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Abstract

Background: Animportant question in the analysis of biochemical data is that of identifying subsets of molecular
variables that may jointly influence a biological response. Statistical variable selection methods have been widely used
for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the
variables of interest. Pathway and network maps are one example of a source of such information. However, although
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sources of biological prior knowledge.

ancillary information is increasingly available, it is not always clear how it should be used nor how it should be

Results: We put forward an approach in which biological knowledge is incorporated using informative prior
distributions over variable subsets, with prior information selected and weighted in an automated, objective manner
using an empirical Bayes formulation. We employ continuous, linear models with interaction terms and exploit
biochemically-motivated sparsity constraints to permit exact inference. We show an example of priors for pathway-
and network-based information and illustrate our proposed method on both synthetic response data and by an
application to cancer drug response data. Comparisons are also made to alternative Bayesian and frequentist
penalised-likelihood methods for incorporating network-based information.

Conclusions: The empirical Bayes method proposed here can aid prior elicitation for Bayesian variable selection
studies and help to guard against mis-specification of priors. Empirical Bayes, together with the proposed
pathway-based priors, results in an approach with a competitive variable selection performance. In addition, the
overall procedure is fast, deterministic, and has very few user-set parameters, yet is capable of capturing interplay
between molecular players. The approach presented is general and readily applicable in any setting with multiple

Background
Ongoing advancements and cost reductions in biochem-
ical technology are enabling acquisition of ever richer
datasets. In many settings, in both basic biology and med-
ical studies, it may be important to model the relationship
between assayed molecular entities, such as genes, pro-
teins or metabolites, and a biological response of interest.
Molecular players may act in concert to influence
biological response: this has motivated a need for multi-
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variate methods capable of modelling such joint activity.
When sample sizes are small-to-moderate, as is often the
case in molecular studies, robust modelling of joint influ-
ences becomes especially challenging. However, often it is
likely that only a small number of players are critical in
influencing the response of interest. Then, the challenge is
to identify appropriate variable subsets.

Statistical variable selection methods have been widely
used in the bioinformatics domain to discover subsets
of influential molecular predictors. Both penalised likeli-
hood and Bayesian approaches have been used in a diverse
range of applications [1-6].
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Bayesian approaches can facilitate the integration of
ancillary information regarding variables under study
through prior probability distributions. Ongoing devel-
opment of online tools and databases have meant that
such information is widely available, and depending on
context, may include networks and pathway maps, public
gene expression datasets, molecular interaction databases,
ontologies and so on. However, while the idea of incor-
porating such information into variable selection has a
clear appeal, it is not always obvious what information
should be included nor how it should be weighted. Indeed,
many existing Bayesian variable selection approaches do
not attempt integrative analyses exploiting such infor-
mation and instead employ standard priors that do not
specify preferences for particular variables, but may, for
example, encode a preference for sparse models [4,7]. Sev-
eral Bayesian variable selection studies have put forward
simple approaches for incorporating prior knowledge by
independently assigning each variable a prior probability
of being included in the model [1,6,8,9]. However, sub-
jectively setting such hyperparameters for each variable
may be difficult. Furthermore, prior independence may
be a questionable assumption, since molecular variables
are unlikely to influence a response independently of one
another.

We develop a variable selection procedure in which
an empirical Bayes approach is used to objectively select
between a choice of informative priors incorporating
ancillary information (‘biologically informative priors’)
and also to objectively weight the contribution of the prior
to the overall analysis. The work presented here is moti-
vated by questions concerning the relationship between
signalling proteins and drug response in human cancers.
In the protein signalling setting (as also in gene regula-
tion) there is now much information available, both in
the literature and in diverse online resources, concern-
ing relevant pathways and networks. We therefore develop
pathway- and network-based informative priors for this
setting, applying the methods proposed to automatically
select and weight the prior and thence carry out variable
selection.

The relationship between response and predictors is
modelled using a continuous, linear model with interac-
tion terms. In this way we avoid data discretization (which
can lose information) yet retain the ability to capture com-
binatorial interplay. We take advantage of biochemically-
motivated sparsity constraints to permit exact inference,
thereby avoiding the need for approximate approaches
such as Markov chain Monte Carlo (MCMC). This enables
the calculation of exact probability scores over which vari-
ables are likely to be influential. The overall procedure is
computationally fast: empirical Bayes analysis and subse-
quent calculation of posterior (inclusion) probabilities for
52 predictors via full model averaging required only 10
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minutes (in MATLAB R2010a on a standard single-core
personal computer; code freely available, together with
simulation scripts, at http://go.warwick.ac.uk/stevenhill/
IBKVS). Moreover, the overall procedure we put forward
is simple from the user perspective, requiring very few
user-set parameters or MCMC convergence diagnostics.

The remainder of the paper is organised as follows. We
begin below by defining notation and reviewing Bayesian
variable selection. We then describe methods, including
empirical Bayes analysis to objectively select and weight
biologically informative prior information, pathway-based
informative priors and exact inference. We illustrate our
method on published single cell proteomic data [10] and
on proteomic data and drug response from ongoing work
in breast cancer. We also compare the proposed approach
to alternative methods. We conclude with a discussion of
our results, the merits and shortcomings of our work, and
highlight directions for further work.

Notation

LetY = (Y1,...,Y,)" € R” be a vector of response val-
ues and X; € R? for i € {1,...,n} be corresponding
p-dimensional candidate predictors. X; forms row i of the
n X p predictor matrix X.

Let y = (yl,...,yp)T € {0,1}? be a binary vector
and |y| = Zj ¥; be the number of non-zeros in y. Then
X, is the n x |y| matrix obtained by removing from X
those columns j for which y; = 0. Similarly, for a vec-
tora = (ai1,...,ap), a, is obtained from a by removing
components 4; for which y; = 0.

Bayesian variable selection

Bayesian linear model.

