-free mass spectrometry
data. We are aware of one previous example of the valid-
ation of shotgun proteomics findings with further shotgun
proteomics experiments [14], in which a number of indi-
vidual peptides were validated as markers of central ner-
vous system lymphoma. Standard practice is to validate
using a targetted platform such as selected reaction moni-
toring (SRM). To the best of our knowledge, ours is the
first example of the validation of a full predictor. Finally,
we verify some of the key elements of the predictor in our
original cohort using SRM.

Results and discussion
Metaprotein factor model
In order to estimate metaprotein abundance, we build our
model from pre-processed data with intensity estimates
aggregated to the isotope group level. In our modeling
approach, we allow the possibility that an isotope group
will be incorrectly identified, or be correctly identified, but
have a pattern of expression that is distinct from the bulk
of peptides from the corresponding protein. In practice,
this new grouping approach often leads to metaproteins
which may be dominated by isotope groups from a par-
ticular protein, but which contain isotope groups from
other proteins as well.
Let X be a P×N-dimensional matrix consisting of

measurements on P isotope groups across N samples.
We utilize a modification of the latent factor model out-
lined previously in [15-18].

X ¼ μ1N þ AΛ′ þ E ð1Þ

The P-dimensional vector μ has elements μi represent-
ing the mean expression of isotope group i and 1N is a
column vector of ones. The N×K-dimensional matrix Λ
represents latent factors which will be learned from the
data and A is a P×K-dimensional matrix of factor load-
ings with elements ai,k. The random variable E is a P×N
matrix of idiosyncratic noise.
Our goal is to estimate relative protein concentration

from this model using the latent factors in Λ. Recall that
we have identifications for some subset of the isotope
groups. With this in mind, suppose we identify each col-
umn of A and the corresponding column of Λ with one
identified protein. If we set ai,k = 1 when isotope group i
is from a peptide identified as coming from protein k
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and ai,k = 0 otherwise, then our model is describing the
expression pattern of each isotope group as a noisy
approximation of the expression pattern of the protein,
where the protein is known.
Retaining, for the time being, the idea of fixing ai,k in

this way, we wish to handle the possibility of changing
sensitivity and changing protein concentration from
sample to sample. To account for this, we introduce an
additional set of latent factors into equation 1.

X ¼ μ1n þ BH ′ þ AΛ′ þ E ð2Þ
We now introduce latent factors H and factor loadings

B ¼ bi;j
� �

where j ¼ 1⋯J which we use to account for
systematic structure in the data that is sample specific.
Because these features will span almost all peptides, we
utilize a generic Gaussian prior for the elements of B.

bi;j : N m0; v0ð Þ
This distribution represents our belief that these

effects span all isotope groups, but with varying effect
sizes. This prior also minimizes identifiability issues be-
tween B, which is not sparse, and A which is very sparse
with informative priors.
Rather than assigning isotope groups to factors based

purely on identification, we want to utilize a prior on A
that allows for possible post-translational modifications
and misidentifications. With this in mind, we want to
relax our strict assignment of zeros and ones in the
loadings matrix A. Instead, our prior distribution for ai;k
will reflect our level of certainty that we know which
factor should represent the expression of this peptide.
When we have an identification for peptide i and have
mapped that peptide to protein k, our prior distribution
will reflect an increased certainty that ai;k≠0.
We introduce a p-dimensional vector of latent vari-

ables zið Þ which identifies the non-zero column of A for
each isotope group. When we have an identification that
suggests that isotope group i comes from protein k, our
prior distribution for zi is

zi : Multinomial 1; qið Þ
qi : Dir α0;⋯;α0; αk ; α0;⋯α0ð Þ

where αk is substantially larger than α0 to reflect our
prior belief that zi ¼ k . We default to αk ¼ 500⋅α0 , but
have tried values from 100 through 1000 and these lead
to only minor shifts in metaprotein membership. As the
weight of this prior decreases we are decreasing the im-
portance of identification information and placing pro-
gressively more importance on correlation structure. We
find, for the Hepatitis application below, that the associ-
ation of metaproteins with outcome doesn’t substantially
change until we increase the weight of the identification
data to very high levels. We find that using α0 ¼ 1 leads
to interpretable metaproteins without loss of association
with the outcomes. For peptides which do not have
identifications, we utilize an unbiased prior zi : Dir α0ð Þ .
Because different peptides showing similar expression
patterns may, nonetheless, show a different magnitude
of expression of that pattern due to the relative sensitiv-
ity of the mass spectrometer for the peptide, we model
each of the non-zero elements of A independently, such
that ai;k : N ma; vað Þ when zi ¼ k and ai;k ¼ 0 otherwise.
There is not a specific threshold for determining the

grouping of isotope groups into metaproteins. Instead,
the assignment of an isotope group to a particular meta-
protein is a function of the variance associated with that
isotope group, the number of isotope groups already
assigned to each metaprotein and the level of agreement
between the expression pattern of the isotope group and
that of the metaprotein. All of these things are estimated
using MCMC within the context of the model fitting.
We note that, in the limit as αk→∞ we obtain an

ANOVA model in which there is no uncertainty about
which metaprotein each isotope group belongs to. This
is a fixed effects model with feature-specific variance
similar to Clough et al. [11]. That limiting model implies
that identifications are assumed to be accurate and
assumes that post-translational modifications are of
minor importance. Clough et al. correctly point out that,
by collecting features one obtains higher power for
detecting associations versus simple tests of association
with individual isotope groups. That model, as well as
the one we present here, may be expanded with add-
itional design vectors identifying experimental groups or
particular interventions if so desired. These may be
included as columns in H which are simply not updated
in the MCMC (Markov chain Monte Carlo).
To complete the model specification, we assume a

conjugate, row specific inverse gamma prior for the
variance of E. This is similar to the protein level aggre-
gation model of [11], and allows differing variance
estimates for each isotope group. Because we are
working with a relatively large number of samples
(and thereby have no issues with identifying variance),
we use a prior with mean 1 and variance 100. We also
assume that the individual columns of Λ arise from a
uniform distribution on the N-dimensional sphere of
radius

ffiffiffiffi
N

p
. The model is fit via MCMC and the result

of this fit is a set of draws from the posterior distribu-
tion of all of the model parameters. All prior distribu-
tions are conjugate, and therefore we may use Gibbs
sampling to update the model parameters at each step
of the MCMC. The data sets we are modeling have
been aggregated at the isotope group level, and as
such they have between 20 and 40 thousand measure-
ments per sample. While our sampling scheme is able
to fit this data in just a few hours on a desktop, we
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expect that some sort of parallel processing will be de-
sirable for data that is aggregated at the feature level.
We have tested our model on multiple simulated data
sets of various sizes (both sample size and number of
isotope groups) to verify the accuracy of the parameter
recovery even in the presence of intentionally mis-
labeled isotope groups.

