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Abstract

than for IMM (p < 0.001).

Background: Gene finding is a complicated procedure that encapsulates algorithms for coding sequence modeling,
identification of promoter regions, issues concerning overlapping genes and more. In the present study we focus on
coding sequence modeling algorithms; that is, algorithms for identification and prediction of the actual coding
sequences from genomic DNA. In this respect, we promote a novel multivariate method known as Canonical
Powered Partial Least Squares (CPPLS) as an alternative to the commonly used Interpolated Markov model (IMM).
Comparisons between the methods were performed on DNA, codon and protein sequences with highly conserved
genes taken from several species with different genomic properties.

Results: The multivariate CPPLS approach classified coding sequence substantially better than the commonly used
IMM on the same set of sequences. We also found that the use of CPPLS with codon representation gave significantly
better classification results than both IMM with protein (p < 0.001) and with DNA (p < 0.001). Further, although the
mean performance was similar, the variation of CPPLS performance on codon representation was significantly smaller

Conclusions: The performance of coding sequence modeling can be substantially improved by using an algorithm
based on the multivariate CPPLS method applied to codon or DNA frequencies.

Background

For each sequenced genome, the basic step of annota-
tion is the prediction of genes. In prokaryotes, an average
of over 80% of the genome consists of genes which are
mostly protein coding [1], meaning that correct identi-
fication of protein coding genes is a key aim in compu-
tational biology. A complicating factor is that a fraction
of microbial genomes consist of degenerated genes with
no remaining functionality [2]. A gene finder must there-
fore be a rather complex ‘engine’ capable of distinguishing
real protein-coding genes from DNA sequence regions
consisting of degenerated genes, non-coding regions and
more. To map genes, gene finders typically identify a set
of gene-candidates commonly referred to as open read-
ing frames (ORFs). The number of ORFs found by gene
finders is typically large compared to the true number
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of genes. To reduce the number of ORFs and minimize
the false predictions of real protein-coding genes, a gene
finder must take into account several genomic properties
like the existence of upstream regulatory sequences (ribo-
somal binding sites, promoter regions, etc.), degree and
type of overlap between open reading frames, as well as
the content of the coding genes themselves. Considering
the above mentioned properties, a gene finding procedure
can be sketched as follows: 1) identify all possible ORFs in
the genome, 2) score all ORFs by various criteria, e.g. their
length, their base composition, their upstream sequence,
their overlap with other ORFs, etc. 3) classify ORFs as
coding genes or non-coding regions based on the scores
achieved in the previous steps.

