Zehetmayer and Posch BMC Bioinformatics 2012, 13:81
http://www.biomedcentral.com/1471-2105/13/81

BMC
Bioinformatics

False discovery rate control in two-stage

designs

Sonja Zehetmayer' " and Martin Posch?

Abstract

(integrated approach).

data only.

Background: For gene expression or gene association studies with a large number of hypotheses the number of
measurements per marker in a conventional single-stage design is often low due to limited resources. Two-stage
designs have been proposed where in a first stage promising hypotheses are identified and further investigated in the
second stage with larger sample sizes. For two types of two-stage designs proposed in the literature we derive
multiple testing procedures controlling the False Discovery Rate (FDR) demonstrating FDR control by simulations:
designs where a fixed number of top-ranked hypotheses are selected and designs where the selection in the interim
analysis is based on an FDR threshold. In contrast to earlier approaches which use only the second-stage data in the
hypothesis tests (pilot approach), the proposed testing procedures are based on the pooled data from both stages

Results: For both selection rules the multiple testing procedures control the FDR in the considered simulation
scenarios. This holds for the case of independent observations across hypotheses as well as for certain correlation
structures. Additionally, we show that in scenarios with small effect sizes the testing procedures based on the pooled
data from both stages can give a considerable improvement in power compared to tests based on the second-stage

Conclusion: The proposed hypothesis tests provide a tool for FDR control for the considered two-stage designs.
Comparing the integrated approaches for both selection rules with the corresponding pilot approaches showed an
advantage of the integrated approach in many simulation scenarios.

Background

Modern experimental techniques in genetic research such
as microarray experiments or gene association studies
produce high dimensional data and often thousands of
hypotheses are tested simultaneously to identify genetic
markers. Due to limited resources, the number of mea-
surements per marker in a conventional single-stage
design is often low. Two-stage designs have been proposed
where in a first stage promising markers are identified
from the set of all markers considered initially. Thus,
hypotheses corresponding to unpromising markers can
be dropped in the interim analysis such that the sec-
ond stage is performed with the reduced set of selected
hypotheses. Given limited total resources or budgets,
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this allows the allocation of a larger number of observa-
tions to more promising hypotheses. It has been shown
that such sequential procedures are typically considerably
more powerful than single-stage designs [1-8].

An important problem when drawing inference from
data produced by such designs is the construction of
hypothesis tests that control the False Discovery Rate
(FDR). While the construction of such test procedures is
straightforward if only the second-stage data is used for
testing, tests that make use of the data from both stages
need to account for the specific selection rule used to
select hypotheses for the second stage.

For two-stage procedures where in an interim analy-
sis all hypotheses with an unadjusted first-stage p-value
below a pre-fixed selection boundary y; are selected for
the second stage, hypothesis tests based on the pooled
data from both stages have been proposed that control
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EFDR or the familywise error rate [7] (see [8] for a gen-
eralization to multistage designs). Selecting all hypothe-
ses whose first-stage p-value lies below a fixed threshold
has several implications. First, the number of hypothe-
ses selected for the second stage is a random variable
unknown a priori, which is an obstacle for researchers
if resources are limited and the number of markers for
which further measurements can be collected cannot be
arbitrarily increased. Second, because rather large thresh-
olds need to be applied in the interim analysis in order
not to miss alternative hypotheses in spite of the small
sample size, the fixed threshold rule will, with a high prob-
ability, select some hypotheses even under the global null
hypothesis, even though resources could be saved in this
scenario by stopping the experiment for futility at the
interim analysis.

In this work we propose statistical tests to control
the FDR in two-stage designs with selection rules that
are not based on a fixed threshold for the first-stage
p-values. First, we consider designs where a fixed num-
ber of hypotheses is selected for the second stage (FNS
design) [4]. The selected hypotheses are the top-ranked
hypotheses according to the first stage p-values. Second,
we consider two-stage designs where selection is based on
a fixed FDR threshold «; in the interim analysis (FDRS
design). All hypotheses that can be rejected with a test
controlling the FDR at level «; are selected for the sec-
ond stage [9]. For the FNS design the number of continued
hypotheses is deterministic and the procedure continues
to the second stage, regardless of the actual effect sizes
observed. For the FDRS design in contrast, the number
of selected hypotheses is a random variable. Furthermore,
under the global null hypothesis (where the FDR coincides
with the familywise error rate) with probability 1 — «; no
hypothesis can be rejected with the interim test at FDR
level 7 and the trial is stopped for futility.