Consider the classical linear model Y = XB + €, where
B = (131, .. .,ﬁp)T are regression coefficients and € ~
N (0,0°I), where N denotes a Normal distrbution. In
some settings it makes sense to assume that some of the
regression coefficients can be set to zero, thereby remov-
ing the corresponding predictors from the model. Variable
selection addresses the question of which subset of pre-
dictors best models the response. An inclusion indicator
vector y € {0, 1}¥ specifies which regression coefficients
vanish. That is, predictor j is included in the model if and
only if y; = 1. We use y to denote both the inclusion indi-
cator vector and the model it specifies. Given model y we
have the reduced linear model

Y=X,8, +e (1)

We are interested in the posterior distribution over
models P(y | Y, X). From Bayes’ rule we have

P(y 1Y, X) o p(Y [ v, X )P(y) (2)

where p(Y | y,X,) is the marginal likelihood. P(y) is a
prior over models (the ‘model prior’), and is the main
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focus of the present paper. The marginal likelihood is
obtained by integrating out the regression parameters
B, and variance parameter o' and thereby automatically
penalises complex models with many parameters. This
penalisation occurs because a more complex model has a
larger parameter space. This means that for more complex
models, the integral that defines the marginal likelihood
is over a greater number of dimensions, with prior mass
spread over a larger space. This in turn results in a lower
marginal likelihood score.

Model selection and model averaging.

The posterior distribution over models P(y | Y, X) can be
used to find a single, maximum a posteriori (MAP) model,
y = argmax, P (y | Y, X). However, considering a single
‘best’ model may be misleading, especially in the small-
sample setting where the posterior distribution is likely
to be diffuse with several similarly high-scoring models.
Model averaging [11,12] can ameliorate such effects by
averaging over the entire space of models to calculate pos-
terior inclusion probabilities for each individual predictor,

P(y;=11Y,X) = Z Py 1Y, X). (3)
y:y=1
These inclusion probabilities are a measure of the impor-
tance of each individual predictor in determining the
response.

Evaluating the summation in Equation 3 requires enu-
merating the entire posterior over models P(y | Y, X). The
model space I' can be vast (|[I'| = 27) even for moder-
ate values of p . Thus, Markov chain Monte Carlo [13]
is often used to sample from the posterior over mod-
els thereby providing asymptotically valid estimates of
the inclusion probabilities [4]. As outlined in Methods
below, we instead calculate exact inclusion probabilities;
an approach rendered computationally viable through
restricting the size of model space T'. Justifications for
such a restriction and advantages and disadvantages of an
exact approach are provided in the Discussion below.

Model prior.
Calculating the posterior distribution over models (2)
requires specifying a prior over I', P(y). A common choice
of prior assumes that the a priori inclusion probabilities
are independent and have Bernoulli distributed marginal
distributions P(y;) with success parameter 7. This hyper-
parameter may be a user-defined constant or may itself
have a Beta prior [9,14]. In the former case, small values
are often chosen to promote parsimonious models [1].
These priors provide no information regarding specific
predictors and do not utilise domain knowledge. Employ-
ing predictor dependent hyperparameters m; enables
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incorporation of prior knowledge that some predictors
are more important than others. However, utilising such a
prior may be difficult in practice due to the many hyper-
parameters that must be subjectively specified. We note
also in this formulation, prior inclusion probabilities are
still independent.

Methods

We now describe the Bayesian variable selection method
used in the present work. We describe in turn, an
extended linear model including interactions between
predictors, exact computation of posterior inclusion prob-
abilities, biologically informative model priors and empir-
ical Bayes learning of associated hyperparameters.

Bayesian linear model with interaction terms

We extend the classical linear model in Equation 1 above
to enable combinatorial relationships between predictors
and response to be captured. Given model y, response
Y; depends in a non-linear fashion on the included pre-
dictors X;, whilst remaining linear in the regression
parameters. In particular, the mean for Y; is a linear com-
bination of included predictors and all possible products
of included predictors. For example, if |y| = 2 with y3 =
vs = 1, we have Y; = X, B, + aXi3X;5 + €;. We extend
the n x |y| predictor matrix X,, and regression coefficient
vector B, to include the interaction terms and coefficients
respectively, and we denote the extended versions by X,,
and B y- All columns in )_(y are standardised to have zero
mean and unit variance.

The likelihood now takes the form

p(Y 1y, Xy, By,0%) ~ N (X, By,0°T). )

We choose hierarchical parameter priors following Smith
and _I(ohn [15] and Nott and Green [14], taking the prior
for B, given y and o2 to be Normal

_ _ - -1
p(,By|y,Xy,02)~N(0,n62 (x}xy) ) (5)

and the prior for o2 to be p('?) o« o ~2. Integrating out the
parameters results in the following closed form marginal
likelihood,

alvliy
2

!
pY |y, X)) o (I +m)~

T nooTe (%Tw )\ T E (©)
x YY—n+1YXy<XyXy> XTy) .
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We note that, in contrast to the widely-used normal
inverse-gamma prior [8,16], this formulation has no free
hyperparameters and enjoys attractive invariance proper-
ties under rescaling [17].

Exact posterior inclusion probabilities

We enforce a restriction on the number of predictors
that are allowed to be included in the model. That is,
we only allow y with |y| < dyux for some dyax €
N. Thus, instead of being exponential in p, the model
space I has polynomial size of order p®», thereby allow-
ing explicit calculation of posterior inclusion probabili-
ties via Equation 3. We take dyax = 4, giving |I'| =
294,204 for the p = 52 predictors in the cancer drug
response application below; the original size of I" was of
order 101

Biologically informative model priors

We now turn our attention to the model prior P(y). In
many molecular biology settings, there is much valuable
information available which may be used to construct
biologically informative model priors. This could be net-
work and pathway structures, providing information on
relationships between predictors, or information from
publicly available datasets. However, it may not be obvi-
ous precisely #ow such information should be used and it
is usually possible to encode several different, apparently
plausible priors. We are therefore interested in inves-
tigating the question of how to choose between such
priors.

Suppose we have M priors to choose from, with each
prior, indexed by m € {1,..., M}, encoded by a func-
tion f,,;: {0,1}Y — R which scores a proposed model y
according to the prior information. Following Mukherjee
et al. [4], we take the overall prior to be of the following
form,

P(y | m, 1) o< exp {Mfn(y)} ?)

where m is a hyperparameter (the ‘source parameter’)
that selects amongst priors and A is a hyperparameter
controlling the overall strength of the prior.

We consider two simple pathway-based priors, captur-
ing information regarding number of pathways and intra-
pathway distances via functions f; and f; respectively.
Below we proceed to give details for each, making use of
the following notation. We let & C {1,...,p} denote the
set of proteins contained in pathway &, k € {1,..., K}, and
we let S,f = y N & be the set of proteins that are both in
model y and in pathway k. We note that a protein is both
allowed to be a member of more than one pathway or to
not be a member of any pathways. If there is no prior infor-
mation available, the pathway-based priors reduce to a flat
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prior over model space. Figure 1 illustrates properties of
the two prior components.