Although the performance of prokaryotic gene finders
is relatively good compared to eukaryotic gene finders
[3,4] there is room for improvement. Prokaryotic gene
finders have a tendency to be biased towards identifying
false positive ORFs [5]. Short genes are difficult to identify
correctly [4], and genes in GC rich genomes are challeng-
ing to predict accurately [6-8]. It is therefore important
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that proper algorithms for coding sequence modeling are
implemented in gene finders. Algorithms used by gene
finders should have the ability to extract sequence param-
eters from coding sequence modeling of putative genes
(often referred to as training), and then classify new genes
as ORFs based on similarity to the estimated sequence
parameters [9]. Several popular gene finders use mod-
els based on some sort of Markov chain methodology to
identify ORFs [10-15]. Markov chain based models are
“"trained” on a set of sequences (typically nucleotide, pro-
tein or codon frequencies) and use the statistical parame-
ters extracted from this training to classify new sequences
[16]. The training procedure in Glimmer3 [6], which is
a Markov chain-type model, identifies long ORFs from
DNA sequences which are used to build the Interpolated
Context Model. The Interpolated Context Model (IMM)
is then used to classify ORFs in DNA sequences hav-
ing similar characteristics to the training data sequences.
This means that the classification power of gene finders
based on training relies heavily on the properties of the
sequence data used. Thus, for gene finders, it is impor-
tant that the sequence data used for training has as many
general characteristics of genes as possible, which empha-
sizes the relevance of procedures that facilitates sequence
data for accurate gene prediction. To obtain sequence
data that may have such characteristics we turn to pange-
nomics [17]. The re-sequencing of multiple strains within
the same species or phylotype has resulted in the study of
microbial pangenomes [17-21]. A pangenome is the col-
lection of genes found in all strains within a population.
By considering the set of highly conserved genes within a
pangenome, we are close to obtaining a data set consisting
of "true” genes since these sequences are highly conserved
across many strains and are therefore considerably more
reliable than data sets based on genes from one genome
sequence only. Thus, we argue that data sets consisting of
genes obtained from pangenomic inspired analyses may
be an adequate starting point for a general testing and
comparison of gene finders. Indeed, we use such sequence
data to compare the capabilities of a multivariate coding
sequence modeling algorithm using different methodol-
ogy to that of the Markov chain based coding sequence
modeling algorithms. Although multivariate methods (e.g.
[22,23]) are extensively applied in other scientific fields
only one such method known to the authors has been sug-
gested as a gene finding algorithm [24]. Data sets used
for gene finding typically have a large number of vari-
ables p (usually frequency counts of oligonucleotide like
codons) in comparison to the number of ORFs n. As a
consequence we have to deal with the unbalanced p > n
situation, making it hard to classify ORFs since unique
estimates cannot be found. Multivariate tools like Partial
Least Square (PLS) regression are widely used to address
unbalanced p > n problems [25]. A recent advancement
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to the PLS regression scheme combines a novel data com-
pression method, canonical correlation analysis (CCA),
to additionally estimate latent variables enhancing clas-
sification in regression type problems even further. This
method has been termed Canonical Powered Partial Least
Squares (CPPLS) [22] and we explore the performance on
the modeling of coding genes.

Method

Approach

Gene modeling data

The genomic data which was used to train the cod-
ing sequence modeling algorithms was divided into two
groups. One group, termed ‘Positives, contained ORFs
considered to be real genes. The other group, termed
‘Negatives; consisted of ORFs known to be non-coding,
i.e. sequences recognized as non-genes. We only consid-
ered protein coding genes in this study.

Positives To assure that the data set representing cod-
ing genes was as reliable as possible, we applied an
approach, outlined below, based on RefSeq [26] anno-
tated genes from multiple strains (http://www.ncbi.nlm.
nih.gov/RefSeq/). RefSeq genes are considered to be com-
prehensive, non-redundant and well-annotated. We stud-
ied 12 prokaryote species having at least 4 completed
genomes with RefSeq-annotations available (see Table 1).
Genomes that were sequenced twice were excluded. All
the genomes of these species were downloaded from
NCBI (http://www.ncbi.nlm.nih.gov/genome), together
with their RefSeq-annotated genes (http://www.ncbi.nlm.
nih.gov/RefSeq/). Thelists of RefSeq genes for all genomes
within each species were compared by an all-against-all
reciprocal megaBLAST[27] search. For any two ORFs, a
pairwise distance was computed as follows: If s(i; ) is the
bitscore of the alignment between query sequence i and
database sequence j, the distance between them is given
by:
s(i; ) + s(j; )
s(i;0) + G5 )

where d(i, j) always gives a value between 0 and 1. Next, all
ORFs were represented as nodes in an undirected graph,
with edges added between two nodes if the corresponding
distance d(i, j) between them was below or equal to some
threshold ¢ that designates sequence similarity. Hence, we
considered two ORFs to be connected if they were suf-
ficiently similar according to a specified threshold value
t. If multiple ORFs fulfill this similarity criterion a graph
will form consisting of many nodes (ORFs). Such a graph
will form clusters of connected nodes. Clusters with nodes
designating ORFs from the genomes of multiple strains
are more likely to be real coding genes since they are con-
served across several genomes. A highly conserved ORF

di,j) =1
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Table 1 An overview of the species
Species Group
Acinetobacter baumannii Gammaproteobacteria
Bacillus cereus Firmicutes
Bifidobacterium longum Actinobacteria
Chlamydia trachomatis
Escherichia coli Gammaproteobacteria
Mycobacterium tuberculosis Actinobacteria
Pseudomonas putida Gammaproteobacteria