Overlapping peaks
By our assumption that each row of A have only one non-
zero entry, we have restricted our peptides to belong to
just one metaprotein. As an alternative, one might allow
more than one non-zero element in each row of A. This is
equivalent to assuming that more than one metaprotein is
responsible for the expression pattern seen in a single pep-
tide. This might occur in cases where multiple isotope
groups have highly overlapping peaks or where multiple
proteins have homologous regions that can give rise to the
same peptide. Although the extent to which we see mul-
tiple isotope groups in a single peak is unclear, this type of
structure can be accounted for with relaxed priors on A. If
ai;k is an element of A, then a point mass mixture prior
accomplishes our goals.

ai;k : 1−qkð Þδ0 ai;k
� �þ qkN ai;k

� ��m0; v0Þ ð3Þ
where δ0 is the distribution describing a point mass at 0.
This distribution represents the prior belief that some, but
not all, metaproteins will be required to describe the ex-
pression pattern of each isotope group. The normal distri-
bution allows the magnitude of the effect to vary. For each
of the metaproteins, we estimate the number of associated
isotope groups by our prior distribution on the mixing
probability qk :

qk : Be ν0; γ0ð Þ

This approach allows for the restriction on isotope group
association with just one metaprotein to be relaxed. How-
ever, as the resolution of mass spectrometry increases, and
as fractionation in multiple dimensions (such as 2D chro-
matography and ionmobility) makes the distinction be-
tween polypeptides clearer, this modification to the model
will become less and less important. Further, experience
suggests that the vast majority of measured peaks are sin-
gle species. Because of this, the addition of features to deal
with overlapping peaks can introduce more noise than it
removes, particularly when the number of samples in the
experiment (and therefore the amount of information
available from the correlation structure) is limited.

Features of the factor model
One of the strengths of our approach is the ability to
collect isotope groups based not only on identifications,
but also on their coexpression across samples. Perhaps
the most common method for visualizing correlation
structure in high-dimensional data is hierarchical clus-
tering. However, this is most typically used as a
visualization strategy and does not, by default, provide
quantitative estimates of aggregate behavior. While it is
possible to generate models based on what is visualized
from hierarchical clustering, nearest centroids for ex-
ample, these have not to our knowledge been published
for proteomic data. In addition, there are questions sur-
rounding how one might combine peptide identifications
and correlation structure in a principaled way to jointly
model all of the available information.
One can identify collections of coexpressed isotope

groups as well as an approximation of the expression pat-
terns of each group from our model based on posterior
distributions of the model parameters. The posterior para-
meters of greatest interest will depend on the specific ap-
plication, but often we will be most interested in the
vector of factor memberships, z, which describes which
peptides group together most often. In data sets intended
for the generation of predictive models in clinical/transla-
tional studies (as well as other types of studies), we will be
interested in Λ. The columns of this matrix define our
estimates of the expression patterns of the metaproteins
across our samples. These can be used to estimate fold
change, or can be treated as independent variables in any
type of model that is appropriate for the study.
Associated with meta-protein i is a column of factor

scores, Λi, representing the expression of that meta-
protein. In addition, there is a collection of isotope groups
which make up that meta-protein, the isotope groups jfor
which zj ¼ i . Figure 1 shows a heatmap of all of the pep-
tides from the dataset that are identified as belonging to
the protein Apo E. Note that, while the majority of those
peptides share a common expression pattern, three .(la-
beled 45, 31 and 53)show a very different, conflicting pat-
tern. Our meta-protein model automatically groups the
co-expressing peptides into the same factor while assign-
ing the peptides with conflicting patterns to other meta-
proteins that more closely match their expressionpatterns.

Inconsistent expression of peptides from the same protein
We define a “dominant metaprotein” for a protein to be
the metaprotein(s) with more than half of its identified
isotope groups contributed by that protein. We note
that, because there are many metaproteins it is possible
for a dominant metaprotein to consist largely (or even
entirely) of peptides from one protein, but not contain
all (or even a majority) of the isotope groups from that
protein. One of the features we have observed from
studying posterior parameters from our model is that
there are manyexamples in which an identified isotope
group (one with a peptide and protein label) does not
follow the expression pattern of its corresponding



Figure 1 Peptides from Apo E. A heatmap of all of the isotope groups in the data set that are identified as originating from the protein
Apoliprotein E. The numbers on the y-axis indicates which metaprotein that peptide was assigned to. The peptides are ordered from top to
bottom from highest to lowest mean intensity across the samples. Note that, while the majority of those peptides share a common expression
pattern (those assigned to metaprotein 16), three show a very different, conflicting pattern. Our meta-protein model automatically groups the co-
expressing peptides into the same factor while assigning the peptides with conflicting patterns to meta-proteins that more closely match their
expression patterns. Each row in each heatmap has been standardized to have mean zero and standard deviation one. Red is a relatively high
level of expression and blue a low level of expression.
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dominant metaprotein. That is to say, for any given pro-
tein there is often a “consensus” expression pattern that
many of the isotope groups from that protein follow, but
that there is also a large minority of isotope groups which
do not follow that expression pattern. We fit our model to
all 109 proteins which have more than 1 identified peptide
in the data set. Heatmaps similar to Figure 1 for each of
these proteins are available in Additional file 1. Examin-
ation of these figures shows that the presence of peptides
that show expression patterns significantly different from
their corresponding dominant metaprotein is the rule,
rather than the exception.
There are a few reasonable explanations for this. The