A simple approach to construct hypothesis tests con-
trolling the FDR for two-stage designs is to consider tests
based on the second-stage data only. Standard multi-
ple testing procedures applied to the second-stage data
will control the FDR. For the FDRS design Benjamini
and Yekutieli [9] showed that the nominal level applied
at the second stage may be even increased taking into
account the interim selection threshold. However, these
approaches do not make full use of the available data
because the first-stage observations are used for selection
only. We construct tests for the FNS and FDRS designs
that are based on sufficient test statistics of the data from
both stages (the “integrated approach”). These tests are
designed in analogy to group sequential tests and appear
to control the FDR well if the number of hypotheses tested
is large enough.

The paper is structured as follows: in the next section
the testing problem and the selection rules are introduced.
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Then the results of a simulation study which investi-
gates the actual FDR and compares the mean number
of rejected alternatives of the integrated approach to the
pilot approach are presented. Finally, a real data example
and a short discussion are given.

Methods

The test problem

We consider an experiment to test m two-sided null
hypotheses Hy;: u; = O versus Hy;: p; # 0,i = 1,...,m,
for the mean of independent, normally distributed obser-
vations with variances oiZ, i = 1,...,m. More general
distributional scenarios are discussed at the end of this
section.

To adjust for multiple testing we aim to control
the FDR of the experiment. The FDR [10] is defined
as the expectation of the proportion of erroneously
rejected hypotheses V' among all rejected hypotheses R,
FDR = E(V/ max{R, 1}). We apply the step-up Benjamini-
Hochberg (BH) procedure to control the FDR at level
a. Denote the ordered p-values of the m hypotheses by
Pa) = P = -+ = pom and let d = argmax;{p;) <
ioe/m} denote the index of the largest p-value p(;, smaller
than or equal to io/m. Then the BH-procedure rejects
all hypotheses Hy; such that p; < do/m. For single-
stage tests it has been shown by Benjamini and Yekutieli
[11] that the BH-procedure controls the FDR at level
o, if the subset of test statistics corresponding to true
null hypotheses are independent or positively regression
dependent. Here, 7y denotes the (unknown) proportion
of true null hypotheses among the m tested null hypothe-
ses. Furthermore, the FDR is asymptotically controlled
(for increasing number of hypotheses) if the limiting frac-
tion of true null hypotheses is less than one and the test
statistics are weakly dependent such that their empir-
ical distribution functions converge almost surely (and
some additional technical conditions hold) [12]. In the
following we assume distributional scenarios where the
BH-procedures controls the FDR.

The two-stage procedure

In the first-stage for each hypothesis n; observations are
collected. Then an interim analysis is performed and for
each hypothesis a two-sided first-stage p-value pgl) =
2(1 — <I>(|z§1)|), i = 1,...,m, is calculated, where zl{l)
denotes the standardized first-stage mean for hypothe-
sis i and ® the cumulative distribution function of the
standard normal distribution. The first-stage p-values are
ranked according to their magnitude and the m, hypothe-
ses with the smallest p-value are selected for the second
stage. The number of selected hypotheses m; can be
either a pre-fixed number or may depend on the first-
stage results. Below we consider several choices for m.
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In a second stage for each selected hypothesis 75 observa-
tions are collected. n; is assumed to be fixed and does not
depend on the number of selected hypotheses. We con-
sider two different approaches to arrive at the final test
decision: the “integrated approach’, where the test deci-
sion is based on the combined data of both stages and the
“pilot approach’, where the test decision is based on the
second-stage data only.

In the following we introduce several rules to determine
the number of selected hypotheses m1;.

Selection rules for two-stage designs

Selection according to a prefixed selection boundary y,
Two-stage designs have been proposed [2,7,8] where a
selection boundary y; is pre-specified and in the interim
analysis all hypotheses with a first-stage p-value smaller
than y; are selected for the second stage. Then

m
my = E 1
L. - " <ny
=

where 1 is the indicator function which equals 1 if the
condition in the parentheses is satisfied and 0 otherwise.
Thus, m5 is a random variable.

Pre-fixed number of hypotheses selected for the second stage
- FNS design

With this rule the value of my is fixed a priori and the
my hypotheses with the smallest first-stage p-values are
selected for the second stage. We denote this procedure
ENS design (Fixed Number Selection).

Selection based on an FDR threshold - FDRS design

In this approach all hypotheses which are significant
according to the BH-procedure at a prefixed level a1 > «o
in the interim analysis are selected for the second stage.
Thus, the number of selected hypotheses m1; is a random
variable which depends on the first-stage results. If no
hypothesis can be rejected at level «; in the interim anal-
ysis and thus be carried over to the second stage, my is
set to zero. In this case the whole experiment is stopped.
Note that under the global null hypothesis, i.e. in the set-
ting where all null hypotheses are true and thus 7o = 1,
this occurs with a probability of 1 — «;.