Rhodopseudomonas palustris Alphaproteobacteria

Staphylococcus aureus Firmicutes
Streptococcus pneumoniae Firmicutes
Streptococcus pyogenes Firmicutes
Sulfolobus islandicus Crenarchaeota

Chlamydiae/Verrucomicrobia
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Number of genomes GC-content
6 0.39
9 0.36
4 0.60
6 041
25 0.50
5 0.65
4 0.62
6 0.65
15 0.33
14 0.40
13 037
7 0.35

An overview of the species used in the current study along with respective group, number of genomes and GC-content.

(HCO) is therefore represented as a graph with nodes
from the genomes of all respective strains within a species.
For each HCO cluster, the node (ORF) with the smallest
sum of distances, as measured using the weighted edges to
all other nodes (ORFs) in the same cluster, was extracted.
Such nodes are referred to as medoids. The medoide
thus represents the whole HCO cluster. The same proce-
dure is subsequently applied repeatedly generating a list of
HCOs for each species. The list of HCOs for each species
contains our candidate genes and we designate that set
as Positives. For illustration purposes Figure 1 shows a
visualized graph for a very small data subset taken from
Acinetobacter baumannii.
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Figure 1 Visualization of undirected graph. The clusters of highly
conserved ORFs are presented, based on a very small subset taken
from Acinetobacter baumannii. Nodes represent genes, and identical
color means genes from the same genome. The numbers are just
identifiers within each genome. First we discard the clusters having
less than 3 genes, i.e. red:6-yellow:7. Next, the medoide gene from
each remaining cluster forms the set of Positives.

Negatives Algorithms involved in coding sequence mod-
eling must separate sequences that are genes and
sequences that are not genes. Sequences that are not genes
are designated Negatives. The set of Negatives will fur-
ther enable classifying sequences as coding or non-coding
genes. Negatives are considerably harder to identify than
Positives since prokaryotic genomes are densely covered
with genes. Even if a sequence is not among our HCOs it
may very well be a coding gene, or at least part of a cod-
ing gene. However, the reading frame is an indispensable
concept with respect to coding sequences, as elaborated
by [28], and due to different selection pressure in-frame
and out-of-frame sequences are evaluated differently and
form completely separate clusters [24]. Consequently, we
consider the out-of-frame interior from the set of Posi-
tives as Negatives in the current study. This implies that
no Positive has a complete overlap with another Positive.
It is, however, typically accepted that functional genes in
prokaryotes can overlap over short stretches [29]. Hence,
a small fraction of our Negatives may actually be part
of a gene, making Negatives difficult to classify correctly.
There are always 5 out-of-frame reading frames, and all
are considered as Negatives, i.e. for each Positive we have
5 Negatives. Sequences designated as Negatives will hence
not have a proper start and stop codon, but are likely to
contain spurious stop codons since they are out-of-frame.
In order to use this approach, we therefore eliminated
the first start- and all stop-codons from every sequence
labeled as either Negative or Positive.

Data splitting and cross-validation For each species,
the sets containing Positives and Negatives were randomly
divided into 10 equally sized subsets. One of these subsets
was used as test data while the other 9 subsets were used
as training data. The procedure was repeated in a 10-fold
cross-validation.
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ORF sequence representation

Genes can be represented as DNA sequences, codon
sequences or protein (amino acid) sequences. We describe
all representations below with respect to coding sequence
modeling.

