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Abstract

Background: Decreasing costs of DNA sequencing have made prokaryotic draft genome sequences increasingly
common. A contig scaffold is an ordering of contigs in the correct orientation. A scaffold can help genome
comparisons and guide gap closure efforts. One popular technique for obtaining contig scaffolds is to map contigs
onto a reference genome. However, rearrangements that may exist between the query and reference genomes may
result in incorrect scaffolds, if these rearrangements are not taken into account. Large-scale inversions are common
rearrangement events in prokaryotic genomes. Even in draft genomes it is possible to detect the presence of
inversions given sufficient sequencing coverage and a sufficiently close reference genome.

Results: We present a linear-time algorithm that can generate a set of contig scaffolds for a draft genome sequence
represented in contigs given a reference genome. The algorithm is aimed at prokaryotic genomes and relies on the
presence of matching sequence patterns between the query and reference genomes that can be interpreted as the
result of large-scale inversions; we call these patterns inversion signatures. Our algorithm is capable of correctly
generating a scaffold if at least one member of every inversion signature pair is present in contigs and no inversion
signatures have been overwritten in evolution. The algorithm is also capable of generating scaffolds in the presence
of any kind of inversion, even though in this general case there is no guarantee that all scaffolds in the scaffold set will
be correct. We compare the performance of SIS, the program that implements the algorithm, to seven other
scaffold-generating programs. The results of our tests show that SIS has overall better performance.

Conclusions: SIS is a new easy-to-use tool to generate contig scaffolds, available both as stand-alone and as a web
server. The good performance of SIS in our tests adds evidence that large-scale inversions are widespread in
prokaryotic genomes.

Keywords: Genome assembly, Contig order, Scaffold, Inversion, Prokaryotes

Background
With the decreasing costs of DNA sequencing it is now
very common for prokaryotic genomes to be sequenced
at “draft” status only. This means that the generated
sequence will be a set of contigs (a contig is a substring
of the string over the DNA alphabet that represents the
genome sequence). The number of contigs depends on the
sequencing fold coverage and DNA sequencing technol-
ogy, and typically varies between half a dozen to a few
hundred.
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As of December 9, 2011, the number of draft micro-
bial genome sequences in GenBanka is 2324, compared to
1814 complete sequences. This difference is growing (in
favor of draft sequences) over time (on March 15, 2011
the numbers were 1821 and 1485, respectively). There-
fore there is an increasing need for tools that can improve
the sequencing and assembly results beyond a simple
contig set.
One technique that can be used to improve automated

assembly results is to generate contig scaffolds from the
contig set. A scaffold is an ordered set of contigs, with
the desired order being the correct genome order, and
with each contig in the correct orientation. Scaffolds help
in whole genome comparisons and they can guide the
finishing process, showing where the gaps are.
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Some references in the literature adopt the term scaf-
fold only for the situation where the contig ordering and
orientation is given by paired-end read information [1].
Here we adopt a more general meaning, assuming a scaf-
fold is a contig ordering obtained by any technique and/or
additional data, or combination thereof.
There are various techniques that can help to create a

scaffold. In addition to paired-end reads, one can use data
from physical [2] or optical maps [3,4]. Information about
the order of specific contigs sometimes can be obtained
by searching for genes that have been split by the gaps
between those contigs.
Another technique, which became popular in the last

few years, is to use a reference genome. In this case
we assume the query (draft) genome A has a close phy-
logenetic relative B that has been fully sequenced, and
the genome of B can be used to guide the assembly of
A and to generate a scaffold as well. This technique is
used by programs such as ABACAS [5], fillScaffolds [6],
Mauve Aligner [7], OSLay [8], Projector 2 [9], r2cat [10],
PGA4genomics [11], and CONTIGuator [12].
When using a reference genome B to create a scaffold

for A, one possible problem is the existence of rear-
rangements in A with respect to B. In prokaryotes, the
most common rearrangement is the inversion [13], lead-
ing to the ‘X’ patterns that are frequently seen in dot-
plot graphs representing whole genome alignments of
prokaryotic genomes [14] (when inversions are symmetric
with respect to the origin of replication).
In this work we present an algorithm for obtaining con-

tig scaffolds that explicitly takes into consideration the
presence of inversions in A with respect to B. We do this
by searching for inversion signatures in the input con-
tigs. To our knowledge the only existing program that
deals directly with inversions is fillScaffolds [6] (FillScaf-
folds deals with several other kinds of rearrangements
besides inversions.). One other program seems to deal
at least indirectly with rearrangements: Mauve Aligner
[7], which is based on the multiple genome alignment
programMauve [15] and on GRIL [16].
We created program SIS as an implementation of our

algorithm, and tested it on real draft genomes that have
been completed, comparing its performance to seven
other programs. The criterion used to select genome
sequences for testing was solely the availability of each
genome in two formats: incomplete (several contigs) and
complete (one contig per replicon). In these tests SIS had
the best overall performance.