FDR control

In the subsections below we review the FDR controlling
test procedure for two-stage designs where hypotheses are
selected based on a prefixed selection boundary applied to
the first-stage p-values. Both pilot and integrated designs
are considered. We then propose generalizations of these
test procedures to FNS and FDRS designs, showing that
for each of the designs a corresponding data dependent
selection boundary for the first-stage p-values can be
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defined that converges under suitable assumptions almost
surely to a fixed value. The results are derived for inde-
pendent data. However, in genetic data dependence of test
statistics is frequently observed and even weak depen-
dence may be a strong assumption. In the simulation study
we thus investigate the performances of the procedures for
several correlation structures.

Selection according to a prefixed selection boundary y

Pilot approach. In the pilot approach the final test statis-
tics are based on data from the second stage only. The
first-stage data are used for selecting promising hypothe-
ses only. To control the FDR of the experiment, at the
end of the trial for each hypothesis a two-sided p-value
pl@ =21 - d>(|zl§2))|), i=1,...,my,is calculated, where
zl@ denotes the standardized mean of the second-stage
observations for hypothesis i. Then the BH-procedure is
applied to these p-values which are based on the second-
stage data only. Because the first-stage observations are
used only for selection and do not enter the final test
statistics, the BH-procedure controlling the FDR at the
second stage controls the FDR overall.

Integrated approach. If the data from both stages are to
be used in the final test decision, one can account for the
selection in the interim analysis by calculating sequential
p-valuesp;, i =1...,m,based on the monotonic ordering
of the sample space [13]. prl(»l) > y) then the two-sided
sequential p-value is defined as

1 1
pi=p" =Py, (121 2 12" M
and if pfl) < y1 it is given by

pi=Pu, (171 2 12D 0 ZV 1 Z 1)), @)

where Z; denotes the standardized overall mean of the
observations from both stages and Zl.(l) the standardized
mean of the observations in the first stage. Furthermore,
Zi zfl) denote realizations of the random variables Z;, Zl.(l)
and c¢i_y, ;2 the (1 — y1/2)-quantile of the standard nor-
mal distribution. If the stopping criterion is satisfied
the sequential p-value is just the classical fixed sample
p-value calculated from the first-stage observations. Oth-
erwise, the calculation of the sequential p-value involves
the numerical solution of an integral (see the Appendix).
Finally, the BH-procedure is applied to the sequential
p-values p1,...,pm.

In a two-stage procedure with fixed per hypothesis sam-
ple sizes n;, ny and a fixed selection boundary y; the
sequential p-values are uniformly distributed under the
null hypothesis [13].

If for the subset of true null hypotheses the observa-
tions are independent across hypotheses such that the
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sequential p-values are independent as well, it follows
that the FDR is controlled in such a two-stage design. As
described above FDR control holds also if the sequen-
tial p-values corresponding to true null hypotheses are
positive regression dependent [11].

Next we extend the test procedure to the FNS and FDRS
design.

FNS design

Pilot approach. For the ENS selection rule the FDR con-
trol with the pilot approach is straightforward: the BH-
procedure can be applied to the second-stage p-values
of the my selected hypotheses. Because the first-stage
data do not enter the final test statistics, FDR control is
guaranteed under the assumption of positive regression
dependency.

Integrated approach. To utilize the data from both
stages for the final test decision, we propose to compute
sequential p-values in analogy to (2), replacing the fixed
selection boundary y; (which is not defined for the FNS
design) by the value of the largest first-stage p-value of
all selected hypotheses, i.e., setting y1 = p(n,). Thus, the
threshold y; is now data dependent. Because this is not
accounted for in the calculation of the sequential p-values,
they may no longer be uniformly distributed under the
null hypothesis and it is not obvious if the FDR is still
controlled. However, if the observations are sufficiently
independent across hypotheses, such that the empirical
distribution functions of the first-stage test statistics con-
verge almost surely as the number of tested hypotheses
increases (and some additional technical conditions hold,
see the Appendix), 1 converges almost surely to a fixed
number. Thus, asymptotically y; is deterministic and for
large m and my the procedure becomes similar to the
method with a prefixed selection boundary.

Note that with the integrated two-stage testing pro-
cedure, hypotheses that have not been selected in the
interim analysis can in principle be rejected in the final
test. Especially, if my is small compared to the number
of hypotheses for which the alternative holds and the
effect sizes are large, hypotheses that were not selected
at the interim analysis can be rejected at the end because
for every hypothesis a sequential p-value is calculated
(even for non-selected ones). Rejection of non-selected
hypotheses can occur in an overpowered FNS design
where only few hypotheses are selected, but even the
sequential p-values corresponding to non-selected alter-
native hypotheses are small enough to lead to a rejection.
If such rejections occur, this is an indication that the
first-stage sample size has been chosen too large and no
second-stage sample would have been needed to reach
sufficient power. While the efficiency of such a design can
be improved by choosing appropriate first-stage sample

Page 4 of 10

sizes and selection rules, the control of the FDR is not
affected.