DNA sequences The DNA alphabet consists of 4 sym-
bols; but the reading frame concept must also be taken
into consideration. Hence, the bases we observe in codon
positions 1, 2 and 3 must be considered separately, oth-
erwise it is impossible to distinguish in-frame from out-
of-frame sequences. Markov chain models therefore need
three separate sets of transition probabilities, each set cor-
responding to the target symbol in reading frame 1, 2
or 3. The pretext, i.e. the subsequence a Markov chain
model is conditioned upon, consists of all preceding k
symbols regardless of which reading frame is considered.
A Markov chain model will therefore traverse a DNA
sequence, nucleotide by nucleotide, constantly consulting
transition probabilities from all reading frames. Such is
the case for GeneMark [11] and GLIMMER [13]. From
this perspective, the DNA alphabet of coding sequences
has 4 % 3 = 12 and not 4 symbols.

Codon sequences Each protein coding gene may also
be represented by its codon alphabet. The codons con-
sist of three consecutive nucleotides and code for amino
acids, thereby giving 64 possible combinations. Ignoring
the 3 exclusive stop codons, 61 symbols are free to code
for amino acids. Since there are only 20 different stan-
dard amino acids, the codon alphabet is redundant. In
other words, some codons code for the same amino acid.
Hence, some codons are synonymous while others are
non-synonymous. In fact, the redundancy of the codon
alphabet allows organisms and genes to prefer specific
codons coding for specific amino acids. This is typically
known as codon bias [30]. Although the codon alphabet,
with its 61 symbols, provides more resolution than the
DNA and protein alphabets, the added information can be
a computational challenge.

Protein sequences Due to the redundancy of the codon
alphabet gene comparisons may often be more success-
ful using protein sequences. Since different codons can
code for the same amino acid, DNA sequences repre-
senting homologue genes may be very different in terms
of base composition and therefore hard to detect using
DNA based search engines. In such cases, using pro-
tein sequences instead of DNA sequences may give better
results since there is no redundancy. Protein sequences
are expected to be highly conserved by purifying selection,
in contrast to the more variable DNA sequences [24].
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Algorithm

Classification of coding sequence

The methods used to classify genes were Interpolated
Markov model (IMM) [13] and Canonical Powered PLS
(CPPLS) [22]. Both models need to be trained and from
the training data set of # sequences we create a n x 1
numeric response vector y containing the value 1 if the
respective sequence is from the Positive set and -1 if the
respective sequence is from the Negative set.

Interpolated Markov models (IMM) Markov chain
models are widely used to detect patterns in biological
sequences. Unfortunately, these models are hampered by
the necessity to find the appropriate order of the Markov
chain. A higher order Markov chain model has more
parameters and therefore less bias since it is capable of
describing more accurately the real probabilities behind
the observed sequences. However, for a fixed size data set
the information per parameter is less, resulting in estima-
tors with increased variance [31]. Thus, the improvement
obtained due to less bias may be lost to the increased vari-
ance. A fifth order Markov chain model is employed by
GeneMark, while the gene finding algorithm in Glimmer
is based on the interpolated Markov model (IMM). The
latter model (IMM) estimates several chains with differ-
ent orders, of which the separate scores are subsequently
combined into one, making it a more general approach
than the prior 57 order model. Since we are comparing
coding sequence modeling algorithms we use the IMM
approach used by the Glimmer software [13]. This means
that the final probability of a symbol is a linear combina-
tion of several Markov chain models from order k = 0
up to some upper limit k = K, where the Markov chain
transition probabilities from various orders are weighted
based on the size and information content of the train-
ing data. Some additional effort is required to estimate
these weights since there is no closed form solution for
the maximum of the likelihood function. The Expectation
Maximization (EM) algorithm [32] is applied iteratively
to find local optimum solutions which are consequently
applied to optimize the weights used in the linear inter-
polation. From the training data two interpolated Markov
chain models are fitted, one for Positives (+1) and the
other for Negatives (-1). Thus, for both Positives and
Negatives we need to estimate the transition probability
matrices T I“, ey T1+< along with the weights used in the
interpolation procedure. Then, for each sequence from
the test data the posterior log-probability scores for the
Positive and Negative models are computed using the esti-
mated transition probability matrices and weights. Finally,
each test set of sequences is assigned to the class (+1 or -1)
depending on the log-probability score. In an approach
like this, the upper model order K must be restricted due
to space and computation time limitations. For the codon
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alphabet, having 61 symbols, even a second order model
(K=2) includes 613 = 226981 transition probabilities, and
is therefore computationally very slow. Also, a training set
of considerable size is required to estimate all probabilities
with reasonable variance. The addition of pseudo counts
is considered useful method to stabilize the estimates of
a Markov chain model [33]. We have chosen to use this
as well, but in a very careful way. If we have m observa-
tions (transitions/initiations) in our data set, we add &/m
pseudo counts as well, all having probabilities given by a 0-
order Markov chain model for the Positives or Negatives,
respectively.