Methods

Definitions
A replicon is a self-replication unit of a genome, such as a
chromosome or a plasmid.

We represent a pair of single-replicon genomes by
signed permutations, where numbers represent conserved
genes or blocks between the two genomes, and the signs
represent the plus or minus strand. We represent the
reference genome by the identity permutation ιn =
[+1,+2,+3, . . . ,+n], and the query genome by the per-
mutation π =[π1,π2,π3, . . . ,πn], where 1 ≤ |πi| ≤ n and
|πi| �= |πj| if i �= j.
An inversion ρ(i, j) is a rearrangement event

that reverses the order and the signs of a
consecutive section of a genome: πρ(i, j) =
[π1, . . . ,πi−1,−πj, . . . ,−πi,πj+1, . . . ,πn], such that
1 ≤ i ≤ j ≤ n. Two consecutive conserved blocks
(πi,πi+1) are a breakpoint if πi �= πi+1 − 1; otherwise the
consecutive blocks are an adjacency. A strip is a maximal
substring [πi, πi+1, . . . ,πj] such that every pair (πk ,πk+1)
is an adjacency, for i ≤ k < j. We say that an inversion
ρ(r, s) acts on a strip [πi,πi+1, . . . ,πj] if i < r ≤ s < j.
An inversion signature (IS) is a breakpoint (πi,πi+1)

such that πi and πi+1 have different signs. Two ISs
(πi,πi+1) and (πj,πj+1) are an IS pair if πi = −πj − 1 and
πi+1 = −πj+1 + 1 (see Figure 1); our concept of inver-
sion signature is unrelated to a concept of similar name
presented in [17].
An inversion ρ(i, j) is symmetric if n = i+j−1 (Figure 2).

An inversion ρ(i1, j1) is nested with respect to an inver-
sion ρ(i2, j2) if i2 < i1 ≤ j1 < j2 (Figure 3). An inversion
ρ(i, j) is safe with respect to π if ρ(i, j) acts on a strip
[πr ,πr+1, . . . ,πs] of π (Figure 4). An inversion ρ(i, j)with-
out any restrictions on the values of i and j is a generic
inversion (Figure 5).
Any sequence of symmetric inversions can be sorted so

that the result is a series of nested inversions, with the
same effect on a genome. Every series of nested inversions
is a series of safe inversions, but the converse is not true.
Let P1(n), P2(n), P3(n) and P4(n) denote the sets of all

permutations that can be obtained from ιn by applying a
series of symmetric inversions, a series of nested inver-
sions, a series of safe inversions, and a series of generic
inversions, respectively. Clearly, P1(n) ⊂ P2(n) ⊂ P3(n) ⊂
P4(n).
A collection of m contigs from a genome π is rep-

resented by a collection of substrings C1, C2, . . ., Cm,
such that, for 1 ≤ k ≤ m, Ck =[πik , . . . ,πjk ] or Ck =
[−πjk , . . . ,−πik ], and the intervals in π that correspond to
any two contigs Ck1 and Ck2 cannot have an overlap, that
is [ ik1 ..jk1 ]∩[ ik2 ..jk2 ]= ∅, for 1 ≤ k1 < k2 ≤ m.

Algorithm
The algorithm we have developed generates correct scaf-
folds in the presence of symmetric, nested, or safe inver-
sions (as long as at least one IS is present for every IS pair);
in addition it can also produce scaffolds, not necessarily
100% correct, for generic inversions.
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Figure 1 Inversion Signatures. The figure shows two regions with inversion signatures. The region a1–a2 in the draft genome matches regions b1
and b3 in the reference genome. b1 and b3 are not consecutive in the reference genome and hence this defines a breakpoint; moreover, because
the match between a1 and b1 has a diffferent orientation as compared to the match between a2 and b3 this breakpoint is an inversion signature.
The same happens with region a3–a4 of the draft genome and regions b2 and b4 of the reference genome. Both ISs are related because they are the
result of the same inversion event. Therefore these two ISs constitute an IS pair.

The algorithm depends on the following assumptions
in order to generate one single correct scaffold: (1) There
are no duplicated conserved blocks in either of the two
genomes; (2) all contigs are correctly assembled; (3)
both genomes contain only one chromosome; and (4)
conserved block 01 is in the first position (with + sign) or
in the last position (with - sign), in some contig.
Assumption (1) means that there is no conserved block

that contains a sequence that is a repeat in any of the two
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Figure 2 Symmetric Inversions. Three symmetric inversions ρ(3, 6),
ρ(4, 5) and ρ(2, 7) applied to the identity permutation ι8. The final
result does not depend on the order of the inversions. The colored
circles represent IS pairs created by the inversions.