FDRS design

Pilot approach. As for the FNS selection rule, if the
BH-procedure is applied at nominal level « to the second-
stage p-values of the my selected hypotheses (computed
from the observations of the second stage only), FDR con-
trol is guaranteed. However, as Benjamini and Yekutieli
[9] showed, if, in a first stage, hypotheses are selected that
can be rejected with the BH-procedure at nominal level
a1, and, in a second stage, the selected hypotheses are
tested at nominal level «y, the FDR of the second-stage
test is actually controlled at level ojaomy, given the test
statistics at each stage are positively regression dependent
[9]. Thus, if in the second stage the nominal level /o
is applied, the FDR is still controlled at level mpce. In the
following we consider the latter, improved procedure.

Integrated approach

Similar to the FNS rule we propose to compute sequen-
tial p-values in analogy to (2) to utilize the data from both
stages for the final test decision.

Again, the resulting threshold y; is data dependent: we
set y1 = mya1/m where my is a random variable. Then
y1 is approximately equal to the largest first-stage p-value
of all selected hypotheses. Thus the sequential p-values
may no longer be uniformly distributed under the null
hypothesis and FDR control is in question. However, the
following argument gives a heuristic for FDR control when
the number of hypotheses is large. If for a positive pro-
portion of hypotheses the alternative holds the empirical
distribution functions of the first-stage test statistics con-
verge almost surely as the number of tested hypotheses
increases (and some additional technical conditions hold,
see the Appendix), it can be shown that y; converges
almost surely. Hence, in these settings y; is asymptotically
deterministic.

Under the global null hypothesis y; does not converge
and simulations (see the Results section) show that the
FDR is actually inflated. Therefore, we suggest the fol-
lowing modification of the test procedure. Let m; > 0
denote a positive constant. In cases where less than mg
hypotheses are selected by the FDRS selection rule the
threshold y; used in (2) is set to the m;-smallest first-stage
p-value, thus y; = max(pgrg), p&zs)). Note that this modi-
fication increases the first-stage critical boundary used in
the calculation of the sequential p-value.

Generalizations to other testing problems

The procedure can be directly generalized to two group
comparisons, replacing the standardized means by the
standardized mean between group differences. More
generally, the sequential p-value can be computed as in (2)
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if (under the null hypothesis) the cumulative test statistics
follow a multivariate normal distribution with mean zero
and variance one. In the actual computation based on (3)
the term n; /(11 + ny) (resp. na /(11 + nz)) is then replaced
by the correlation p (resp. 1 — p). For example, for test-
ing problems as the comparison of rates, or the analysis of
co-variances, the standardized means can be replaced by
standardized efficient score statistics that are asymptoti-
cally normally distributed. The correlation between these
test statistics is determined by the information fractions
(see [14]).

Results

First we investigate the actual FDR of the proposed test-
ing procedures for the FNS and FDRS selection rules.
Additionally, to quantify the advantage in power of the
integrated approach compared to the pilot approach, we
report the mean number of rejected alternatives under
different scenarios. We consider the one-sample z-test for
m two-sided null hypotheses Ho;: n; = 0 versus Hy;:
wi # 0,i = 1,...,m, for the mean of normally dis-
tributed observations with nominal significance level « =
0.05. The simulations are performed for a wide range of
scenarios. For a detailed description see Additional file 1.

In the following we assume independence of test statis-
tics across hypotheses. However, because this assumption
is often not satisfied in genetic data, we also report simu-
lations assuming several correlation structures.

All computations were performed using the statis-
tical language R [15]. R-code to reanalyse the real
data application is available for download from the
authors’ web page http://statistics.msi.meduniwien.ac.at/
index.php?page=pageszfnr.

Simulation results for the FNS procedure

Control of the error rate. Integrated approach: In all
simulated scenarios the FDR is well controlled if 15 > 5
(see Additional file 1). Only if a smaller 15 is chosen, the
FDR may be inflated up to 0.11.

A heuristic explanation for this inflation is that for
very small m; the p-value threshold corresponding to the
ENS design, p(u,), is close to zero. For such low p-value
thresholds even small changes may lead to large changes
in the sequential p-value (2) and the approximation based
on a fixed threshold is poor. Figure 1C illustrates the
decrease of the FDR with increasing m1; for two particular
scenarios.

Pilot approach: For the pilot approach the FDR is con-
trolled in all scenarios.