Canonical Powered PLS (CPPLS) From the training
data set of n sequences, together with response y, the pre-
dictor # x p matrix X is formed by word frequencies for
each sequence from the training data. A word is a fixed
length consecutive segment from the sequence. Since the
amount of information required for a k* order Markov
chain model corresponds to k + 1 word frequencies, all
words of length from 1 up to K + 1 were included to make
this approach comparable. The association between y and
the predictor matrix X is assumed to be explained by the
linear model, i.e.

E(y) = Xp

B are p regression coefficients relating every word fre-
quency to the class status (+1 or -1). This results in a ’large
p and small #’ situation, where ordinary least squares type
methods provide poor solutions. The PLS method can
estimate the regression coefficients for such a case using
an iterative procedure described in [25]. There are many
algorithms in the PLS-family, and for classification pur-
poses we use the CPPLS method [22]. Thus, from the
training data we estimate the regression vector # describ-
ing the contrast between Positives and Negatives. For a
given test sequence, the corresponding word frequency
1 x p vector x is computed. Based on the CPPLS estimated
regression coefficients ,@ a score is predicted by y = X B
classified as +1 or -1, that is as Negative or Positive [9].

Model sizes

In general, the performance of a classifier is linked to the
number of parameters being estimated. For the Markov
chain model, this means the number of transition proba-
bilities and weights, while for the PLS-approach it means
the number of regression coefficients. The optimal model
complexity, which is measured by the number of free
parameters, is always a trade-off between bias and vari-
ance [34]. Since comparisons are carried out between
different methods and sequence representations, there
should be a comparable number of parameters. Table 2
presents the number of transition probabilities to be
estimated for all three sequence representations using
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interpolated Markov chain models of different orders. It
appears that for a reasonably fair comparison with the
CPPLS method, the interpolated Markov chain model
should be of order 4 for DNA, order 2 for protein and
order 1 for codon sequences. It is important to recall
that the number of transition probabilities required for
a k™ order Markov chain model corresponds to k + 1
word frequencies. Hence, for the CPPLS method frequen-
cies of 4-words, 3-words and 2-words are used for codon,
protein, and DNA sequences, respectively.

Mixed effect model

The main objective of the study is to make comparisons of
methods (CPPLS vs. IMM) and sequence representations
(codon vs. protein vs. DNA) on the ability to classify cod-
ing sequences. The study has been conducted on genomes
from many different species, and in order to present all
results in a single analysis, we have adopted an analy-
sis of variance (ANOVA) approach. We were primarily
interested in how the choice of method and sequence rep-
resentation affected the classification performance (out-
come), and the (random) variability in results between
species should be considered as random 'noise’ in the anal-
ysis. This was accomplished by the use of a mixed-effect
ANOVA model, where the fixed effects on performance
are the focus of our attention (method and sequence rep-
resentation) and a random effect of species is included to
deal with variation between species.

The performance is defined as the percentage of cor-
rectly classified ORFs in a test data set using 10-fold
cross validation. ANOVA analyses assume constant per-
formance variance at different levels of the fixed effects,
which was originally not the case in our data set. To stabi-
lize the variance, the original performance y (percentages)
was transformed to z as z = sin~! \/y/100.