genomes. This is somewhat unrealistic, since all genomes
in different degrees have repeats. In this sense, assumption
(2) also depends on the lack of repeats. But as the tests
below show, these assumptions do not seem to be major
obstacles. In particular, repeats account for no more than
13% of errors in contig adjacencies in our tests.We require
assumption (3) primarily for simplicity of exposition; in
a real setting it is generally possible to decompose scaf-
fold creation for separate replicons as separate problems.
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Figure 3 Nested Inversions. Three nested inversions ρ(1, 7), ρ(3, 6)
and ρ(5, 5) applied to the identity permutation ι8. The final result
may change if the order of the inversions changes. The colored circles
represent IS pairs created by the inversions.
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Figure 4 Safe Inversions. Four safe inversions ρ(8, 8), ρ(1, 2), ρ(4, 6)
and ρ(5, 5) applied to the identity permutation ι8. The colored circles
represent IS pairs created by the inversions.

Assumption (4) helps simplify the algorithm description.
In case block 01 does not follow assumption (4), a remap-
ping of conserved blocks can be made in time O(n) such
that the result does follow assumption (4).
The algorithm can detect lack of information, caused by

absence of an IS pair in the input or by the overwriting
of an earlier (in evolution) IS by a later unsafe inversion,
and still generate a scaffold. In such cases the algorithm
chooses a contig that has not been positioned yet, and
begins generation of a new scaffold (so the result will be
a set of scaffolds). When IS pairs are missing there are no
guarantees that the scaffolds generated are correct.
The input for the algorithm is a list of contigs, each

contig represented by the conserved blocks it contains.
Note that we deal only with conserved blocks; insertions
and deletions of the query genome with respect to the
reference genome are not considered.
We now give a detailed example to illustrate the various

concepts as well as to present the algorithm. In this exam-
ple, there are 40 conserved blocks distributed in 9 contigs
as follows:

Contig 1: [−23,−22,+19,+20]
Contig 2: [−15,−14,+12,+13,−11]
Contig 3: [+34,+35]
Contig 4: [+36,+37,+38,+39,+40]
Contig 5: [−03,−02,−01]
Contig 6: [+05,+06,+07,+08]
Contig 7: [+31,+32,+33,−30,−29]
Contig 8: [−28,−27,+26,−25,−24,+04]
Contig 9: [+21,−18,−17,−16,+09,+10]

The correct order for the blocks in the query genome is
given as follows:

π =[+01,+02,+03,−23,−22,+19,+20,+21,

− 18,−17,−16,+09,+10,+11,−13,−12,

+ 14,+15,−08,−07,−06,−05,−04,+24,

+ 25,−26,+27,+28,−35,−34,+31,+32,

+ 33,−30,−29,+36,+37,+38,+39,+40]

Recall that the reference genome is the identity permu-
tation. The IS pairs are the following:

IS Pair 1: [+03,−23] × [−04,+24]
IS Pair 2: [−22,+19] × [+21,−18]
IS Pair 3: [−16,+09] × [+15,−08]
IS Pair 4: [+11,−13] × [−12,+14]
IS Pair 5: [+25,−26] × [−26,+27]
IS Pair 6: [+28,−35] × [−29,+36]
IS Pair 7: [−34,+31] × [+33,−30]

An inspection reveals that the query genome has 7 safe
inversions with respect to the reference genome. However,
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Figure 5 Generic Inversions. Five generic inversions ρ(1, 5), ρ(1, 4),
ρ(2, 3), ρ(7, 7) and ρ(3, 7) applied to the identity permutation ι8. The
white circles represent ISs overwritten by nonsafe inversions.
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note that only the following ISs are present in the
contigs:

IS Pair 1: × [−04,+24]
IS Pair 2: [−22,+19] × [+21,−18]
IS Pair 3: [−16,+09] ×
IS Pair 4: [+11,−13] × [−12,+14]
IS Pair 5: [+25,−26] × [−26,+27]
IS Pair 7: × [+33,−30]

Note that IS pair 6 is missing from the input contigs.
The algorithm builds the scaffold incrementally, choos-

ing one contig following certain rules and placing it in the
scaffold immediately after the previously chosen contig.
The first contig chosen is the one that contains block +01
(or -01).

Execution of the algorithm on the example
In the example, block 01 is found inverted in the last posi-
tion of contig 5 (see Figure 6). Thus, the algorithm reverse
complements contig 5 and inserts it as the first component
of the scaffold. The next conserved block searched is +04,
which should be in the first position of its contig on the
plus strand or in the last position of its contig on theminus
strand. Block 04 is found in the last position of contig 8 on
the minus strand, which is interpreted by the algorithm to
be the result of a safe inversion. The algorithm then uses
the IS (−24,+04) to search for block−23, which should be
at the other end of the inversion that created the IS found.
Block −23 is found in the first position of contig 1, so this
contig becomes the second in the scaffold.
The next conserved block to be searched is +21. It is