most obvious possible explanation is that the poorly con-
forming peptides are those with the lowest overall inten-
sity, and therefore subject to smaller signal to noise ratios.
However, examination of heatmaps showing the exact
same peptides, but now sorted by mean intensity across
the samples rather than by meta-protein membership
demonstrates that there is not a strong predominance of
low intensity peptides among those that do not coexpress
with the other peptides from the protein. All 109 of those
heatmaps are available in the Additional file 2. We tested,
using a non-parametric Kruskal-Wallis test, for association
between meta-protein membership and mean signal inten-
sity for each ofthe metaproteins, and found that, of the
109 proteins tested, only 2 showed significant association
(p-value< 0.01, APOB and CERU).
Another possible explanation for the presence of poorly

co-expressing peptides within a single protein is misalign-
ment between runblocks. The data set was analyzed in
three runblocks, one of which occurred months after the
original two, and aligned according to the algorithm
described in the methods section. There are sometimes
shifts in retention time between runblocks which may lead
to misalignment, however, we expect misalignment to be a
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rare occurrence. Additionally, if peptides are misaligned,
we would expect to see a peptide that coexpresses with its
dominant metaprotein well in two run blocks but is mis-
matched in the third, and this is not generally the case.
We are able to find some examples that fit this pattern,
however, it is almost always the case that when a peptide
does not share an expression pattern with its dominant
metaprotein one runblock, it also does not share that pat-
tern in the other run blocks.
A third explanation for peptides that are uncorrelated

is mis-identification. However, we are using identifica-
tion algorithms with parameter settings that lead to very
low (approximately 1%) false identifications. We expect
around 34 such misidentifications, assuming that identi-
fication is correct 99% of the time (based on the 3398
total peptides with identifications). In fact, examining
the list of peptides that do not belong to their dominant
metaprotein, we see that more than half fall into this cat-
egory (1640 out of 3398). This is true despite our prior
distribution assigning a 500x greater likelihood of a pep-
tide belonging to its dominant meta-protein than to a
different metaprotein.
Post-translational modification of proteins is a well

known process, but it is unclear how extensive these
modifications are. If proteins are extensively and dynam-
ically modified after translation, then we should expect
many of them to exhibit expression patterns that do not
match the bulk of peptides from that same protein. Also,
if peptide modification is a significant contributor to
observed patterns of expression, then we also expect to
find peptides that have targets for post-translational
modification to be more likely to be found outside their
dominant meta-protein. We examined the probability of
peptides containing Glutamine and Asparagine, which
are known sites of deamidation, to belong to their dom-
inant metaproteins. Correcting for the number of pep-
tides inside and outside their dominant metaproteins,
we find that peptides containing Glutamine are approxi-
mately 1.2 times more likely to not follow the dominant
expression pattern for any given protein, and that this is
a statistically significant difference (p-value .0013, fisher’s
exact test). In addition, peptides with Asparagine are
1.22 times more likely to fail to coexpress with the dom-
inant group of peptides from a protein (p-value 0.0010).
In addition to these two sites ofpost-translational modifi-
cation, we examined the motif NxS/T, which is a known
site of N-linked glycosylation. For these two motifs, 25
of the 30 peptides which contain the “NxT” motif and
53 of the 60 peptides which contain the “NxS” motif fol-
low expression patterns that are different from their
dominant metaproteins (odds ratios 4.3 and 6.6 respect-
ively, p-values 0.0013 and 2.1e-8 respectively). Addition-
ally, both Serine and Threonine are known to be sites of
O-linked glycosylationas well as phosphorylation. We
find that both Threonine and Serine are also more likely
to show odd expression patterns (Threonine: odds ratio
1.2, p-value .002 and Serine odds ratio 1.3, p-value 8.1e-6).
We tested Proline (odds ratio = 1, p= .96) and Histidine
(odds ratio = 1.1, p= .40) as negative controls.
We note that we are not directly detecting the post-

translationally modified peptides. Instead, we suspect that
we are detecting changes in the expression levels of the un-
modified peptides due to post translational modification.
Thus, peptides with any of these post-translational modifi-
cation motifs are significantly less likely to follow the dom-
inant expression pattern for the protein from which they
are derived. It is possible that post-translational modifica-
tion is a pervasive feature of plasma proteomics, and that
protein level quantitation is likely to either introduce errors
by summing across uncorrelated parts of a protein
(if quantitation is accomplished through summation across
all associated peptides) or to miss critical post-translational
modifications (if quantitation is accomplished by summa-
tion of only the top three peptides). It is important to note,
however, that inconsistent expression of peptides from the
same protein is likely due to multiple different causes,
including protein isoforms, increased noise in low abun-
dance peptides, misalignment, mis-identification, peptide
modification, and sample to sample variation in ion sup-
pression from variable coelution in the LC separation.
Regardless of the root cause, the statistical model we
propose will identify isotope groups that show this charac-
teristic and treat them appropriately.

Analysis of spike-in data: Relabeling of misidentified
peptides
We obtained a publically available spike-in data set from
[19] which consists of three replicate measurements of
each of six conditions. The base solution is solid-phase
N-glycocapture from human serum, and each of six differ-
ent non-human proteins were spiked in at each of six dif-
ferent concentrations in a latin square design. After fitting
our model to this data, we find that there is strong evi-
dence for a significant increase in the total number of iso-
tope groups that could be identified as coming from the
known six spiked in proteins (Additional file 3). Estimated
fold-change for each protein was also calculated for each
experimental group and each spiked in protein. We find
that, while the estimation works well for the highest four
groups for each spiked in protein, the lowest two groups
are typically underestimated due to the significant level of
missing data.
In order to test the ability of our model to identify and

correct inaccurate identifications, we randomly permuted
10% of the identifications in this data and refit our model.
This experiment was repeated 100 times. Additional file 3
shows the results of this experiment for the ‘MYG_-
HORSE’ metaprotein for one such permutation. Note that
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there are 3 isotope groups that are correctly assigned to
the MYG_HORSE metaprotein even though the original
identification would have placed them in other proteins.
This experiment was repeated 50 times, and of the 295
total reassigned identifications across those experiments,
223 were correctly reassigned to their original protein. Of
the remainder, the peptide was fit to a noise factor 61
times and fit to some other protein 11 times. None were
assigned to the protein associated with the incorrect
relabel.