Mean number of rejected hypotheses. Table 1 shows
the mean number of rejected alternatives for selected
scenarios for the integrated approach controlling the FDR
and the improvement in percent compared to the pilot
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Figure 1 Power values and error rates. (A) and (C) show the actual
FDR for the FDRS and the FNS design, respectively, (B) and (D) the
corresponding mean number of rejected alternatives for ny=6, n,=12,
«=0.05,m = 1000, Ty = 0.99, m; = 6. The effect sizesare A =1
(solid line) or A = 1.6 (dotted line). The integrated approach is
depicted in black, the pilot approach in grey (50000 simulation runs
per scenario).

approach. While the simulation study investigating FDR
control covers 7y values from 0.5 to 1 for the investiga-
tion of the power we consider settings where alternative
hypotheses are sparse. These are settings where the
advantage of two-stage designs that select promising
hypotheses at interim analysis is expected to be largest.
In all scenarios the integrated approach rejects more
or the same number of alternative hypotheses than the
pilot approach. The increase in rejections is up to 59%.
Figure 1D shows the impact of m; on the mean number
of rejected alternatives for the integrated (black lines) and
the pilot approach (grey lines): For A = 1 (solid lines)
and very small 715, the number of rejected alternatives is
very small but it clearly increases with m5. Here the differ-
ence to the pilot design is more distinct. For A = 1.6 the
advantage of the integrated approach is only moderate.

Simulation results for the FDRS procedure

Control of the error rate. Integrated approach: For the
original procedure (without the modified critical value)
and 7wy < 0.8 the FDR is controlled for all considered val-
ues of m, o; and A (data not shown). For larger values
of my the FDR may be inflated, especially if the effect size
under the alternative is low such that the expected num-
ber of selected hypotheses for the second stage is very
small. The inflation is, however, moderate and the maxi-
mal FDR over all simulation scenarios is 0.073 instead of
the nominal 0.05.
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Table 1 FNS design

m = 1000 m = 10000 m = 100000
my o A=1 A=1.6 A=1 A=1.6 A=1 A=16
0.0Tm 95 6.1 (17%) 15.4 (58%) 58.7 (19%) 141.9 (46%) 583.7 (19%) 1406.8 (45%)
0.0Tm .99 1.8 (13%) 5.0 (2%) 13.3 (19%) 41.9 (3%) 126.8 (20%) 4074 (3%)
0.05m 95 12.5(21%) 26.7 (5%) 117.6 (23%) 260.3 (5%) 1166.9 (23%) 2590.3 (5%)
0.05m 99 2.8 (25%) 6.2 (4%) 19.8 (35%) 53.8 (6%) 188.4 (36%) 523.7 (6%)
0.1m 95 14.9 (27%) 30.1 (6%) 139.9 (29%) 293.9 (7%) 1388.2 (29%) 2926.5 (7%)
0.1m .99 3.1 (33%) 6.5 (6%) 22.0 (47%) 57.0 (9%) 209.9 (49%) 554.7 (9%)

The mean number of rejected alternatives for the integrated design and the improvement in percent compared to the pilot design (in paren-
theses) for independent scenarios with « = 0.05, ny = 6, n, = 12 (20000 simulation runs per scenario for m = 1000, m = 10000; 10000

simulation runs for m = 100000).

The simulations for the modified procedure show that
across all scenarios the FDR is controlled for m; = 6 (see
Figure 1A for an example and Additional file 1 for all sce-
narios). Therefore, in the following we only report results
of the modified procedure with m; = 6. Note that for
some of the parameter values the modified procedure is
strictly conservative.

For the pilot approach FDR control follows by theoret-
ical arguments in [9] and is confirmed by the simulation
study (within the simulation error, see Figure 1A).

Mean number of rejected hypotheses. Table 2 and
Figure 1B show that the number of rejected alternatives
increases with o as expected. For small values of «y, the
pilot and the integrated approach have similar power val-
ues. In some settings for lower m the pilot design even
slightly outperforms the integrated design. This is due
to the fact that the modified FDRS procedure may be
strictly conservative, especially if the number of selected
hypotheses is low.

If the first-stage sample size is increased, the advantage
of the integrated approach increases: E.g., for n; = ny =9
and m9p = 0.95, A = 1, o1 = 0.5, the mean number
of rejected hypotheses is 22% larger for the integrated
approach than for the pilot approach.

Table 2 FDRS design

Correlated test statistics

Test statistics from genetic data are often stochastically
dependent across hypotheses. In this section we study
the impact of correlation between test statistics on the
FDR and consider auto-correlation, block-correlation [12]
and equi-correlation [16]. Auto-correlation may occur for
example in microarray data because of spatial artefacts
on the array or in gene association studies due to correla-
tion between neighbouring markers. A block correlation
structure, also called clumpy correlation, may be induced
in microarray data for example by pathways of genes that
are commonly regulated [17]. Finally, equi-correlation
can be due to ‘array effects’ in microarray analyses.