found at the beginning of contig 9, on the plus strand
as expected, so this contig is placed in the third scaffold
position. The next block searched is +11, which is found
inverted in the last position of contig 2. This means that

contig 2 will be inserted in the fourth scaffold position
after it is reverse-complemented. The next block to be
searched is+16, which is found on theminus strand in the
middle of the already placed contig 9. The algorithm then
uses the IS (−16,+09) to determine that the next block to
be searched is −08. Block −08 is found on the plus strand
in the last position of contig 6. The subsequent steps
proceed along the same lines. The resconstructed scaf-
fold is [−C5,−C1,+C9,−C2,−C6,−C8,−C7,+C3,+C4].
This scaffold contains errors, because the
correct scaffold given by permutation π is
[−C5,−C1,+C9,−C2,−C6,−C8,−C3,+C7,+C4]. This
was caused by the fact that from the given input it is
impossible to tell that contig 3 should remain as it is
and that contig 7 should be reverse complemented. This
stems from the fact that the endpoints of IS pair 6 are not
to be found in the input contigs. But the algorithm still
managed to get 7 correct adjacencies out of 9.
Pseudocode for the algorithm is given in Figure 7.

The algorithm assumes that the following data struc-
tures are available and filled in: contigs stores
contig information and inContig contains con-
served block information, storing for each conserved
block the position in structure contigs where it
can be found, as well as the contig number and
the sign (strand). More formally, if contigs[c]
[p] = x, then inContig[|x|].contig = c,
inContig[|x|].pos = p and inContig[|x|].
sign = s, such that s × |x| = x. For example,
contigs[7] =[+31,+32,+33,−30,−29], contigs
[7][4] = −30, inContig[|-30|].contig =
7, inContig[|-30|].pos = 4 and inContig
[|-30|].sign = −1.
In addition to the data structures described above

the algorithm uses two auxiliary vectors: used indi-
cates which contigs have been placed in the scaf-
fold; and searched records conserved blocks that

 +  +  +  -  -  +  +  +  -  -  -  +  +  +  -  -  +  +  -  -  -  -  -  +  +  -  +  +  -  -  +  +  +  -  -  +  +  +  +  +
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C2 C3 C4C7C8C6C9-

 +  +  +  -  -  +  +  +  -  -  -  +  +  +  -  -  +  +  -  -  -  -  -  +  +  -  +  +  +  +  -  -  -  +  +  +  +  +  +  +
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- - - -

- -- -

C1C5

C2C1 -

Figure 6 Scaffold Generated in the Presence of Safe Inversions. Illustration of the example discussed in the text of a genome with 40 conserved
blocks with respect to a reference genome. The query genome and the reference genome differ by seven safe inversions, denoted by the nested
horizontal square brackets. The conserved blocks appear in nine contigs. The permutation on the top is the “real” query genome, and the
permutation at the bottom is the scaffold reconstructed by the algorithm. The bars with alternating colors help visualize inversion signatures.
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Figure 7 Algorithm to determine a genome scaffold based on inversion signatures. Data structures used are explained in the text.
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have been searched so far. Variable nextC indi-
cates the contig with smallest ID not yet placed in
the scaffold.
The main loop in lines 7–39 is executed until all con-

tigs have been placed in the scaffold. Variable ok indicates
whether the algorithm found a candidate contig to be
placed in the scaffold. Line 9 ensures that the algorithm
is not searching for an invalid conserved block. Lines 21–
24 check whether the algorithm is searching an already
searched conserved block.
If the algorithm decides to insert a new contig in the

scaffold (test in line 25) lines 26–39 are executed. If no
valid contig was found, the first contig not yet placed is
determined in lines 26–28. Lines 29–30 place that contig
as the first in a new scaffold. Vector used and variables
nextC and i are updated in lines 31–34.
Recalling that n is the number of conserved blocks and

m is the number of contigs, with n ≥ m, we now state
the algorithm’s complexity. Data structure inContig can
be built in O(n). Initialization takes O(n + m). The main
loop is executed n + m times, since in each iteration
either a new position in vector searched is marked or
a new contig is placed in the scaffold. There is one oper-
ation inside the main loop that does not take constant
time, which is the loop in lines 33–34. However, variable
nextC can be incremented at mostm times, so the amor-
tized cost of each update is O(1). This leads to an overall
complexity of O(n).