Comparison with protein level quantitation
While there are similarities between our meta-protein
model and various techniques for protein level quantita-
tion, the ability to group peptides based on co-expression
across all samples, and therefore identify peptides that
show evidence of post-translational modification is a crit-
ical difference that is shared by no protein level quantita-
tion method that we are aware of. Nonetheless, it is
interesting to compare our model to protein level quan-
titation algorithms. For this purpose, we will examine
two such algorithms. The summation algorithm esti-
mates protein level quantitation by summing total
expression across all peptides from a protein. This algo-
rithm automatically gives peptides with high intensity
measurements a larger effect on the estimated protein
level quantitation. A second algorithm, Top 3, estimates
the protein level expression as the mean of the three
peptides with the highest intensity (average across the
samples). These two algorithms typically give similar
results, however, because peptides from the same pro-
tein do not always show consistent expression patterns,
these approaches can lead to protein level quantitation
that is unnecessarily noisy.
In general, we find that the correlation between our

metaprotein model and protein level quantitation for
estimation is high when there are a large number of pep-
tides from the given protein. For example, one of the most
abundant proteins in this data set is Apolipoprotein B
(represented by 409 isotope groups), and correlation
between estimated expression from our factor model and
from summation of all Apo B identified peptides is 0.97.
However, when there are fewer peptides available or if
there are many misidentifications or modifications, we
find evidence that our factor model gives improved esti-
mation of protein level expression patterns. For example,
pregnancy zone protein, which has only three associated
isotope groups in the data set, is known to be over
expressed in women compared to men. While both the
metaprotein model and the summation algorithm show
differential expression for this protein, the factor model
gives a p-value of 4.5e-4 (statistically significant even after
Bonferroni correction for multiple hypotheses) as com-
pared to a p-value of .0014 for estimation by summation
over identified peptides (not significant after multiple hy-
pothesis correction).
Of the 96 subjects in this study, we have available anti-

body assay mesurements of both Apo B and Apo E on
38. We compared the two protein level quantitation
algorithms and our metaprotein model to the antibody
assay “gold standard”. Correlationsare all generally high
and examination of Figure 2 shows that the three techni-
ques are generally in agreement, even on outliers. The
top three isotope groups identified as coming from Apo
B show a high level of correlation, and all of these pep-
tides are members of the main Apo B metaprotein. Also,
a large majority of the Apo B peptides show this same
expression pattern and are assigned to the same meta-
protein, thus agreement between the three methods on
Apo B is not surprising.
However, examination of the top three isotope groups

from Apo E (Figure 1) shows a different picture. The
second most abundant isotope group from Apo E is in a
different metaprotein because it shows a substantially
different expression pattern from the bulk of the Apo E
isotope groups. In addition, if we delete the two outliers
from the data (they are outliers by all three quantitation
methods), the correlations between the three top Apo E
isotope groups and the antibody assay of Apo E activity
are.59, .23 and .56 respectively (p-values of .0002, .17
and .0004 respectively). Thus, this second most abun-
dant isotope group should be adding noise to the Top 3
protein level estimate of Apo E. Interestingly, the correl-
ation between the Top 3 estimate and the antibody assay
is .60. This is higher than any of the three separately,
which suggests that the antibody assay is in fact measur-
ing an aggregation of two different forms of Apo E.

Metaprotein expression in a hepatitis C cohort
In addition to the analysis of a publically available latin
square data set (Additional file 3), we obtained pre-
treatment serum samples from 96 patients with Hepatitis
C who have a known response or non-response to the
standard of care treatment with interferon and Ribavirin
[20]. Serum from the patients was measured with open
platform LC-MS/MS. The overall goal of the study was to
predict who among the study subjects will respond to
therapy and who will not. We are also interested in
estimating which proteins and peptides are potential mar-
kers of response, allowing for future, targeted assay
development.
Analysis of this data set proceeds in two steps. First,

the model described above is fit to the proteomic data
without regard to the phenotype of interest. There were
a total of 6,729 peptides in the data set with either posi-
tive identifications or with average expression levels
greater than the mean. Of these 3390 had identifications.
These were matched with 265 different proteins of



Figure 2 Comparison to antibody assay. A comparison between the antibody assay estimate of the protein level expression patterns for Apo
B (panel A) and Apo E (panel B) (x-axes in both figures), and the LC-MS/MS estimates using the summation, top 3 and metaprotein methods for
protein level expression. We note that the three algorithms are in agreement to a high degree. Correlations for Apo B are .55, .54 and .56 for
Metaprotein, Summation and Top 3 models respectively and they are .31, .28 and .32 for respectively for Apo E. Note that there is an outlier in
each of the top left and bottom right of the Apo E figure, and without these two outliers, correlations are just under .6 for all three methods.
Antibody assay values, which measure protein per volume, were converted to protein per total protein using total protein levels from a Bradford
assay. All measurements were standardized to mean zero and standard deviation 1.
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which 109 had two or more associated, identified
peptides.

Prediction of outcome
As with the computation of protein level expression, our
109 metaproteins may be used in any context as inde-
pendent predictor variables. Additionally, we may assess
the level of association between metaproteins and other
biological phenotypes in either case.
Our first step in the analysis of the posterior distri-

bution involves comparing the mean metaprotein
expression patterns for all metaproteins to the “re-
sponse to therapy” phenotype. We find three such
metaproteins to be significantly associated (ANOVA
p-value <9.8e − 5) even after correction for multiple
hypothesis testing (ZA2G, ITIH and HRG). Protein
level quantitation by summation yields only 2 and pro-
tein quantitation by top 3 yields zero. Furthermore,
the relevant expression pattern is far clearer for the
metaprotein analysis. Figure 3 shows the most predict-
ive “protein” (ZA2G), as computed by the summation
protein quantitation algorithm. Examination of the
metaprotein with the most peptides from ZA2G, built
from our model, shows that ZA2G is indeed identified
as predictive by the metaprotein model as well. How-
ever, our metaprotein model identifies only those pep-
tides from ZA2G that are highly correlated with each
other, and it additionally identifies a number of other
peptides from other proteins that share the same
expression pattern across the samples (also shown in
Figure 3). The result is better separation between
responders and non-responders.
In addition to strong associations for three metapro-

teins, we find that there are a total of 13 metaproteins
with p-values less than .01 (random association would
dictate only 1). Thus there is clear evidence of the pres-
ence of blood-borne markers of response to therapy in
Hepatitis C.