Number of pathways (f1)

The first pathway-based feature encodes the notion that
predictors that are influential in determining response
may belong to a small number of pathways or, in con-
trast, may be spread across many pathways. We encode
such beliefs by a function f;(y) which counts the num-
ber of pathways represented in a model y. Specifically,
fi(y) = max(0,K, — 1) where K, is the pathway count
given by ming |S| for S C {1, ..., K} satisfying

K
Ue =& (8)
k=1 keS

This definition prevents the empty model being a priori
most probable and avoids double counting (proteins that
are members of multiple pathways are considered to be a
member of only one pathway for the purpose of calculat-
ing f1(y), and this single pathway is selected to minimise
the pathway count; see Figure 1). If the strength parame-
ter A is negative, the prior increasingly penalises models
as number of pathways increases, whereas a positive value
results in a prior that prefers models representing many
pathways.

Intra-pathway distance (f,)

The second feature we consider is that variables which
jointly influence the response may either be close to each
other in a network sense, or may in fact be far apart in
the network. This is done by a function f>(y) which gives
the average distance between pairs of proteins that are
both in y and in the same pathway. Specifically, the dis-
tance between two proteins j; and jp, denoted d(ji, j2),
is the number of edges in the shortest (undirected) path
between them. Then, we define f,(y) = max(0,D, — 1)
where D, is the average of all d(j1, ) with j1,j2 € Elf for
some k. In order for the distance to be defined for any two
proteins in a pathway, we assume that the network topol-
ogy for a pathway consists of a single connected compo-
nent (in the undirected sense). We term a protein included
in y as a singleton if there are no other included proteins
in the same pathway (i.e. protein j is a singleton if £ = {j}
for some k). For models that only contain singletons or the
empty model we set D, = 0. The function f>(y) defined
in this way satisfies a number of natural desiderata. It is
agnostic to |y | and to the pathway count K, (see Figure 1).
Also, it avoids double counting (the distance between each
protein pair contributes to f(y) once only) and is indiffer-
ent between models including only singletons and models
with the smallest possible average distance of D, = 1.
A negative strength parameter A results in a prior that
penalises larger intra-pathway distances, whilst a positive
value encourages larger distances.
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Figure 1 Properties of pathway-based priors. Priors are encoded by functions f; (y) (number of pathways) and f,(y) (intra-pathway distance).
Shaded components are contained in model y and shapes represent different pathways. Top row: Comparisons of the scoring functions. Top left -
y; has larger intra-pathway distance than y,; Top middle - distance is agnostic to number of pathways; Top right - addition of a singleton has no
effect on distance. Bottom row: The root component in each network is in both pathways. However, f; () is defined so as to avoid double counting.
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Empirical Bayes

We set the prior source parameter m and strength param-
eter A in an objective manner using empirical Bayes [18].
Specifically, we maximise the following marginal likeli-
hood,

p(Y | X, m, )\) =E [P(Y| Vs Xy)]p(y | m,1)

=> " pY |y, X)P(y | m,2). )
Y

For a given choice of hyperparameters, the marginal
likelihood can be calculated exactly by exploiting the
model space restriction described above. The score is cal-
culated for varying hyperparameters and those resulting
in the largest score are used for variable selection.

Prediction

Given already observed data X,Y, we can predict the
expected value of new response Y’ from new predictor
data X’ by model averaging:

E[Y|X,XY]=) E[Y|X,X,Y,y]P(y|Y,X)
14
(10)

with

E[Y |X,XY,y]= " X

-1
v v vl
i y(xyxy) XY (1)

and the model posterior P(y | Y,X) calculated via
Equations 2, 6 and 7.

Results

We first show an application of our proposed approach to
synthetic response data generated from a published study
of cell signalling, and then further illustrate the approach
with an analysis of proteomic data and drug response from
breast cancers.

Synthetic response data

In ongoing studies, such as that presented below, truly
objective performance comparisons may be challenging,
since we usually do not know which molecules are truly
influential in driving biological response. At the same
time, in fully synthetic data it can be difficult to mimic
realistic correlations between variables within a path-
way or across a network. For this reason, we empirically
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assessed the methods proposed using published single-
cell, phospho-proteomic data [10] with responses gen-
erated from that data. This preserved pathway-related
correlation structure between predictors but permitted
objective assessment. The dataset consists of 11 proteins
and ny; = 853 samples. (The complete dataset from [10]
contains data obtained under nine different conditions,
corresponding to different interventions. Here, we use the
baseline dataset which contains 853 samples).

Figure 2 shows a network and pathway structure for the
11 proteins for use with the biologically informative priors
of the type described above. The network structure was
taken from Sachs et al. [10] and reflects current knowl-
edge of signalling interactions. The proteins were assigned
into four pathways.

We first considered two simulation models, y;" and yy,
each of which is a predictor subset consisting of three
proteins; PIP3, ERK1/2, p38 for Simulation 1, and RAF,
MEK1/2, PKA for Simulation 2. In each case, the three
proteins were chosen to be favoured by a particular prior.
vy is favoured by the intra-pathway distance prior (f2)

Figure 2 Protein network and pathway structure for biologically
informative priors in the synthetic response data study.
Responses were generated from published phospho-proteomic data
[10] consisting of 11 proteins and 853 samples (baseline data only).
Network structure shown here is based on that given in Sachs et al.
[10] and reflects current knowledge of signalling interactions. Proteins
were divided into four pathways, denoted by node colours red, blue,
green and yellow. The grey nodes are each members of all four

pathways.
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with positive A; the proteins included in y;* had a large
average intra-pathway distance (f,(y;") = 2.5) and incor-
porated a medium number of pathways (f1(y;) = 1). y5
is favoured by either the number of pathways prior (f;)
with negative A or the intra-pathway distance prior (f2)
with negative A; the proteins included in y;* had both a
small intra-pathway distance (f2(y;) = 0) and incorpo-
rated a small number of pathways (fi (y;) = 0). Since, by
construction, each model is favoured by a particular prior,
we can test the ability of the empirical Bayes approach to
select appropriate hyperparameter values. Response data
Y were generated using a linear model with interaction
terms (4); Y = A + BC + ¢, where A,B,C are the three
influential variables.