Testing Methodology
We have implemented the algorithm creating program SIS
(Scaffolds from Inversion Signatures). We stress that SIS
does not require the algorithm assumptions listed above
in order to be used. We used real contigs available in
GenBank for testing as described below.
Themain quality measure for a scaffold is the number of

correct contig adjacencies. A contig adjacency for contigs
x and y is correct if they are consecutive in the (completed)

query genome as well as in the generated scaffold set. In
the case of circular replicons, all correct scaffolds with m
contigs have exactly m correct adjacencies. Even though
SIS in general outputs a set of scaffolds, for the purposes
of this test we consider the result to be just one scaffold,
with scaffolds being placed side by side as the algorithm
creates them.
A second quality measure is genome coverage. In this

measure we attempt to determine how much of the
genome to which the contigs belong is actually covered
by the scaffolds generated. The working definition we use
is as follows. If both ends of a contig have correct adja-
cencies, then we count the entire length of that contig as
contributing to the coverage. If only one end has a cor-
rect adjacency, then half of the contig length is used. If
both ends have incorrect adjacencies, then the contig is
not used. We define coverage as the ratio of the sum of
contig lengths considered per the above rules and the sum
of all contig lengths.
In this test we compared SIS to seven other scaffold gen-

erating programs, namely ABACAS [5], fillScaffolds [6],
Mauve Aligner [7], OSLay [8], Projector 2 [9], r2cat [10],
and CONTIGuator [12]. Table 1 gives a summary of all
programs tested.
It is important to mention that among programs tested

fillScaffolds [6] was the only one designed specifically for
eukaryote sequences, whereas all of our tests are done
on prokaryote sequences. FillScaffolds is a sophisticated
tool that takes into account many kinds of rearrangements
in addition to inversions, such as transpositions, recipro-
cal translocations, and chromosome fusions and fissions.
We have included fillScaffolds in the present study for
completeness.
One important consideration is block conservation

detection. In the case of SIS this was done by programs
nucmer [18] and promer [18], with default settings. We
postprocessed the outputs using the MUMmer script
delta-filter [18] with parameter −1, which ensures that
only nonrepeated blocks are processed.

Table 1 Programs Tested

Prokaryote vs. Unichromosomal vs. Standalone Block User

Eukaryote Multichromosomal vs. Server Detection Interface

Abacas Prokaryote Multichromosomal Standalone nucmer, promer Command line

CONTIGuator Prokaryote Multichromosomal Standalone Blast+ Command line

fillScaffolds Eukaryote Multichromosomal Standalone nucmer, promer Command line

Mauve Aligner Prokaryote Unichromosomal Standalone Mauve GUI

OSLay Both Unichromosomal Standalone nucmer GUI

Projector2 Prokaryote Unichromosomal Server BLAT Web

r2cat Both Multichromosomal Standalone - GUI

SIS Prokaryote Unichromosomal Both nucmer, promer Web, Command line
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Mauve Aligner uses progressiveMauve [15] for sequence
comparison. OSLay can use nucmer and that is what we
chose (with default settings). r2cat does sequence com-
parison internally. Projector 2 can use BLAT [19] (default)
or BLAST [20], and we chose BLAT. CONTIGuator uses
BLAST+ [21]. ABACAS can use nucmer or promer. We
chose nucmer. (We observed that choosing promer made
ABACAS run for more than two days without provid-
ing any scaffold.) For fillScaffolds [6] we have used both
nucmer and promer.

Input genomes
We have tested the programs on real contigs from pre-
liminary assemblies of 19 genomes. These genomes have
been finished, so that we know the correct order for
contigs in all cases. The list of genomes used is given
in Table 2. In the table, column ‘cov.’ contains the frac-
tion of each chromosome covered by the contigs selected.
Column ‘tech.’ describes de sequencing technology used,
when this information was available in the correspond-
ing GenBank file. Four of the genomes in Table 2 have
two chromosomes; each chromosome was dealt with sep-
arately, thus creating a total of 23 test cases. The genomes

chosen were those available fromGenBankb on December
7, 2011, for which complete genomes were also available
(with at least 4 contigs for each genome). These genomes
are quite diverse phylogenetically, representing seven dif-
ferent bacterial groups (where “group” comes from the
GenBank table of completed genomes and generally cor-
responds to taxonomic phylum or class) and one archaeal
group. No other filter was applied in this selection. The
sequencing technologies represented in this table include
at least one representative of a genome sequenced with
454, Solexa/Illumina, and/or ABI SOLiD. The genome
sequences we used in our tests (draft and complete) are
available at the website http://marte.ic.unicamp.br:8747.
For each of the query chromosomes we obtained a list

of the 20 closest genomes (excluding the query genome
itself ), among 1331 complete prokaryotic genomes avail-
able at GenBank on May 5, 2011. We used NUCMi [22]
(a variation of MUMi [23]) to compute the distance
between each of the 1331 genomes and the query genome.
Our rationale for selecting 20 closest other genomes
instead of only the closest was as follows. In practice, the
choice of a reference genome should be guided by phylo-
genetic distance. The closest genome to the draft genome

Table 2 Chromosome Sequences Used in Tests

Genome Chromosome Size (bp) Contigs cov.(%) tech.