For auto-correlation we consider an order among
hypotheses and assume an autoregressive correlation
structure. Here the correlation between the test statistics
for hypotheses i and j is given by pl"/l. For block-
correlation we assume that the test statistics are correlated
in blocks of 20 hypotheses where the correlation between
the test statistics within one block is p [12]. Hypotheses
of different blocks are assumed to be independent. For
equi-correlation we assume that for all pairs of hypothe-
ses a pairwise correlation of p holds. For all correlation
structures the alternatives are randomly distributed
among the sequence of hypotheses. The simulations

m = 1000 m = 10000 m = 100000
o o A=1 A=16 A=1 A=16 A=1 A=16
0.1 95 25 (-1 %) 18.3 (0%) 17.7 (1%) 171.7 (0%) 166.2 (0%) 1703.0 (0%)
99 04 (-4%) 3.3 (0%) 1.3 (-3%) 23.1 (0%) 7.4 (0%) 219.7 (0%)
0.2 95 4.3 (1%) 21.7 (1%) 34.1 (2%) 206.4 (0%) 3286 (2%) 2047.1 (0%)
99 0.6 (-3%) 3.9 (0%) 2.3 (0%) 28.9 (0%) 15.8 (1%) 275.7 (0%)
0.5 95 9.3 (8%) 274 (2%) 81.3 (7%) 264.1 (2%) 799.7 (7%) 2625.7 (2%)
99 1.3 (4%) 5.1 (1%) 6.2 (5%) 39.8 (1%) 51.2 (5%) 382.0 (1%)

The mean number of rejected alternatives for the integrated design and the improvement in percent compared to the pilot design (in paren-
theses) for independent scenarios with « = 0.05, ny = 6, n; = 12, m; = 6 (20000 simulation runs per scenario for m = 1000, m = 10000;

10000 simulation runs for m = 100000).
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Table 3 FDRS design for equi-correlated data
m = 1000 m = 10000 m = 100000
o o A=1 A=16 A=1 A=1.6 A=1 A=1.6
0.1 95 2.7 (3%) 18.1 (0%) 20.6 (5%) 169.9 (0%) 180.2 (5%) 1682.2 (0%)
99 0.4 (0%) 3.2 (0%) 2.0 (12%) 22.7 (0%) 16.4 (19%) 214.4 (1%)
0.2 95 3.9 (9%) 21.5(1%) 306 (12%) 2034 (1%) 300.6 (14%) 2015.9 (1%)
99 0.6 (7%) 3.9 (1%) 2.9 (26%) 28.3 (1%) 26.0 (33%) 269.5 (2%)
0.5 95 7.3 (22%) 26.8 (3%) 60.5 (28%) 257.3 (4%) 576.0 (29%) 2554.7 (4%)
99 1.1 (25%) 4.9 (3%) 5.7 (6%) 37.9 (4%) 48.8 (78%) 363.3 (4%)

The mean number of rejected alternatives for the integrated design and the improvement in percent compared to the pilot design (in paren-
theses) with @ = 0.05, n1 = 6, n; = 12, p = 0.5 (20000 simulation runs per scenario for m = 1000, m = 10000; 10000 simulation runs for

m = 100000).

with correlated data were performed for the scenarios
m € {1000, 10000, 100000}, ny € {0.01m,0.05m,0.1m},
A € {1,1.6}), and g € {0.95,0.99,1} with correlation
coefficient p = 0.5.

For block-correlation and auto-correlation the results
are very similar to the independent case concerning
the actual FDR. The mean number of rejected alterna-
tives for the pilot and the integrated design are nearly
identical (data not shown). For equi-correlated data the
error rates of both selection procedures are maintained
in all scenarios, even under the global null hypothesis.
However, for most scenarios the procedure appears to
be more conservative compared to the independent case.
For scenarios with small A the mean number of rejected
alternatives and the superiority of the integrated designs
increases for the FDRS design (see Table 3). For the FNS
design the differences between the integrated and the
pilot design decrease (see Table 4). Note, however, that
equi-correlation can be reduced or removed by adequate
normalization [17].

Real data application

We reanalysed the microarray data set by Tian [18]. In this
experiment gene expression data were compared between
137 patients where bone lytic lesions could be detected by

Table 4 FNS design for equi-correlated data

magnetic resonance imaging and 36 controls where such
lesions could not be detected for 12625 probe sets. We
used the pre-processed data set by Jeffery [19].

To obtain balanced group sizes for the re-analysis we
arbitrarily selected 36 patients from the bone lytic lesions
group. The samples were arbitrarily allocated to the two
stages and the pilot and the integrated approach were
applied for the FNS and the FDRS procedure and differ-
ent parameters: n; = {6,12} (ny = 36 — n1), my =
{10,50,100,200}, &1 = {0.1,0.2,0.5,0.8}, m; = 10.
In the first stage for all procedures a two-sided ¢-test
was computed. For the integrated procedures we com-
puted sequential p-values based on (2) using a normal
approximation where the critical values from the model
with known variances are applied to the p-values of
the ¢-test.