We fitted the following mixed effect model

Zijk = 1+ o + B+ (aB)ij + sk + €ijk

where the outcome z;j; is the observed transformed
performance, u is the overall expected transformed per-
formance level, «; is the fixed effect of method i = 1,2,
B is the fixed effect of sequence representation j =
1,2,3, (af);; is the interaction term combining method i
and sequence representation j, si is the random effect of
species k = 1,..,12 and e;« is the residual variation. As
part of the model assumptions in a standard ANOVA we
used normal distributed error terms s; ~ N(0,02) and
eijk ~ N(0,02).

Results and discussion

Data sets

Even if the RefSeq database is curated, there may still
be errors. In order to eliminate uncertain sequences we
only considered those which were conserved across all
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Table 2 The number of probabilities to be estimated in an IMM

Sequence type k=0 k=1 k=2
DNA 12 60 252
Protein 20 420 8420
Codon 61 3782 230763
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k=3 k=4 k=5
1020 4092 16380
168420 3368420 67368420
14076604 858672905 52379047266

The columns represent the number of transition probabilities to be estimated with an Interpolated Markov model from k=0 to k = 5, while the rows designate the
different sequence types (DNA, codon and protein). The number of probabilities in a k™ order IMM corresponds to the number of regression coefficients for the k + 1

word frequencies in the CPPLS method.

genomes within each species. Additional file 1: Figure
S1 shows how the number of gene clusters grows by
the choice of threshold ¢, which represents the similar-
ity between sequences inside a cluster. In our analysis we
have chosen to use ¢ = 0.3, meaning that clusters will
contain sequences that are roughly 100% (1 — £) = 70%
similar. For each such cluster having members from all
genomes, we allocate the medoide sequence to the set
of Positives for the corresponding species. As seen from
Additional file 1: Figure S1, this results in a rather large
number of Positives for all species and we are assured
that these sequences are coding genes. So instead of tak-
ing all HCOs at t = 0.3, if a species has more than 400
HCO’s, we sampled 400 sequences at random as Posi-
tives. We have chosen to use as Negatives sequences that
constitute the out-of-frame interior of the Positives. The
reason for this is actually straightforward; coding genes
predominantly cover prokaryotic genomes therefore the
intergenic regions are few and small. For instance, the
RefSeq annotated genes cover, on average, more than 92%
of the genomes in this study. On the other hand, anno-
tations of genes with large overlaps are few in number;
therefore we assume that if there is some region where
we know there is a coding gene, there will be a small
chance that any other coding gene is present in the same
region. Thus, we presume that sequences from the out-of-
frame interior of the Positives are the types of sequences
that have the same base compositional properties as the
majority of non-coding ORFs (i.e. Negatives). We also
eliminated the first codon (start) as well as all stop-
codons from both Positives and Negatives, in order to
make the classifications based on the content and not the
endpoints.

Coding sequence recognition

In Figure 2 we show the distributions of performance for
each species by applying both the IMM and CPPLS meth-
ods on codon, protein and DNA sequences. The difference
between the IMM method (upper panels) and the CPPLS
method (lower panels) is the most striking result. It can
be seen that the codon representation (leftmost panels)
appears to be better than protein and DNA, especially
for the IMM-approach. We observe non-constant vari-
ance of performance over different levels, for instance, an