Identification of candidate peptides
We would like to identify a set of candidate peptides for
use in future targeted studies such as selected reaction
monitoring (SRM) or antibody studies. From the analysis
of associations between averaged metaproteins and the
phenotype, we are confident that there are markers of
interest. In order to identify the most relevant isotope
groups, we propose to obtain draws from the MCMC
chain, and for each draw build a predictor and observe
which peptides are included in that predictor. In this
way, the values of Λ are computed directly from the
peptides included in the corresponding metaprotein.
Additionally, by keeping track of which peptides are
most often included in the predictors, we obtain a list of
candidate biomarkers for future study.
Because we have 109 metaproteins but only 87 sam-

ples, direct regression is not possible in this context. We
instead use variable selection with model averaging.
Variable selection allows regression with a small subset
of the total number of predictors, while model averaging
allows us to properly account for uncertainty in which



Figure 3 Comparison to protein summarization. Comparison of metaprotein and summation approaches to aggregation of large numbers of
isotope groups. Panels a (runblock 0) and b (runblock 1) show all of the isotope groups identified as coming from the protein ZA2G. This is one
of the two proteins significantly associated with the response to therapy phenotype in patients with Hepatitis C. Samples are on the x-axis and
isotope groups are on the y-axis. Samples are labeled NR (non-responder) and SVR (sustained viral response). Panels d and e show the same type
of heatmap, but now for the metaprotein containing the largest numbers of isotope groups from ZA2G. Notice that there are a number of
isotope groups from other proteins that are highly correlated with the included ZA2G isotope groups and are therefore included in this
metaprotein. Also, as can be seen in a and b, correlation of individual isotope groups from the ZA2G protein is high for about half of the isotope
groups, but quite poor for many of the others. Panel c shows the predictive performance of the summation algorithm of “protein” level
quantitation for ZA2G, split by runblock, and panel f shows the same for the metaprotein. Note that the metaprotein shows better performance
and that the performance of the metaprotein is more consistent across the two separate runblocks. Performance of the top 3 algorithm for
protein level quantitation is not shown because it is not statistically significantly associated with response to therapy. Each row in each heatmap
has been standardized to have mean zero and standard deviation one. Red is a relatively high level of expression and blue a low level of
expression.
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models are correct. In this context, model averaging has
been shown to outperform the single best model for pre-
dictive accuracy on hold out data sets [21]. We use a
publicly available implementation of variable selection
and model averaging called Shotgun Stochastic Search
[22].
As mentioned above, our analysis consists of two
steps. The first is the generation of a factor model to
explain the variation seen in the peptide concentration
data. This step is unsupervised; it does not take into
account any phenotype data in any way. In this step we
are seeking only to describe correlation structure in the



Figure 4 Simulation ROC curves. Receiver operating curves
generated from 200 draws from the MCMC chain (red) compared to
ROC’s generated from predictors of randomly generated outcomes
(blue). The random predictors were generated from a mean zero
multivariate normal distribution using a covariance matrix generated
from the factor matrix Λ for the corresponding MCMC draw. The
outcome variable (response/non-response) was then permuted
before the ‘random predictor’ model was fit.

Figure 5 Predictor content. Shows the locations of the 600 most
used peptides which were also identified. Proteins with fewer than
1% of their peptides represented in the figure were filtered out.

Lucas et al. BMC Bioinformatics 2012, 13:74 Page 11 of 18
http://www.biomedcentral.com/1471-2105/13/74
isotope groups. In principal, if there were another large
open platform plasma proteomics data set available this
step could be performed on a different data set entirely.
Prediction of the phenotype from the metaprotein
expression through the use of variable selection and
model averaging in a binary regression model constitutes
the second, supervised step. Results from this analysis
will vary slightly at each step of the MCMC chain. This
allows us to estimate both the accuracy of predictors
generated by this model as well as the uncertainty in
that accuracy. Figure 4 shows receiver operating curves
(ROC) of the model for 200 steps of the MCMC, and
compares this to the same ROC’s from predicting ran-
domly generated phenotypes with the same number of
cases and controls. We see that the accuracy is signifi-
cantly better than chance for all 200 draws from the
Markov chain. The collection of most used isotope
groups in this modeling approach are shown in Figure 5.
We show the locations of the associated peptides (those
with identifications) in their respective proteins.

Validation of a predictor discovered in an unbiased, label-
free data set
There are two significant challenges facing users of
label-free, unbiased, mass spectrometry proteomics.
First, there are a number of different mass spectrometry
machines, and some utilize different physical principals
in order to measure mass-to-charge ratio. Differences in
these machines and differences in protocols between
laboratories can make reproducing the same results at
different labs difficult—even when the samples used are
exactly the same. Second, validation of findings in new
samples can be difficult, particularly when the validation
approach involves the use of different sample prepar-
ation or different techniques for measuring the peptides
or proteins. It is quite common to see two phase experi-
mental designs in which candidate peptides/proteins are
identified by shotgun mass spectrometry then those can-
didates are validated on a much larger group of samples,
but using antibody assays or SRM mass spectrometry.
These approaches introduce additional variables in the
sample preparation or measurement, and in cases where
validation fails the explanation for that failure becomes
uncertain—it may have failed because the peptides/pro-
teins are not good candidates or because of the changes
in the way they were measured.
We validated our results on the predictor of response to

therapy by both testing the consistency of the predictor
when measured in different labs and also when testing the
accuracy of the predictor in a new set of samples. In each
case, we are attempting to validate our predictor through
the use of an additional unbiased, label-free data set.