We are especially interested in the small-sample regime
that is often of interest in molecular studies. We there-
fore subsampled (without replacement) n = 35 training
data from the complete dataset (this matched the sam-
ple size of the drug response study reported below), and
assessed predictive ability on the remaining, held-out data
(171 = Htot — N = 818)

Subsampling was repeated to give 5,000 training/test
pairs, over which results are reported below. At each iter-
ation, only small-sample training data was used for infer-
ence. The empirical Bayes method was employed to set
prior source and strength parameters (using training data
only), with A € [—5,5] (this specification permits a flat
prior if empirical Bayes analysis supports neither prior).
Posterior inclusion probabilities were then calculated as
described above.

We assessed performance by comparing the true under-
lying model y* to the model y; obtained by thresholding
posterior inclusion probabilities at level 7. For results from
each small-sample dataset, a receiver operating character-
istic (ROC) curve was constructed by plotting number of
true positives (|y* N y¢|) against number of false positives
(Iyz\y*|) for varying thresholds . Figure 3a,b shows aver-
age ROC curves over the 5,000 iterations for Simulation 1
and Simulation 2, together with the area under the ROC
curve (AUC). AUC is a summary of the curve and pro-
vides a measure of variable selection accuracy, with higher
scores indicating better performance. The score is nor-
malised to take a value between 0 and 1. Our Bayesian
variable selection (BVS) method with empirical Bayes and
linear model with interaction terms (‘BVS: EB +int’) is
compared with eight other approaches:

(i) BVS with flat prior and linear model with interaction
terms (‘BVS: flat +int’);

(ii) BVS with a prior that is incorrect with respect to the
true, underlying model: intra-pathway distance prior
(f2) favouring small distances (A = —5) for
Simulation 1 and large distances (A = 5) for
Simulation 2 (‘BVS: incorrect +int’);
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Figure 3 Synthetic response data, average ROC curves. Number of true positives plotted against number of false positives for Simulations 1, 2
and 3. Proteomic data from Sachs et al. [10] were used to create response data with true underlying model known to favour a particular prior:
Simulaton 1 - distance prior with positive A; Simulations 2 and 3 - either distance prior or number of pathways prior with negative A. Legend - ‘BVS":
Bayesian variable selection; '+int": linear model with interaction terms; -int": linear model without interaction terms; ‘EB": empirical Bayes used to
select and weight pathway-based priors automatically; ‘flat”: flat prior; ‘incorrect”: wrong prior with respect to true, underlying protein set (see main
text for details); 'MRF prior”: Markov random field prior [19]; ‘Lasso”: Lasso linear regression (curve produced by thresholding absolute regression
coefficients, whilst marker ‘X" is single model obtained by taking only predictors with non-zero coefficients); ‘Li&Li": penalised-likelihood approach
proposed by Li and Li [21] that also incorporates network information (see main text for details); ‘corr”: absolute Pearson correlations between each

protein and response. Area under the (average) ROC curve (“AUC") appears in parentheses.

(iii) BVS with flat prior and linear model with no
interaction terms (‘BVS: flat -int’);

(iv) BVS with a Markov random field prior [19] and
linear model with interaction terms (see below for
further details; ‘BVS: MRF prior +int);

(v) penalised-likelihood Lasso regression [20] using a
linear model with no interaction terms (see below
for further details; ‘Lasso -int’);

(vi) penalised-likelihood Lasso regression [20] using a

linear model with pair-wise interaction terms (‘Lasso

+int’);

a penalised-likelihood approach, proposed by Li and

Li [21], based on the Lasso and also incorporates

network structure information (‘Li&Li’); and

absolute correlation coefficients between each
predictor and response (‘corr’).

(vii)
(viii)

Markov random field priors have previously been used
in Bayesian variable selection to take network structure of
predictors into account [19,22]. A Markov random field is
an undirected graphical model G = (V, E) in which ver-
tices V represent variables (here, the predictors) and edges
E represent probabilistic relationships between them. Let
A = (a;;) be a binary symmetric matrix with a;; = 1 if
and only if edge (i,j) € E. Then, the Markov random field
prior is given by

P(y | 1) o exp {AyTAy} .

The strength parameter X is usually constrained to be non-
negative, resulting in a prior that encourages selection of

(12)

predictors whose neighbours in G are also included in the
model. Here, we do not enforce this constraint and also
allow negative values for A. Negative values result in a
prior that penalises models containing predictors that are
neighbours in G. As with the proposed Bayesian variable
selection method, we use a linear model with interaction
terms and set A with empirical Bayes. The graph struc-
ture G is obtained from the structure shown in Figure 2 by
converting all directed edges to undirected edges.

Lasso regression performs variable selection by placing
an ¢; penalty on the regression coefficients. This has the
effect of shrinking a subset of regression coefficients to
exactly zero; the predictors with non-zero coefficients are
taken as the inferred model. Sparsity of the inferred model
is controlled by a tuning parameter, which we set by 5-fold
cross-validation. This method results in a single inferred
model (i.e. point estimate). However, a full ROC curve
can still be obtained by thresholding absolute regression
coeflicients.

The penalised-likelihood method proposed by Li and
Li [21] combines a Lasso penalty with an additional
penalty term that incorporates predictor network struc-
ture. Together, these penalties encourage sparse estimates
for regression coefficients that are also ‘smooth’ over the
network structure; that is, coefficients for neighbours in
the network are encouraged to be similar. In terms of
variable selection, the approach promotes models con-
taining predictors that are neighbours in the graph. The
two penalty terms each have their own tuning parame-
ter, controlling sparsity and smoothness over the network
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respectively; we set these parameters by 5-fold cross-
validation. (This approach, and the standard Lasso regres-
sion approach, were implemented using Matlab package
glmnet [23].)