F-test indicates that the variation observed using CPPLS
with codon representation was significantly smaller than
the corresponding variance for IMM (p < 0.001) based
on the original performance measure. To make a more
formal test, we used a mixed interaction effect ANOVA-
type model (see Method) with results presented in Table 3
based on transformed performance. The analysis sup-
ports that significant variation among levels of methods
(p < 0.001), sequences (p < 0.001) and method sequence
interaction (p < 0.001). A Tukey test [35] with adjusted
p-values for multiple comparisons, was carried out to
compare the difference of means of (transformed) perfor-
mance between methods and sequence representations.
We found that CPPLS performed, in general, better than
IMM (p < 0.001), while codons were better sequence
representations than both protein and DNA (» < 0.001).
No difference was found between the latter two sequence
representations. Further, testing for method and sequence
interaction, we found that CPPLS with codon representa-
tion performed significantly better than IMM with protein
(p < 0.001) and with DNA (p < 0.001) representations.
Mean performance of IMM with codon representation
was similar to CPPLS with codon representation, but
variation of results were significantly lower for CPPLS
(p < 0.001) indicating superior performance. The esti-
mated standard deviation of transformed performance
due to random effect of species was 6; = 0.077, which
is bigger than the general error term (6, = 0.049). This
indicates that performance varies a lot between species
(Table 3). In general, the average performance for both the
IMM and CPPLS algorithms is very good. Even the worst
combination, using IMM on DNA data, has more than
95% correct classifications (both Positives and Negatives)
in the majority of the performed tests. Thus, both the
IMM and CPPLS methods support the notion that the
Positive and Negative sequences have a base composition
more intrinsically similar to each other and, therefore,
that our division of sequences into these two categories is
meaningful. The high performance is largely an effect of
our strict choice of threshold ¢ when selecting Positives.
We only included as Positives the highly conserved genes,
and it is quite likely that these genes have more in com-
mon than less conserved genes. We also tried more lenient
thresholds, giving larger and more heterogeneous sets of
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Figure 2 Performance on test data. The box and whisker plots show the distributions of performance (% correct classified) on test data for each
species, by using IMM (upper panels) or CPPLS (lower panels) on ORFs represented as codon, protein or DNA sequences. The dotted red line
indicates the maximum possible performance (100%). For most of the species, CPPLS on Codon sequence performance is 100 (%).

Positives (and Negatives), subsequently resulting in a drop
in overall performance. However, the differences between
methods and sequence representations found for subset of
t = 0.3 hold throughout.

It should also be noted that the archaeon Sulfolobus
islandicus gives a notable drop in performance for the
IMM, but less so for the CPPLS. This is possibly explained
by a difference in variance in the sets of Positives and
Negatives. We expect Positive sequences (coding genes)
to be more homogenous than Negatives (non-coding
ORFs). In any genome, the number of non-coding ORFs
is many magnitudes larger than the number of coding
genes and since these non-coding orfs are regarded as

Negatives the variance in this set is considerably larger
than the Positives set. It is therefore reasonable to expect
this difference in homogeneity between the Positives and
Negatives. When fitting Markov chain models to the
Positives and the Negatives, we end up describing the
‘average’ of both classes without taking the heterogene-
ity of their respective variances into account. Hence,
for IMM, information about within-class heterogeneity
and class size is lost. For CPPLS the regression coeffi-
cient estimates are affected by both the average and the
variance in word-frequencies, as well as the number of
sequences within each class. To illustrate this effect, sen-
sitivity (the ability to identify Positives) and specificity
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Table 3 Analysis of variance for a mixed effect design in coding sequence modeling

Sum of squares DF
Method 0.19 1
Sequence 0.08 2
Method:Sequence 0.08 2
Species 0.10 1
Residual 0.11 55
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Mean squares F-value p-value
0.189 9292 p < 0.001
0.040 19.53 p < 0.001
0.038 18.66 p < 0.001
0.009 445 p < 0.001
0.01

Analysis of variance for transformed performance (see Method section) as an effect of Method (IMM or CPPLS), Sequence (sequence representation DNA, protein,
codon) and their interaction Method:Sequence. The estimated standard deviation of the random effect of Species is 65 = 0.077 and for the Residual 6. = 0.049.