Figure 6 Validation. Validation of a predictor of response to
therapy. A metaprotein model was fit to the training data (outlined).
This model was then used to predict response to therapy in a
subset of the training samples that was measured in a different lab
using a different machine and different protocols. In addition, it was
used to predict response to therapy in a new set of pediatric
patients. In both cases, the validation was successful. For the Peds C
cohort, the Area under the ROC curve is .8 and the p-value is
4.4 × 10−4.
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Because of difficulties with alignment between data sets,
this approach is challenging and is usually not taken. The
approach to this type of validation undertaken successfully
by [14] involved the validation of multiple individual
makers of disease. That approach produces a set of puta-
tive biomarkers, some of which validate in the follow-up
data and some of which do not. It leads to a more highly
filtered, and therefore more likely to succeed, list of bio-
markers, but it does not lead to a validated predictor.
Validation of a such a predictor must take into account
uncertainties associated with alignment and false discov-
ery. The advantage of our approach for this purpose is in
the use of factors as predictors rather than individual
isotope groups. By aggregating multiple isotope groups
and using the aggregated expression pattern, the
metaprotein model produces predictions that are robust
to misalignments or false discovery associated with indi-
vidual analytes.
We reanalyzed 28 of our original samples in an inde-

pendent laboratory on a different mass spectrometry
machine using a different technology (orbitrap versus
time of flight). Those samples were analyzed using the
protocols of the independent lab without modification.
In addition to this, 51 additional samples were obtained
from a pediatric cohort [23], and the predictor was eval-
uated on this cohort. All data sets were aligned to each
other (as described in methods), and a predictor was
built using our original data (as described above). This
predictor was then tested for accuracy in each of the
two additional data sets. Figure 6 shows that in both the
independent laboratory measurement and the independ-
ent validation were successful. The area under the
receiver operating characteristic (ROC) curve for the
new, untrained pediatric patients was .8 and the pre-
dictor was significantly different between patients with a
sustained viral response compared to those who did not
respond to therapy (p-value 4.4 × 10−4 by t-test). These
two results represent a validation of a clinically relevant
predictor of disease state from label-free, unbiased mass
spectrometry by further label-free, unbiased mass
spectrometry.

Verification of differential expression for individual peptides
In order to verify our findings, we identified 87 peptides
which were subsequently targeted for quantitation with
selected reaction monitoring (SRM) without the addition
of stable-labeled peptides, similar to the LF SRM method
described in [24]. Of the samples that were measured
with the shotgun proteomics approach, 25 from the first
two run blocks (55 samples) were measured as well as
38 from the third run block (41 samples). In order to
test whether we can generate predictors of response to
therapy in patients with Hepatitis C, we trained a regres-
sion model on the 25 and validated on the remaining 38.
All samples were used in the selection of peptides to tar-
get with SRM, therefore this does not constitute a true
validation of an SRM based predictor. However Figure 7
shows that our predictive accuracy on the held out sam-
ples is quite good. This verifies, on the same samples
and for a subset of the peptides, that our initial findings
in the open platform can be reproduced by measure-
ments of individual peptides. Because we utilized the
shotgun proteomics results from all samples to select
isotope groups for SRM, this does not address the ques-
tion of out of sample accuracy, however, we have
addressed this issue separately in Patel et al. [20].
In addition to biomarker verification, we sought to val-

idate some examples of isotope groups which were
determined not to follow their dominant metaprotein



Figure 7 Verification of predictor. Predictive accuracy of the SRM assay for predicting response to therapy in Hepatitis C. Training was on the
initial 25 samples, and validation was on the followup 38. Panel a shows behavior of the model on the trained samples and panel b shows
behavior on the hold-out samples. The ROC curve in panel c shows accuracy only on the hold-out samples.

Figure 8 Verification of poor coherence. Peptide that doesn’t follow the pattern of it’s dominant metaprotein. Panel a shows the correlation
between the measured intensity of the polypeptide TTPPTTATPIR from the label-free, unbiased platform compared to the label-free SRM platform.
The high level of correlation demonstrates the reproducibility of measurement of this peptide. Panel b shows the pattern of expression, as
measured in the unbiased platform, as compared to the pattern of expression of the FINC metaprotein. Panel c shows a scatterplot comparing
the pattern of expression of the FINC metaprotein and the intensity of the peptide as measured with the shotgun approach and panel d shows
the same comparison, but now with the SRM approach instead of the shotgun approach. The peptideis measured consistently and it does not
correlate with the expression pattern of the FINC metaprotein.
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during the analysis of the original shotgun proteomics
assay. An example is shown in Figure 8. The polypeptide
“TTPPTTATPIR” from the protein FINC, which is
known to be potentially O-glycoslyated at two residues
[25], has a consistently-measured expression pattern on
both SRM and QToF platforms (Figure 8a). This peptide
exemplifies the type of peptide the Metaprotein
approach would not group into the dominant metapro-
tein for FINC, since it does not correlate with the
expression pattern of other FINC peptides (Figure 8b) or
the FINC metaprotein (Figure 8c and 8d). Intensity data
from the SRM experiment is available in Additional file 4.

Conclusions
To date, the algorithms and models for aggregating mass
spectrometry features in larger groups than peptides
have relied on protein identifications and do not use cor-
relations across samples in any way. The model we have
described makes use of these correlations to identify
peptides that do indeed show consistent expression in
addition to agreement in identification. This paper
describes both a novel statistical approach for the ana-
lysis of label-free, unbiased mass spectrometry proteo-
mics and an approach for the validation of discoveries
on that platform by further experiments on the same
platform. Furthermore, we have demonstrated the appli-
cation of this approach in the context of the treatment
of Hepatitis C, which is a disease causing significant
morbidity and mortality worldwide. The predictor of
response to therapy described in this paper has the poten-
tial to significantly affect therapeutic decision making.
The model offers an approach to aggregation of mass

spectrometry proteomics data that differs from protein
level quantitation, and that in some situations, offers sig-
nificant advantages over previous approaches. The crit-
ical difference between protein level quantitation and
our metaprotein model is the inclusion of correlation
structure in the metaprotein model. We should note that
the inclusion of correlation structure may offer only
minimal advantage low sample size situations. Addition-
ally, in cases where there is an overwhelming biological
effect, that effect can dominate the observed correlations
and drown out what would otherwise be differing
expression patterns. However, we have demonstrated the
Table 1 Demographics of the training data

Responders Non-responders

Gender 13 female, 24 male 4 female, 14 male

Race 50 caucasian, 11 AA 23 caucasian, 8 AA

Log-viral load 14 ± 3.7 15.6 ± 1.6

Metavir 1.6 ± 1.7 1.7 ± 2.3
utility of the approach for validation studies and for
potential clinical applications.
Our model is particularly well suited to situations in

which we have a relatively large number of samples
(>30) with a high degree of biological variability. We
have shown that it can be used to gain insights into
translational studies, and have exemplified its use with a
study of response to therapy in patients with Hepatitis
C. The model is appropriate for any high-quality quanti-
tative (area-under-the-curve) proteomics data. This is
not limited to data-independent acquisitions, rather the
approach can be utilized on any label-free quantitative
data which is based on precursor intensity for the quan-
titation and collects enough points across the peak to
accurately define the peak area.