Table 5 shows that in most scenarios the integrated pro-
cedure rejects more hypotheses than the corresponding
pilot procedure for both selection rules. This difference is
larger for larger first stage sample sizes and for increas-
ing parameters my or o, respectively. Only for small o
and n; = 6 the integrated and the pilot approach of the
FDRS procedure reject approximately the same number of
hypotheses. Note that no hypothesis was significant at the
final test decision which was not considered in the second

m = 1000 m = 10000 m = 100000
my o A=1 A=16 A=1 A=16 A=1 A=16
001Tm 95 8.0 (13%) 15.2 (53%) 77.3 (13%) 141.2 (43%) 768.0 (13%) 1392.8 (41%)
99 24 (0%) 5.6 (1%) 17.7 (0%) 48.6 (1%) 168.5 (0%) 4715 (1%)
0.05m 95 14.4 (12%) 28.5 (4%) 1354 (13%) 278.9 (4%) 1342.9 (13%) 2783.1 (4%)
99 3.0 (15%) 6.3 (3%) 216 (21%) 55.3 (4%) 207.9 (21%) 537.4 (5%)
0.1m 95 15.8 (21%) 30.6 (5%) 149.0 (22%) 299.7 (5%) 1473.5 (22%) 2990.8 (5%)
99 3.2 (28%) 6.4 (5%) 22.8 (39%) 57.1 (8%) 2164 (41%) 556.2 (8%)

The mean number of rejected alternatives for the integrated design and the improvement in percent compared to the pilot design (in paren-
theses) with @ = 0.05,n1 = 6,n; = 12, p = 0.5, m; = 6 (20000 simulation runs per scenario for m = 1000, m = 10000; 10000 simulation

runs for m = 100000).
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Table 5 Real data application

FNS FDRS
ni/ny my Rejections o Rejections m,FDRS
6/30 10 6 (1) 0.1 0(0) 1
50 15 (10) 02 (1) 2
100 30(12) 0.5 28 (21) 85
200 68 (30) 0.8 345 (132) 2291
12/24 10 8 (4) 0.1 3(3) 3
50 33(8) 02 51(38) 84
100 60 (17) 0.5 398 (150) 1745
200 109 (37) 0.8 573 (99) 5887

Number of rejected hypotheses for the real data application for the
integrated and the pilot design (the latter given in parentheses). In
addition the number of hypotheses selected for the second stage for
the FDRS design, m5PRS, is reported.

stage. Setting 71, = O the results for the integrated FDRS
procedure did not change.

Discussion and conclusion

In this paper we discussed several selection rules for
two-stage designs, where after an interim analysis only
promising hypotheses are considered in the second stage.

For the choice of the selection rule, different crite-
ria may apply. With the FNS design, the total number
of observations is known in advance, which facilitates
the planning of resources. However, this design does not
adapt to the number of hypotheses that show an effect
in the interim analysis. The latter can be achieved with
the FDRS design, where, on the other hand, the total
number of observations is random and the planning of
resources becomes more difficult. As an extension one
can consider an FDRS design where the overall number
of observations (across all hypotheses and both stages) is
fixed and the observations allocated to the second stage
are equally distributed among the selected hypotheses.
This comes at the cost of a decreasing per hypothesis
power if for a larger number of hypotheses the alternative
holds.

For the FNS design the testing procedures provided a
sound control in the considered scenarios where more
than 5 hypotheses are selected for the second stage for
independent as well as for correlated data. Also for the
modified FDRS procedure FDR control is given in all sce-
narios for m; > 5. Comparing the integrated approaches
for both selection rules with the corresponding pilot
approaches showed an advantage of the integrated
approach in many scenarios. This holds particularly for
the FNS design but in many scenarios also for the FDRS
design. The advantage of the integrated design increases
with the proportion of observations allocated to the first
stage. This is in line with earlier findings [7,8], where sce-
narios with small first-stage sample sizes were considered
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and only small differences between the integrated and the
pilot design have been observed. In particular, if the effect
sizes in microarray studies are low (as, e.g., shown in
examples in [20]) and the number of observations in the
first stage is sufficiently large compared to the number of
observations for the second stage, the integrated design is
superior.

On the other hand, using only the second-stage data
for testing has the advantage of increased flexibility and
simplicity. For example, the pilot FNS procedure controls
the FDR even if the hypotheses for the second stage are
selected in an arbitrary way. Furthermore, standard (non-
sequential) tests can be applied and FDR control can be
shown analytically under suitable assumptions.

In the simulations the BH-procedure was applied to
the sequential p-values to control the FDR. As described
above, this method is conservative if 7y < 1 as it controls
the FDR actually at level o Following the suggestion of
one of the referees, we additionally considered so called
adaptive FDR controlling procedures that are based on
an estimate of 7o (see Additional file 2). Under indepen-
dence these adaptive tests are less conservative then the
BH-tests, but did not exceed the nominal level in the con-
sidered simulation scenarios. However, as shown earlier
(e.g., [21]) under strong correlation adaptive procedures
may inflate the FDR.