(the ability to identify Negatives) were computed for
both methods using codon frequencies (Figure 3). Sen-
sitivity is on average the same for both methods, but
CPPLS exhibited a stronger ability to identify Negatives.
For further understanding why a multivariate approach
like CPPLS outperforms IMM, we have focused on the
results for Sulfolobus islandicus, with codon representa-
tion. Figure 4 presents the density of the IMM scores and
CPPLS scores. For each test sequence, the IMM score
is computed as the difference of Positive log-probability

and Negative log-probability, and CPPLS scores are sim-
ply the fitted values. It is clear from Figure 4 that the
area of overlap between the red and blue density is larger
for IMM (upper panel) than for CPPLS (lower panel),
and especially the Negatives (blue curves) seem to stretch
into the Positive side, producing false positives. Another
issue is that a multivariate approach makes simultaneous
use of all the available frequencies and their covariance
structure. By taking this into consideration, multivari-
ate analysis can identify important frequency effects and

IMM on Codon
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Staphylococcus aureus —
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Figure 3 Sensitivity and specificity. The distributions of sensitivity and specificity for each species, by using IMM and CPPLS on codon sequences
only. Sensitivity is defined as the ability to detect Positives and specificity as the ability to detect Negatives and both are presented in (%).
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Figure 4 IMM and CPPLS scores. For Sulfolobus islandicus, the density of the IMM scores and CPPLS scores are plotted. For each test sequence IMM
score is computed as the difference of Positive log-probability and Negative log-probability, and CPPLS scores are simply the fitted values.

detect contributions from frequencies that are too small
to be detected by the univariate Markov chain models.
CPPLS will therefore provide superior statistical power
compared to the Markov chain models as long as a model
selection procedure preventing under- or over-fitting
is implemented.

Although CPPLS based on codon frequencies, per-
forms extremely well for ORF classification there are
a few Positives missed. In the genome of Sulfolobus
islandicus we miss an iron-sulfur binding domain pro-
tein and some hypothetical proteins. In Pseudomonas
putida we fail to detect the genes annotated as “RND
family efflux transporter MFP subunit’, “copper resis-
tance B’ as well as some hypothetical proteins. In
Mycobacterium tuberculosis we miss some hypotheti-
cal proteins and a “transmembrane serine” protein. For
Escherichia coli we fail to classify an "intimin adher-
ence” protein as Positive. This is a protein with no
clear function defined also found in some Shigella and
Citrobacter species.

We note that these genes are all involved in patho-
genecity, e.g. the intimin gene is usually found on
pathogenicity islands known collectively as LEE’s [36].

Pathogenicity is a trait prone to be horizontally trans-
ferred [37,38]. The fact that these genes are quite dif-
ferent in codon composition from all other HCO’s in
their respective populations may indeed be taken as an
indication of recent horizontal gene transfer. This illus-
trates another potential use of coding sequence modeling
besides gene finding. When a highly conserved ORF is not
recognized as such, it is an indicator of foreign’ DNA. The
recognition of horizontally transferred genes, which are
often linked to virulence factors and antibiotic resistance
[39,40], can be aided by the capability of coding sequence
modeling. For instance, it is known that the GC content of
the third codon position is highly correlated with genomic
GC content [41]. Since genomic GC content is associated
with the environment of the bacteria [42,43], the codon
frequencies of horizontally transferred DNA may be very
different to that of the host [43].

Conclusions

Results of comprehensive comparisons in coding
sequence modeling on multiple data sets show that the
CPPLS approach provides superior performance com-
pared to the IMM. Furthermore, codon representations
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were found to be superior in classifying ORFs compared
to DNA and protein representations for the CPPLS
method. We therefore conclude that a multivariate
approach like CPPLS should be more utilized in coding
sequence modeling, as well as in pattern recognition
problems where sequences are to be classified by their
content, like for instance, in the detection of horizontally
transferred DNA.

Additional file

Additional file 1: Figure S1. The number of positives against different
thresholds. The number of Positive genes obtained for different thresholds
t for all species. A threshold of t = 0.3 means members in a gene cluster
differ by no more than roughly 30%, and the 'center’ gene (medoide) in
each cluster is used as a Positive. If a species has sequences more than 400,
then a sample of size 400 sequences are taken as positives. A small
threshold (close to 0) gives fewer, but tighter, clusters.
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