We observe that, in both simulations, the automated
empirical Bayes analysis, with pathway-based priors,
improves performance over the flat prior and provides
substantial gains over an incorrect prior. The empirical
Bayes approach selected the correct prior in 85% of itera-
tions for Simulation 1 and 96% of iterations for Simulation
2 (for Simulation 1 correct prior parameters were m = 2

with A > 0, median value of A selected was A = 3.5;
for Simulation 2 correct prior parameters were m = 1 or
m = 2 with A < 0, median value of A selected was . = —5
for both m = 1 and m = 2). Since the Lasso regres-

sion method (with interaction terms) does not incorporate
prior information, it is unsurprising that it is also out-
performed by the empirical Bayes approach. Hence, it is
fairer to compare it to Bayesian variable selection with a
flat prior (and interaction terms). In Simulation 1 these
regimes both show a similar performance with the Lasso
approach displaying some gains at small numbers of false
positives. However, in Simulation 2 the Bayesian approach
offers a clear improvement in performance over Lasso
regression (AUC scores of 0.91 and 0.83 respectively). Due
to its inability to model combinatorial interplay, the linear
model without interaction terms is outperformed by the
linear model with interaction terms for both Bayesian and
Lasso approaches.

In Simulation 1, the strength parameter for the Markov
random field prior was set to A = —5 by empirical Bayes
in 86% of iterations, thereby correctly promoting mod-
els that do not contain predictors that are neighbours in
the network. However, although the Markov random field
prior offers improvements over a flat prior, it is outper-
formed by the proposed pathway-based priors at small
numbers of false negatives. This is due to the fact that
our intra-pathway distance prior is able to promote mod-
els with large distances between predictors, whilst the
Markov random field prior can only penalise models that
contain neighbours. The Markov random field prior is in
general less flexible because it considers neighbours rather
than distances. Intriguingly, in Simulation 2, A > 0 (which
correctly promotes models containing neighbours in the
network) was only selected by empirical Bayes in 41% of
iterations. As a result, performance of the Markov random
field prior is inferior to a flat prior. We discuss this further
in Discussion below.

The penalised-likelihood approach proposed in [21],
incorporating network information, performs poorly in
both simulations, with similar performance compared to
simply looking at correlations between predictors. Whilst
in Simulation 2, a clear improvement is observed over
standard Lasso regression (without interaction terms),
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this is not the case in Simulation 1. This is because
the approach promotes models containing predictors that
are neighbours in the network, which reflects the true
underlying model for Simulation 2 only. The general poor
performance of this approach is likely due to its inabil-
ity to capture combinatorial interplay since it necessarily
employs a linear model without interaction terms.

Since the network-based penalised-likelihood approach
[21] does not incorporate interaction terms we performed
a third simulation to investigate its performance under
a data-generating model without interaction terms. In
particular, we used the same true underlying predictor
subset as in Simulation 2 (ie. y5 = y)), which con-
tains predictors that are neighbours in the network, but
generated data using a linear model without interaction
terms; Y = A + 2B + 3C + ¢, where A, B, C are the three
influential variables. We note that each predictor in the
data-generating model has a different magnitude of influ-
ence on the response (i.e. different regression coefficients).
Average ROC curves are shown in Figure 3c. Compar-
isons are made to other approaches as described above,
but all methods now use linear models without interac-
tion terms. As in Simulations 1 and 2 the Bayesian variable
selection approach with empirical Bayes and pathway-
based priors outperforms a flat prior and an incorrect
prior, with empirical Bayes selecting the correct prior in
99% of iterations (correct and incorrect priors are the
same as for Simulation 2). The Bayesian approach with
Markov random field prior showed a similar performance
to the proposed pathway-based priors (a correct value of
A > 0 was selected in 90% of iterations). However, the
approach of Li and Li [21], whilst now more competi-
tive compared with Simulation 2, is still outperformed by
the empirical Bayes approach with pathway-based priors.
Moreover, it does not display a clear improvement over
Lasso regression.

The failure of the incorrect prior illustrates the impor-
tance of prior elicitation. Moreover, our results demon-
strate that the proposed empirical Bayes approach can
select a suitable prior automatically, even under very small
sample conditions (here n = 35). If the data is not in
agreement with a proposed prior, then it is desirable that
A = 0 is selected by empirical Bayes, resulting in a flat
prior. To test this, we used the model in Simulation 2 with
a prior that favoured models with predictors from many
pathways (i.e. number of pathways prior with A restricted
to be non-negative). This prior does not reflect the true,
underlying model, which contains a small number of path-
ways. Empirical Bayes analysis successfully selected A = 0
in 95% of iterations.

For each dataset, we used the posterior predictive
distribution (Equation 10; calculated via exact model
averaging) to predict responses for held-out test data.
Mean absolute predictive errors, obtained by averaging
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over all 5,000 train/test iterations, are shown in Table 1
(‘MA’). The empirical Bayes approach with pathway-
based priors shows improvements in predictive accuracy
over a flat prior, and substantial improvements over both
the ‘incorrect’ prior and a baseline linear model without
interaction terms including all 11 predictors (i.e. no vari-
able selection). It also outperforms the Markov random
field prior in Simulations 1 and 2, and outperforms Lasso
regression in Simulation 3. In Simulations 1 and 2, Lasso
regression offers the best predictive performance (we note
that prediction used regression coefficients obtained by
maximum penalised likelihood estimation; the alternative
of using Equation 11 with the single model corresponding
to non-zero coefficients gave very poor predictive accu-
racy, inferior to the baseline linear approach; data not
shown). In Simulation 3, the best predictive accuracy is
provided by the Markov random field prior. The penalised
regression approach proposed in [21] has very poor pre-
dictive performance across all simulations, inferior to the
baseline linear model. We also found that model averag-
ing provided gains relative to prediction using the MAP
model (Equation 11), with a 5%, 7% and 3% decrease in
error on average for Simulations 1-3 respectively (see
Table 1, ‘MAP’).

The only user-set parameters in the proposed method
are dyg, (the maximum number of predictors allowed
in a model), and the range of values for the prior
strength parameter A to optimise over in empirical
Bayes. We sought to check the sensitivity of our results
to these parameters. As described in ‘Methods’ above,
we set dyue = 4 and considered A € [-5,5]. We
compared the posterior inclusion probabilities inferred
from 50 iterations of Simulation 1 to those obtained
using (i) an increased maximum number of included
predictors of dy,;x = 5; (ii) Markov chain Monte Carlo-
based (MCMC) inference with no restriction on number
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of included predictors, and (iii) an increased range for the
prior strength A € [—10,10] (see Figure 4). We found
very close agreement in all cases, indicating that results
reported do not depend on the sparsity restriction or the
chosen range for A.