It is well known that two-stage designs may lead to
a considerable improvement in efficiency compared to
single-stage designs [1-8] and this applies also to the pro-
cedures investigated in this paper (see Additional file 3 for
a simulation study comparing the two-stage tests to corre-
sponding single-stage designs). Furthermore, the methods
can be extended to designs where an explicit early rejec-
tion boundary is applied in the interim analysis as in many
group-sequential applications. In this case the calculation
of the sequential p-values is slightly modified (the integral
boundaries depend on the early rejection boundaries).
However, unless the fraction of hypotheses for which the
alternative holds is large, it is expected that the addi-
tion of an early rejection boundary at the interim analysis
has only a marginal impact on the efficiency of the pro-
cedure. Furthermore, for hypotheses that are rejected in
the interim analysis based on few observations, a con-
firmation with a larger sample size might be important
anyway.

Appendix

Asymptotic considerations

In this section we argue that asymptotically, for increasing
number of hypotheses, the FNS and the FDRS selection
rule are equivalent to a selection rule where hypotheses
are selected based on a fixed threshold y;. Let R(y) =
]j{pfl) < y} denote the number of hypotheses with
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a first-stage p-value not exceeding y, and V(y) (S(y))
the respective number of p-values corresponding to true
null (alternative) hypotheses, respectively. Let m and m1;
denote the number of true null and alternative hypothe-
ses, respectively. Consider the following assumptions:

1. The empirical distribution functions of the first-stage
p-values corresponding to the null and the
alternative hypotheses converge almost surely, i.e.,
limy,— 00 VI(y)/mo = y and
limy,;,— o0 S(y)/m1 = F1(y) exist for all y € (0, 1],
where F] is a continuous strictly increasing function.

2. limy, 00 mo/m = m° exists.

For the FNS procedure assume that lim,,_ o
my/m = § exists and let G(p) = mop + (1 — mp)F1(p)
denote the limiting distribution function of the first-stage
p-values. By the continuity and strict monotonicity of
G there is a unique y;° such that G(y°) = 4. Now,
limy, 00 Pomy) = y;° almost surely. If we additionally
assume that for all finite m the distribution of a (randomly
chosen) p-value is given by G(p) with density g, then y;
is the my/m quantile of G. Thus, its variance is given by
(ma/m)(1 — ma/m)/(mg(ma/m)?) [22].

For the FDRS procedure y; = my/ma corresponds
to the critical value that results from the BH-procedure. If
(1) and (2) hold and 7y < 1, it follows as in [12] (Theorem
5) that this critical value converges almost surely.

Computation of the two-sided sequential p-value

If the hypothesis H;,i = 1,. .., m is selected for the second
stage (i.e., if the first-stage p-value is smaller than y;), the
two-sided sequential p-value given by (2) is calculated by
numerical integration:

pi= /OO [1 - @('Z"'b_”ﬂ 0(2) de

1-y1/2
o —|zil —a
+/ [GD("IL)] p(2)dz 3)
€1y /2
Cy1/2 | —
+/ 1 [I—CD('ZL'b a)] v(z)dz
—00
Cy/2 — || —
+/ ‘ [eb('z’l')“)}p(z) dz
—00
with a = nlrjrlnz zand b = nlrfnz. Here ¢(.), ®(.),

and ci1_,, 2 denote the density, the cumulative distribu-
tion function, and the (1 — y;/2)-quantile of the standard
normal distribution, respectively. If the first-stage p-value

is larger than y1, p; = P,(D'
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Additional files

Additional file 1: We report the simulation scenarios and results of
the simulation study assessing the FDR of the FNS and FDRS design
(modified procedure with m;=6) for the case of independent test
statistics as described in the results section of the manuscript. For
each scenario at least 1000 simulation runs were performed. For scenarios
with lower m the simulation runs were increased to 50000

(m = {100;500}), 20000 (m = 1000), and 10000 (m = 5000), because in
these scenarios there is a higher variability of the false discovery proportion
such that the estimator of the FDR converges slower. This also holds if m is
large but rgp & 1 or A is small. Therefore, for these scenarios the number of
simulation runs was increased. The resulting FDR values were plotted as a
function of a7 for the FDRS design (left column) or as a function of m; for
the FNS design (right column), respectively.

Additional file 2: Results of a simulation study for two-stage designs
where an adaptive test procedures is applied based on an estimator
for the proportion of true null hypotheses.

Additional file 3: Two single-stage designs are compared to the
results: For the first single-stage design the sample size for each
hypothesis is nq, for the second design the sample size is nq + n3. For
the first design we compare the gain in power of the integrated design
and for the second design the attention lies on the reduction in costs.
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