Methods
Sample selection
Chronic hepatitis C (HCV) patients, n = 96, were selected
for proteomic analysis from the Duke Hepatology Data-
base and Biorepository, as detailed previously [20]. Sam-
ples analyzed were all pre-treatment serum aliquots, but
patients were classified based on their sustained response
to Pegylated Interferon/Ribavirin combination therapy, the
standard of care for HCV. Patients were matched as well
as possible on the basis of relevant clinical parameters, in-
cluding gender, viral load, metavir fibrosis score, and race
(Table 1). Patients were divided between Genotype 1 HCV
non-responders (n= 42), Genotype 1 HCV responders
(n= 34), and Genotype 2/3 HCV responders (n= 20). A
subset of this cohort, including 25 of the original 55 and
38 of the subsequent 41 samples, were also utilized for
label-free SRM analysis.

Sample preparation, instrument operation, and data
preparation
The plasma sample preparation by immunodepletion
and trypsin digestion, as well as the unbiased LC-MSE
data collection on a nano Acquity and QToF Premier
mass spectrometer (Waters Corporation), has been
described in detail previously. [20]. Unbiased proteomic
data analysis using label-free area-under-the-curve quan-
titation was performed in Rosetta Elucidator, utilizing
both Mascot (Matrix Sciences, Inc) and PLGS v2.4
(Waters Corporation) and exported for statistical ana-
lysis, also as previously described [20]. Peptide annota-
tion for this dataset was performed at a 1 peptide FDR
using decoy database validation. To enable external ana-
lysis of the quantitative data using alternative methods,
we have made the two unbiased quantitative data sets
available (see Additional files 4 and 5). LC-SRM analyses
were performed using a subset of the same samples,
which were stored at −80 C between the initial unbiased
analyses and the targeted analysis. A scheduled SRM
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method was generated in Skyline v0.7 (https://brendanx-
uw1.gs.washington.edu/labkey/project/home/software/Sky
line/begin.view) for 82 of the most promising biomarker
peptides, and 5 peptides from yeast alcohol dehydrogenase
(ADH1_YEAST) were also included as internal standards.
The method included up to 3 transitions per precursor
ion, and the MS method details as well as quantitative data
have been included in Additional file 4. Analyses were
performed on a nanoAcquity UPLC system coupled to
a Xevo TQ mass spectrometer (Waters Corporation),
using a method identical to that described for the
unbiased data, with the following exceptions. The gra-
dient length was 30 min, the column utilized was a
75 μm x 150 mm BEH, the flow rate was 0.4 μL/min
and column temperature was 35°C. Raw data was
imported into Skyline, quantified using a label-free
approach, and exported for statistical analysis.

Preparation of data for analysis
To accomplish data alignment and feature quantitation
across all biological samples and thus form the matrix
discussed in the statistical methods section below, we
utilized Rosetta Elucidator™v3.3 software package
(Rosetta Biosoftware) to import and align all MSE and
data-dependent acquisition (DDA) raw data files [26-30].
Database searches were performed against a forward/
reverse Swissprot database (v 56.5) with human tax-
onomy, using ProteinLynx Global Server v2.4 (IdentityE
algorithm, Waters Corporation) for MSE searches or
Mascot v2.2 for DDA data. Database searches are either
performed externally and results imported (PLGS 2.4) or
queued directly from within Elucidator (Mascot) to
allow identification of many of the quantified features in
the proteomic dataset. All database searches were per-
formed with high mass accuracy on precursor and prod-
uct ions (typically 20 ppm precursor and 0.04 Da
product ion tolerance), with fixed carbamidomethylation
(Cys), variable oxidation(Met) and variable deamidation
(Asn and Gln). Annotation of the peptides is accom-
plished at an estimated 1% FDR using the Elucidator im-
plementation of PeptideProphet algorithm [31]. Visual
scripting within Elucidator is utilized to extract feature
intensities for those features which have quantitative
values above the 1000 counts (approximately 10th per-
centile) in 50% of the samples. The final file for statis-
tical analysis is made up of a matrix of intensities, with
the rows corresponding to isotope groups and the
columns to technical observations (LC-MS analysis). An
isotope group is defined as all of the peaks associated
with a single peptide at a specific charge state and reten-
tion time. This level of quantitation combines peaks
from the same peptide that differ according to the num-
ber of carbon 13’s incorporated, but does not combine
the same peptide measured at different charge states.
The intensity of an isotope group for a given sample is
the total volume under the feature peaks associated with
that isotope group. This is monotonically related to the
concentration of that isotope group in the original sam-
ple, and it is these intensities that we work with. We
have made the matrices of intensity values associated
with the study available in Additional file 5.

Technical variation
This data set was collected in three run blocks. Two of
these were consecutive and the third was run months
later. There are significant batch effects present in com-
paring the first two to the third even after correcting for
observed total protein. Even though we did not include
explicit design vectors for batch in our regression, our
inclusion of a factor matrix describing systematic effects
(β and H) allows this source of technical variation to be
automatically modeled without foreknowledge. We find
that the first row of H perfectly distinguishes runblocks
1 and 2 from runblock 3, with values between .95 and
1.05 for the former and between − .95 and −1.05 for the
latter. This ability to bridge between two different data
sets supports our claim that this model is able to iden-
tify and subtract out some variation in sensitivity due to
batch effects.