In Simulation 2 and Simulation 3, the smallest value of
A = —5 was selected by empirical Bayes in a majority of
iterations. The true, underlying model has the minimum
possible number of pathways and intra-pathway distance.
Hence, the strong (negative) prior strength is appropriate
because it causes the prior to heavily penalise any model
not satisfying these minima. Under the increased range
for X, the smallest value (. = —10) was still selected in
these iterations, but results were almost identical (as seen
for Simulation 1 in Figure 4). This indicates that the prior
was already having close to maximal influence at the lower
value of L = —5.

Cancer drug response data

Aberrant signalling is heavily implicated in almost every
aspect of cancer biology [24,25] and, as a result, signalling
proteins are targets for many emerging cancer thera-
pies. Here, we apply the methods proposed to probing
phospho-proteomic influences on response to an anti-
cancer agent Triciribine.

Phospho-protein abundance was assayed in a high-
throughput manner using the KinetWorks™ system
(Kinexus Inc, Vancouver, Canada), for p = 52 proteins
related to epidermal growth factor receptor (EGFR) sig-
nalling, in each of n = 35 breast cancer cell lines (see
Additional File 1:Sections 1.1-1.2 for details). The EGFR
signalling network plays a central role in breast cancer
biology [26] and the cell lines used have previously been
shown to retain much of the biological heterogeneity of
primary tumours [27]. GI50 (log transformed) was used to
quantify response to Triciribine for each of the 35 cell lines

Table 1 Synthetic response data, predictive errors from held-out test data

Simulation 1
MA MAP

BVS: EB prior 0.81940.004 0.850£0.004
BVS: flat prior® 0.84540.004 0.919£0.005
BVS: ‘incorrect’ prior® 0.858+0.003 0.895£0.003
BVS: MRF prior’ 0.830+0.004 0.87740.005
Lassof 0.7910.003
Li&Li 1.24610.009
Baseline linear 1.00040.002

Simulation 2 Simulation 3
MA MAP MA MAP
0.83740.004 0.889£0.005 0.89940.002 0.91840.002
0.84540.004 0.919£0.006 0.90440.002 0.92740.003
0.91840.003 1.003£0.004 0.96940.003 1.03640.003
0.871£0.004 0.92040.006 0.886+0.002 0.911£0.002
0.790+0.003 0.91340.002
1.47640.012 1.76040.012
1.000+0.002 1.00040.002

Predictions using small-sample training data (n = 35) and held-out test data (» = 818; total of 5,000 train/test pairs) for Simulations 1, 2 and 3. Results shown are

mean absolute predictive errors + SEM for the following methods: Bayesian variable selection (BVS) with biologically informative pathway-based prior with source and
strength parameters set by empirical Bayes, BVS with flat prior, BVS with ‘incorrect’ prior (contradicting empirical Bayes; see text for details), BVS with a Markov random
field (MRF) prior, Lasso regression, penalised-likelihood approach proposed by Li and Li [21], and a baseline linear regression without interaction terms including all 11
predictors. For BVS, predictions made using the posterior predictive distribution with exact model averaging (‘MA’) and using the maximum a posteriori model (‘MAP’).
flinear model with interaction terms for Simulations 1 and 2, and without interaction terms for Simulation 3.
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Figure 4 Synthetic response data; effect of sparsity restriction and range of prior strength parameter. Results reported in Figure 3, for the
empirical Bayes approach, were obtained by exact model averaging with the number of predictors included in a model restricted to not exceed
dmax = 4. Posterior inclusion probabilities for 50 simulated datasets from Simulation 1 were compared with results obtained by exact model
averaging with an increased maximum number of included predictors of dpmax = 5 (left) and using Markov chain Monte Carlo-based model
averaging with no sparsity restriction (centre). Sensitivity to the range of prior strength parameter values considered by empirical Bayes was also
assessed by comparing the posterior inclusion probabilities obtained with A € [—5, 5] to those obtained with an increased range of A € [—10, 10].

[28]. GI50 is the concentration that causes 50% growth
inhibition compared to a baseline. A network (with a total
of five pathways) was constructed using cellsignal.com
(see Figure 5).

Figure 6 shows marginal likelihood scores arising from
empirical Bayes. This selects the intra-pathway distance
prior (m = 2) with hyperparameter A = 5 (i.e. a prior
promoting larger distances). Due to the small sample size,

we tested robustness of this choice by running empirical
Bayes with each data sample removed. The same prior was
selected in 86% of the iterations.

Figure 7 shows posterior inclusion probabilities
obtained under three prior regimes: empirical Bayes
(intra-pathway distance prior with A = 5), flat prior and
an “incorrect” prior that is not optimal according to the
empirical Bayes analysis (number of pathways prior with

Ll
(]

MEK1/2

¢ H_©

[Histone H:

Figure 5 Network and pathway structure for biologically informative priors in the cancer drug response data study. Network constructed
using information from cellsignal.com. Square nodes represent fully connected subnetworks consisting of iso-forms and phospho-forms of the
named protein (see Additional file 1). Node colouring represents pathway structure. Red, blue, yellow, green and purple nodes denote 5 pathways.
Orange nodes are in both the red and yellow pathways. Light grey nodes are in all 5 pathways. Dark grey node is in all pathways except the purple
pathway. White nodes are not assigned to a pathway.
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Figure 6 Drug response data, empirical Bayes analysis. Parameters controlling source of prior information and prior strength (m and A
respectively) were set objectively using the data. Log marginal likelihood (calculated exactly up to a constant) is plotted against A for m = 1 (number
of pathways prior) and m = 2 (intra-pathway distance prior). Parameters were set to the values with maximal marginal likelihood: m = 2and A = 5.

A = —5). Phospho-IR and phospho-RB(S259) stand out  pathway [30], and it has been suggested that the RB/E2F
in the empirical Bayes analysis. Triciribine targets AKT, pathway, which is also known to play a role in cancer [31],
which inhibits apoptotic processes and is heavily impli- has an effect on AKT activity via transcriptional regula-
cated in cancer signalling [29]. IR (insulin receptor) is a  tion [32]. Hence, the salience of IR and RB accords with
tyrosine kinase receptor, known to stimulate the AKT  known biology and drug mechanism. The MAP model
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Figure 7 Drug response data, posterior inclusion probabilities. Obtained via exact model averaging with (a) biologically informative
pathway-based model prior with parameters set objectively using empirical Bayes (m = 2 (intra-pathway distance), A = 5 - see Figure 6), (b) flat
prior and (c) “incorrect” biologically informative prior that is not optimal according to empirical Bayes analysis (m = 1 (number of pathways),

A = —5). Posterior inclusion probabilities provide a measure of how influential each protein is in determining drug response. Proteins contained in
the single MAP model are shaded red.
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for each prior regime is highlighted in red in Figure 7. We
note that these models do not always contain the proteins
with highest inclusion probabilities.