Aciduliprofundum boonei T469 NC 013926 1486778 29 89.36 -

Bacillus subtilis 168 NC 000964 4215606 5 99.98 Solexa

Bifidobacterium longum DJO10A NC 010816 2375792 43 60.02 -

Brucella melitensis bv 1 16M NC 003317 2117144 41 91.06 454

Brucella melitensis bv 1 16M NC 003318 1177787 12 99.94 454

Brucella pinnipedialis B2 94 NC 015857 2138342 55 87.68 454

Brucella pinnipedialis B2 94 NC 015858 1260926 34 84.58 454

Burkholderia thailandensis E264 NC 007650 2914771 15 85.33 -

Burkholderia thailandensis E264 NC 007651 3809201 26 75.90 -

Chlamydiamuridarum Nigg NC 002620 1072950 4 99.09 454

Clostridium cellulovorans 743B NC 014393 5262222 293 94.16 454/Illumina

Corynebacterium aurimucosum ATCC 700975 NC 012590 2790189 88 85.71 SOLiD

Corynebacterium efficiens YS 314 NC 004369 3147090 118 95.90 454

Micrococcus luteus NCTC 2665 NC 012803 2501097 121 76.66 -

Mycobacterium tuberculosis H37Ra NC 009525 4419977 220 83.75 -

Mycoplasma genitalium G37 NC 000908 580076 24 78.59 454

Saccharopolyspora erythraea NRRL 2338 NC 009142 8212805 237 96.43 454

Selenomonas sputigena ATCC 35185 NC 015437 2568361 49 97.16 454

Stigmatella aurantiaca DW4 3 1 NC 014623 10260756 466 97.62 -

Streptococcus pneumoniae TIGR4 NC 003028 2160842 211 90.98 454

Vibrio Ex25 NC 013456 3259580 176 91.77 -

Vibrio Ex25 NC 013457 1829445 33 95.31 -

Yersinia pestis Nepal516 NC 008149 4534590 17 84.21 SOLiD

http://marte.ic.unicamp.br:8747
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Table 3 Average Performance (Correct Adjacencies)

Programs Closest Top 10 Top 20

SIS (promer) 60.96 50.01 37.27

r2cat 59.72 44.19 30.30

Mauve 58.65 46.31 32.17

SIS (nucmer) 56.39 43.95 28.55

fillScaffolds (nucmer) 48.47 34.10 21.32

OSLay 46.83 34.03 21.28

fillScaffolds (promer) 44.19 32.94 21.63

CONTIGuator 42.02 30.35 20.01

Projector 2 36.89 25.35 15.51

ABACAS 33.80 23.95 13.20

is the one most likely to yield best results. On the other
hand, given the extremely small sample of the prokary-
otic world that has been sequenced to date, it is perfectly
possible that new strains will be sequenced in the future
for which the closest reference genome will not be par-
ticularly close. Therefore it is important to understand
how the performance of a scaffolding program changes
with increased distance between the query and possible
reference genomes.

Results and discussion
We ran each scaffold program on each of the 23 query
chromosomes using as reference each of the 20 closest
chromosomes to the query chromosome. This resulted in
460 scaffold sets for each program. For a given program
and a given set of reference chromosomes, we computed
average results over the 23 query chromosomes.
Table 3 shows average results for three cases: when

the reference chromosome used was the closest available,
then the average (mean) over the 10 closest chromosomes,

then the average (mean) over all 20 closest chromosomes.
Performance of each program on each test set given by
each column in the table. The numbers are percentages
of correct adjacencies, averaged over all instances in each
column. In bold are the best results. The table is sorted
from best to worst in the first column. In all cases the best
performance was that of SIS (promer). If the median is
used rather than the mean, then SIS (nucmer) is the best
program for the closest case, Mauve is the best for the 10-
closest case, and SIS (promer) is the best for the 20-closest
case (see Additional file 1).
In order to evaluate the performance of the programs

tested with increased distance from the reference chro-
mosome we created the graphs shown in Figures 8 and 9.
These graphs show that the performance of all pro-
grams degrade with increased distance, but again here SIS
(promer) stays above the others in all cases
The results presented so far are averages. In Table 4 we

present results concerning the fraction of the instances
in which each program was the winner (provider of the
best scaffold). In the table columns do not add up to 100%
because of ties. Best results are shown in bold. The table
is sorted from best to worst in the first column. Using this
measure SIS (promer) superiority over the other programs
is even more pronounced.
Tables 5 and 6 are analogous to Tables 3 and 4, respec-

tively, but show the results in terms of coverage (see Test-
ing Methodology). Also under this measure SIS (promer)
was the best program.
It is important to note that the pairs of query-reference

genomes tested were not selected for containing inver-
sions. So any given pair query-reference could have any
kind of rearrangement. The success of SIS in the cases
tested suggests that inversions are indeed widespread
in prokaryotic genomes (to the extent that genomes in
Table 2 are a representative sample).
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Figure 8 Average of Correct Adjacencies. Variation in number of correct adjacencies for each program as the reference genome changes from
the closest to the most distant, in a total of 20 reference genomes. fS is fillScaffolds.
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Figure 9 Average of Correct Adjacencies (Cumulative Version). Variation in number of correct adjacencies for each program as the reference
genome changes from the closest to the most distant, in a total of 20 reference genomes. This is a cumulative version of Figure 8. The points plotted
correspond to the cumulative averages as more distant genomes are included. fS is fillScaffolds.