Alignment of data sets
The data from a single experiment consists of a list of
features along with their associated mass-to-charge
ratios and retention times. Because there is some level
of randomness to all of these measurements, there is
some uncertainty in the identification of which feature
from one experiment should be associated with a
given feature in another experiment. The process of
matching features across experiments is termed data
alignment. For matching features within a single
experiment, we utilize Rosetta Elucidator™, which is a
commercial package for the processing and analysis of
proteomics data. However, there were sufficient differ-
ences between the different experiments (which were
run months apart, at different labs and on different
machines) to make the Rosetta algorithm inadequate
for the task of alignment across datasets. For data
alignment across the different batches, we utilized the
following construction.
Let i be an index over the set of all peptides measurable

in our experiment. Further, define γi to be 1 if the ith pep-
tide was measured in the experiment. Let xi be a vector
containing the “true” retention time and mass-to-charge
ratio associated with the ith peptide. Then, if γi ¼ 1, we
assume our measured values, x�i are normally distributed
around xi with some shift and scale along with an
unknown covariance, x�i : N μþ δxi;Φ−1ð Þ . There is a
small subset of isotope groups that have been identified in

https://brendanx-uw1.gs.washington.edu/labkey/project/home/software/Skyline/begin.view
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all data sets. We initialize all of our parameters to maximize
the likelihood of this small subset, then use a greedy
algorithm to select matches for the remainder of the iso-
tope groups. The algorithm stops assigning matches based
on the prior probability that γi ¼ 1 (we have used .5).
There is substantial information available that is not

being used in this algorithm. First, it would be possible to
assign prior distributions to the model parameters and it-
eratively fit this model. This would lead to better estimates
of model parameters allong with full posterior distribu-
tions. However, because the distribution is extremely
spiky, the estimation of uncertainty from this algorithm is
somewhat uninteresting and uninformative. Second, there
is information available in the high energy mass spectrom-
etry trace even when that trace is insufficient to fully iden-
tify the peptide which one might include in our model as
additional dimensions to xi . Third, we are not making use
of the intensity of the measured isotope groups across the
samples. This allows for the possibility that there may be
drastic changes in peptide concentrations between the two
experiments. Even so, it is likely possible to obtain and use
reasonable and informative distributions on these inten-
sities for the purposes of alignment. However, because all
of our results are based on factors, which are the aggregate
expression of multiple isotope groups, a low but non-zero
level of inaccurate alignments may lead to a mild increase
in noise, but not a drastic change in our overall results.

Full model specification
The list of variables we will use is as follows:

� P is the number of isotope groups measured
� N is the number of samples in the study
� X is a P×N dimensional array of intensity values

with elements xi;j
� E is a P×N matrix of normally distributed noise

(residuals). We assume that each isotope group, i,
has its own noise variance, τ−1i

� μ is a P-dimensional vector representing mean
intensity for each isotope group. The elements of
this vector are μi.

� B is a P×D matrix of loadings and H is a N×D
matrix of factors. These are intended to describe
patterns of expression that span most or all isotope
groups (as reflected by the priors). The elements of
extitB are bi;d and the elements of H are hn;d .

� A is a P×K matrix of loadings and Λ is a N×K
matrix of factors. K is the number of metaproteins.
These factors are distinguished from the previous
ones by their prior structure. Specifically, A will
contain only P non-zero elements, and the non-zero
elements for any particular factor should consist of a
large number of isotope groups from the same
protein. This contrasts with B which contains no
non-zero elements and describes expression patterns
across the entire set of peptides. The elements of A
and Λ are ai;k and λn;k respectively.

� z is a P-dimensional vector (with elements zi)
containing, for each isotope group, the index of the
metaprotein to which that isotope group has been
assigned.

� μ0, ϕ0, v0, ν0, δ0, a0 and ak are constants set at the
time of model fitting.

The full hierarchical model specification is as follows.

X ¼ μ1N þ BH ′ þ AΛ′ þ E
μi : N μ0;ϕ0ð Þ

bi;d : N 0; v0ð Þ
hn;d; λn;k : N 0; 1ð Þ

Ei;n : N 0; τ−1i
� �

τi : Gamma ν0; δ0ð Þ
ai;djzi≠d ¼ 0

ai;djzi ¼ d : N 0; v0ð Þ
zi : Multinomial 1; qið Þ
qi : Dir α0;⋯; α0;αk ;α0;⋯α0ð Þ

All of the constants are set in order to minimize the in-
fluence of the prior distribution. Specifically, we use μ0 ¼ 8
and ϕ0 ¼ 100 corresponding to a 95% confidence interval
on the log-transformed intensities between −12 and 28
(significantly overdispersed relative to the empirical distri-
bution). Similarly, we set v0 ¼ 100 which allows potential
fold changes > 108 . We set ν0 and δ0 both to .001 corre-
sponding to a mean estimated residual of 1, but with a
variance of 1000. We note that estimation of variance can
be difficult, however, we have >100 samples in our study.
For smaller studies, one might use more informative priors
for variance. Both a0 and ak are pseudocounts for our
Dirichlet distribution. We use a0 ¼ :01 and ak ¼ 500. We
note that this last parameter is the only one in the model
that is potentially strongly informative, so we have tried
values from 1 to 1000. We considered the percentage of
peptides that are members of their dominant metaprotein.
We find that, in our study population the affect of varying
this parameter is to move that percentage between 43%
and 53%. The relatively minor effect of this large change in
pseudocounts is probably due, again, to our large sample
size. This leads to very high data likelihoods for member-
ship in particular metaproteins for almost all isotope
groups. This parameter will have a larger effect in smaller
studies.

Additional files

Additional file 1: Protein level grouping. Heatmaps for all identified
isotope groups. The rows are sorted according to metaprotein
membership and the columns are sorted so that the first principal
component is increasing. Each isotope group is associated with a single
metaprotein. Those metaproteins are labeled on the y-axis.
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Additional file 2: Protein level, sorted by expression. Heatmaps for
all identified isotope groups. The rows are sorted according from highest
to lowest expression level and the columns are sorted so that the first
principal component is increasing. Each isotope group is associated with
a single metaprotein. Those metaproteins are labeled on the y-axis.

Additional file 3; Analysis of spike-in data. Estimates of the protein
levels of spiked in samples from the Super Hirn experiment. Also
included are the results of one of the label substitution experiments.

Additional file 4: Expression from SRM. Raw expression levels from
the label free SRM proteomics assay for a subset of the original HCV 55
cohort.

Additional file 5: Shotgun proteomics data and Matlab code for
analysis. Raw expression levels from the various shotgun proteomics
experiments and Matlab code for performing the analysis described in
this paper.
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