We performed Leave-One-Out-Cross-Validation (LOO
CV), making predictions for the held-out test sample
using both posterior model averaging (Equation 10) and
the MAP model (Equation 11). The full variable selection
approach, including selection of hyperparameters with
empirical Bayes, was carried out at each cross-validation
iteration. Table 2 shows mean absolute predictive errors,
with comparisons made as in the synthetic response data
study above. For the ‘incorrect’ prior, the prior source
parameter not selected by empirical Bayes was used, along
with the optimal strength parameter A for that prior. Mir-
roring the synthetic data results (Simulations 1 and 2), we
observe that prior elicitation with empirical Bayes pro-
vides an increase in mean predictive accuracy over a flat
prior, an ‘incorrect’ prior, the Markov random field prior
and the approach proposed by Li and Li [21], whilst Lasso
regression has lowest mean predictive error. We note,
however, that due to the very small sample size, differ-
ences in mean predictive error between these regimes
are not conclusive. Yet, they all show an improvement
over the baseline linear approach, and model averaging
results in an average 26% decrease in predictive error over
using MAP models. The prior strength parameter for the
Markov random field prior was set to A = —5 by empirical
Bayes in every cross-validation iteration (this agrees with
the selection of a pathway-based prior promoting large
distances).

We again checked sensitivity of results to the restric-
tion on the number of predictors included in a model,

Table 2 Drug response data, predictive errors from
cross-validation

MA MAP
BVS: EB prior +int 0.8440.12 1.0040.16
BVS: flat prior +int 0.86+0.11 1.26+0.17
BVS: ‘incorrect’ prior +int 0.9340.15 1.22+0.17
BVS: MRF prior +int 0.8640.11 1.24£0.17
Lasso +int 0.73£0.10
Li&Li 0.9640.21
Baseline linear 1.00£0.14

Predictions using leave-one-out-cross-validation (see text for details). Results
shown are mean absolute predictive errors = SEM for the following methods:
Bayesian variable selection (BVS) with biologically informative pathway-based
prior with source and strength parameters set by empirical Bayes, BVS with flat
prior, BVS with ‘incorrect’ prior (contradicting empirical Bayes; see text for
details), BVS with a Markov random field (MRF) prior, Lasso regression,
penalised-likelihood approach proposed by Li and Li [21], and a baseline linear
regression without interaction terms including all 11 predictors. ‘+int’ denotes
linear model with interaction terms. For BVS, predictions made using the
posterior predictive distribution with exact model averaging (‘MA’) and using
the maximum a posteriori model ('MAP’).
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Figure 8 Drug response data; effect of sparsity restriction.
Posterior inclusion probabilities in Figure 7 were obtained by exact
model averaging with the number of predictors included in a model
restricted to not exceed dmgxy = 4. These results were compared with
results obtained by exact model averaging with an increased
maximum number of included predictors of dmay = 5 (left column)
and using Markov chain Monte Carlo-based model averaging with no
sparsity restriction (right column).

Amax = 4. The results in Figure 7 were compared with
those obtained using an increased maximum number of
included predictors of d,,;x = 5 and using MCMC-
based inference with no such restriction (see Figure 8).
The strong agreement between dy,;x = 4 and dyux =
5 suggests that the minor differences observed between
dpmax = 4 and MCMC are a result of inherent Monte
Carlo error. We also see a close agreement between results
in Figure 7a (using A € [—5,5]) and those obtained by
optimising over the increased range of 1 € [—10,10]
(see Additional File 1:Figure S1). This shows that results
reported do not depend on the sparsity restriction or
the range of values considered for the prior strength
parameter.
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Discussion

Model priors incorporating biological information can
play an important role in variable selection, especially at
the small sample sizes characteristic of molecular studies.
In applications where there are multiple sources of prior
information, or multiple possible prior specifications, the
empirical Bayes approach we put forward permits objec-
tive selection and weighting. This aids prior elicitation
and guards against the use of mis-specified priors. We
demonstrated that a biologically informative prior, with
hyperparameters set by empirical Bayes, can have ben-
efits over both a flat prior and a subjectively formed
prior which is incorrect with respect to the underlying
system. We also observed that, whilst Lasso regression
can offer some improvement in predictive performance
over the Bayesian approaches, its accuracy in selecting
the correct underlying model (i.e. variable selection) can
be inferior to the proposed empirical Bayes approach,
thereby affecting interpretability of results. Empirical
Bayes approaches have previously been used in vari-
able selection, but with standard Bernoulli-distributed
priors [33,34].

We developed informative priors in the context of pro-
tein signalling based on two high-level features derived
from network information: the number of pathways a
subset of predictors incorporates and the intra-pathway
distance between proteins in a proposed model. This for-
mulation used the entire network structure in an intuitive
way, removing the the need to specify individual prior
probabilities for each variable and avoiding assumptions
of prior independence between variables.

Our pathway-based priors form part of a growing lit-
erature on exploiting existing domain knowledge to aid
inference, especially in the small sample setting. For exam-
ple, recent variable selection studies also make use of
graph structure within a Bayesian Markov random field
prior [19,35,36] and within a non-Bayesian framework
[21,37,38], essentially preferring models containing pre-
dictors that are neighbours in the graph. This is similar in
spirit to the special case of our prior where the network

Table 3 lllustrative computation times

Linear model without interaction terms

dmax = 2 dmax =3 dmax = 4 dmax =5
p=30 0.1 1.1 8.7 9.5
p=60 0.5 10.5 1143 -
p=120 2.8 116.3 - -
p=500 150.3 - - -
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consists of a single pathway and short intra-pathway dis-
tances are strongly preferred.