Additional results
Here we briefly describe additional results for which tables
and graphs can be found in the Additional file 1.
Another way of parsing results is to ask the question:

which program yields best results for each query chro-
mosome sequence, in terms of number of average correct
adjacencies? SIS (promer and nucmer) are the best pro-
grams under this measure.
Another question to ask is what kind of influence

does the number of contigs has on a program’s perfor-
mance? We have found that all programs obtain their best
results for chromosome sequences that have few contigs
(between 4 and 25). As for worst results, the outcome was
less clear, since it is not always the case that the largest
number of contigs results in poorest performance. We
also determined that fillScaffolds and r2cat seem to be less
sensitive to variation in number of contigs in the input
than other programs. These results need to be taken with
caution, because the bins we used had a relatively small
number of instances in each (between five and seven).

Table 4 Best Scaffolds (Correct Adjacencies)

Programs Closest Top 10 Top 20

SIS (promer) 56.52 59.13 64.57

SIS (nucmer) 39.13 27.83 20.87

Mauve 26.09 25.65 23.26

OSLay 21.74 15.65 11.30

fillScaffolds (nucmer) 21.74 11.30 8.70

ABACAS 17.39 11.74 7.61

r2cat 13.04 16.09 15.65

CONTIGuator 13.04 9.57 6.30

Projector 2 8.70 6.09 4.57

fillScaffolds (promer) 0.00 6.96 8.04

Finally, we investigated the influence of duplications on
the performance of SIS in terms of correct adjacencies.
We found that on average no more than 13% of incorrect
adjacencies are due to duplications.

Running times
Running times of the tests are dominated by the sequence
comparison step. For example, in the case of SIS, nucmer
takes on average 1 minute for a genome pair, and promer
takes on average 5 minutes. SIS itself takes less than a
second to compute a scaffold set. OSLay takes about 3 sec-
onds. After obtaining the conserved blocks, fillScaffolds
takes about 3 seconds. r2cat takes between 15 and 20 sec-
onds to determine conserved blocks and about 2 seconds
to generate a scaffold. ABACAS takes between 10 and
30 seconds total time. CONTIGuator takes about 2 min-
utes to determine conserved blocks using BLAST+ and to
generate a scaffold. Mauve Aligner takes between 8 and
322 minutes per genome pair (on average, 46 minutes).
All these tests were executed on the same machine, a

Table 5 Average Performance (Coverage)

Programs Closest Top 10 Top 20

SIS (promer) 58.6 46.0 34.6

r2cat 56.8 40.4 27.5

Mauve 55.9 41.9 29.5

SIS (nucmer) 52.4 39.5 25.6

fillScaffolds (nucmer) 42.9 29.9 19.0

OSLay 42.5 29.0 18.2

CONTIGuator 42.0 29.3 19.3

fillScaffolds (promer) 40.2 29.2 19.5

Projector 2 34.3 22.5 13.9

ABACAS 27.8 19.9 11.3
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Table 6 Best Scaffolds (Coverage)

Programs Closest Top 10 Top 20

SIS (promer) 47.8 51.7 56.5

SIS (nucmer) 39.1 24.4 17.0

Mauve 34.8 25.7 20.2

OSLay 17.4 12.2 8.9

fillScaffolds (nucmer) 17.4 11.3 7.4

r2cat 13.0 17.4 14.4

ABACAS 13.0 11.7 7.8

CONTIGuator 13.0 10.0 6.5

Projector 2 8.7 6.1 4.6

fillScaffolds (promer) 0.0 7.0 7.4

standard desktop computer with Intel Core2 Duo proces-
sor, 3.0 GHz and 4 GB RAM. Projector 2 can only be run
on a web server. We observed that the total computation
time on the server was about 1 minute, when the server
appeared to have a light load.

Details of these tests and other tests
In Additional file 1 we present more detailed results of the
tests above as well as results using pairs of real genomes
and simulated contigs. SIS also came out as the best pro-
gram in these other tests. These results are a refinement
of preliminary tests presented in [24].

Availability of SIS
SIS is available as a web server at http://marte.ic.unicamp.
br:8747. It can also be freely downloaded as a stand alone
program from the same website. SIS generates its scaffolds
both as ordered lists of contigs as well as in nucleotide
sequence FASTA format.

Conclusions
We have presented a new linear-time algorithm for gen-
erating scaffolds for draft genomes, based on the concept
of inversion signatures. We implemented this algorithm
creating program SIS, which is to our knowledge the first
scaffold program that explicitly models the biological phe-
nomenon of replicon inversion in prokaryotes. We com-
pared SIS to seven other programs, and demostrated that
SIS achieves better performance relative to these other
programs using a real and diverse suite of test cases.
In a real world setting, the scaffolds generated by SIS

can help in the gap closure process. For example, SIS
output can easily be used as input to primer genera-
tion programs such as Primer3 [25]. If paired-end read
data is available, it can be used to check the scaffolds
provided and to connect separate scaffolds, thus generat-
ing more complete and reliable contig orderings. Ideally,
SIS should be able to use paired-end read information,

but this will require a substantial change to the algo-
rithm presented here, as evidenced by the sophistication
of the recent algorithm for paired-end read scaffolding
presented by Gao et al. [1]. Another possible improvement
in the scaffold generating process is to use several refer-
ence genomes instead of only one, under the rationale that
some inversionsmay bemissed by using reference genome
X butmay be detected using some other reference genome
Y. An idea similar to this is described for the program
PGA4genomics [11].

Endnotes
awww.ncbi.nlm.nih.gov/genomes/lproks.cgi
bftp://ftp.ncbi.nih.gov/genomes/Bacteria DRAFT

Additional file

Additional file 1: Figure S1. Variation in the Number of Correct
Adjacencies (Top 1). Variation in the number of correct adjacencies
determined by each scaffold program when the reference genome is the
closest to the query genome. The diamond is the median. Figure S2.
Variation in the Number of Correct Adjacencies (Top 10). Variation in the
number of correct adjacencies determined by each scaffold program
averaged over the 10 closest genomes to the query genome. The diamond
is the median. Figure S3. Variation in the Number of Correct Adjacencies
(Top 20). Variation in the number of correct adjacencies determined by
each scaffold program averaged over the 20 closest genomes to the query
genome. The diamond is the median. Figure S4. Test Cases X Correct
Adjacencies (Top 1). Figure S5. Test Cases X Correct Adjacencies (Top 10).
Figure S6. Test Cases X Correct Adjacencies (Top 20). Figure S7. Correct
Adjacencies X Number of Contigs (Top 1). Figure S8. Correct Adjacencies
X Number of Contigs (Top 10). Figure S9. Correct Adjacencies X Number
of Contigs (Top 20). Figure S10. Example of Dotplot. Pairwise whole
genome comparison of two Pseudomonas species. The comparison was
done using nucmer [18]. Figure S11.Mycobacterium (All pairs). Variation
of the distribution of the number of correct adjacencies in the scaffolds
generated by the various programs for the complete set (210 pairs) of
Mycobacterium genomes. Figure S12. Pseudomonas (All Pairs). Variation of
the distribution of the number of correct adjacencies in the scaffolds
generated by the various programs for the complete set (153 pairs) of
Pseudomonadaceae genomes. Figure S13. Shewanellas (All Pairs). Variation
of the distribution of the number of correct adjacencies in the scaffolds
generated by the various programs for the complete set (190 pairs) of
Shewanella genomes. Figure S14. Xanthomonas (All Pairs). Variation of the
distribution of the number of correct adjacencies in the scaffolds
generated by the various programs for the complete set (36 pairs) of
Xanthomonas genomes. Figure S15.Mycobacterium (Best Pairs). Variation
of the distribution of the number of correct adjacencies in the scaffolds
generated by the various programs for only those pairs ofMycobacterium
genomes that are closest to each other in the second batch of tests.
Figure S16. Pseudomonas (Best Pairs). Variation of the distribution of the
number of correct adjacencies in the scaffolds generated by the various
programs for only those pairs of Pseudomonas genomes that are closest to
each other in the second batch of tests. Figure S17. Shewanellas (Best
Pairs). Variation of the distribution of the number of correct adjacencies in
the scaffolds generated by the various programs for only those pairs of
Shewanella genomes that are closest to each other in the second batch of
tests. Figure S18. Xanthomonas (Best Pairs). Variation of the distribution of
the number of correct adjacencies in the scaffolds generated by the
various programs for only those pairs of Xanthomonas genomes that are
closest to each other in the second batch of tests. Figure S19. Average (All
Pairs). Variation of the distribution of the average number of correct
adjacencies in the scaffolds generated by the various programs for the

http://marte.ic.unicamp.br:8747
http://marte.ic.unicamp.br:8747
www.ncbi.nlm.nih.gov/genomes/lproks.cgi
ftp://ftp.ncbi.nih.gov/genomes/Bacteria_DRAFT
http://www.biomedcentral.com/content/supplementary/1471-2105-13-96-S1.zip
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complete set of test instances in the second batch. Figure S20. Average
(Best Pairs). Variation of the distribution of the average number of correct
adjacencies in the scaffolds generated by the various programs for only
those pairs of genomes that are closest to each other in the second batch
of tests.
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