We compared our pathway-based priors to the Markov
random field prior, but found in Simulation 2 that empir-
ical Bayes frequently set the prior strength parameter
to an incorrect value, resulting in a prior that penalises
models containing predictors that are neighbours in the
network, instead of promoting them. This is likely due to
the parameterisation of the Markov random field prior,
which is not agnostic to the number of included predic-
tors in the model |y |; addition of a predictor to a model
could lead to a substantial increase in the prior score.
Indeed, it has previously been noted that Markov random
field priors can be unstable with the occurance of phase
transitions in |y | [19]. Hence, the prior prefers less sparse
models, but these models do not agree well with the data,
as more complex models are penalised by the marginal
likelihood. In contrast, our distance prior is based on an
average distance measure and so is somewhat indifferent
to |y|. In Simulation 3, we do not observe this behaviour
of the Markov random field prior; since the linear model
does not include interaction terms, the model complexity
does not increase as sharply with |y | and so there is less
disagreement between the prior and the marginal likeli-
hood. We note that biologically informative priors have
also been used for classification [22,39,40] and network
inference [41-43].

We also compared our approach to the network-based
penalised-likelihood method proposed by Li and Li [21].
It performed poorly in Simulations 1 and 2, primarily
due to its inability to capture nonlinear interplay. How-
ever, even in Simulation 3, with no interaction terms in
the data-generating model, it failed to match the perfor-
mance of our proposed empirical Bayes approach with
pathway-based priors. This could be due to lack of sim-
ilarity between the regression coefficients in the data-
generating model, which goes against an assumption of
the penalised-likelihood approach; that coefficients are
similar for predictors that are neighbours in the network.
This could also explain its poor predictive performance.

Linear model with interaction terms

dmax = 2 dmax =3 dmax =4 dmax =5
04 47 38.6 374.6
1.8 394 661.6 -
8.2 350.1 - -
238.7 - - -

Computation times (in seconds) for proposed Bayesian variable selection procedure, using empirical Bayes to select between two priors (M = 2) and to set the prior
strength parameter A (optimisation performed over ten values of 1). Results shown for varying values of d,;,4, (maximum number of predictors allowed in a model)
and p (total number of predictors), for both a linear model without interaction terms and a linear model with interaction terms. (Data and model priors generated
using random numbers and results are averages over three iterations. Computation performed on a standard single-core personal computer; 1.6GHz, 2GB RAM. -’
denotes a (p, d;uax) regime where the procedure failed due to insufficient memory).
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We used a continuous regression framework with inter-
action terms. Whilst discrete models are naturally capable
of capturing non-linear interplay between components,
the discretisation process results in a loss of information.
Continuous models avoid this loss, but the response is
usually assumed to depend linearly on predictors. The
product terms in our model provide the possibility of cap-
turing influences on the response of interest by interplay
between predictors, including higher-order interactions.
Chipman [44] and Jensen et al. [3] have employed a
related approach allowing pairwise interactions only.
We note that, under our formulation, model complex-
ity grows rapidly with number of included predictors.
However, complex models are naturally penalised by the
marginal likelihood formulation giving overall sparse,
parsimonious models, yet allowing for complex interplay
via product terms.

We carried out variable selection using exact model
averaging. This was made possible by means of a spar-
sity restriction. Sparsity constraints have been employed
in previous work in Bayesian variable selection [4,45] and
also in the related setting of inference of gene regula-
tory networks [42,46]. The sparsity-constrained approach
proposed is attractive as it yields exact posterior probabil-
ities and facilitates exact empirical Bayes analysis. Sparsity
is a reasonable assumption in settings where it is likely
that only a few predictors play a key role in influencing
a response. In such settings, and where data is of small-
to-moderate dimensionality, our exact approach is fast
and deterministic with no requirement of MCMC con-
vergence diagnostics. This, together with empirical Bayes
and the choice of parameter priors, results in the overall
approach having very few user-set parameters.

In applications of higher dimensionality, where the
exact calculation is no longer feasible, empirical Bayes
can still be performed using an approximate conditional
marginal ‘likelihood’ approach as seen in George and
Foster [33] and Yuan and Lin [34]. This involves optimi-
sation over the model space instead of averaging. MCMC,
with the selected hyperparameter values, can then be used
to estimate inclusion probabilities. Alternatively, a fully
Bayes MCMC approach could be taken, which places a
prior on the hyperparameters and integrates them out
(see e.g. [14]).

Mlustrative computational times for our approach are
shown in Table 3, for four values of p (number of pre-
dictors) and four values of d,,;, (maximum number of
predictors allowed in a model). We also considered lin-
ear models with and without interaction terms. Empirical
Bayes was used to select between two priors (M = 2)
and to set the prior strength parameter (optimisation per-
formed over ten values of A). The computation time scales
as dyyaxp®me for the model without interaction terms and
(2max l)pdma" for the model with interaction terms.
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We see that the approach is fast on datasets of mod-
erate dimensionality (~100 variables) with dj.x = 3.
We note that shortage of memory was the limiting fac-
tor on our machine. Computational time could also be
improved by using multiple cores to calculate empirical
Bayes marginal likelihood scores for multiple values of A
simultaneously.

We showed examples of automated selection between
multiple sources of ancillary information, but, rather than
selecting a single source, the methods proposed could
be generalised to allow combinations of complementary
information sources as seen in Jensen et al. [3]. Whilst
our priors were based on pathway and network structure,
the methods can also permit integration and weighting
of publicly available data, which while plentiful, can be of
uncertain relevance to a given study.

Conclusions

In this paper we have proposed an empirical Bayes
method for objective selection and weighting of biologi-
cally informative prior information for integration within
Bayesian variable selection. The method is computation-
ally efficient, exact and has very few user-set parameters.
We developed informative pathway-based priors in the
context of protein signalling and illustrated our method
on synthetic repsonse data. We demonstrated that in sit-
uations where there are several plausible formulations for
the prior, it is capable of selecting the most appropriate.
In particular, the approach has potential to significantly
improve results by guarding against mis-specification of
priors. Comparisons were made to alternative methods,
demonstrating that the proposed approach offers a com-
petitive variable selection performance. We have also
shown an application on cancer drug response data and
obtained biologically plausible results. Our method is
general and can be applied in any setting with multiple
sources of prior knowledge.

Additional file

Additional file 1: Cancer drug response application. Tables of proteins
and cell lines included in the analysis, further details of the experimental
procedure and Figure S1.
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