
RESEARCH Open Access

SPARQL Assist language-neutral query composer
Luke McCarthy, Ben Vandervalk, Mark Wilkinson*

From Semantic Web Applications and Tools for Life Sciences (SWAT4LS) 2010
Berlin, Germany. 10 December 2010

Abstract

Background: SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician
in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns
dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further
complicates the task of synthesizing queries manually.

Results: We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive
type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-
lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality.
Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize
the most likely suggestions.

Conclusions: To ensure success, the Semantic Web must be easily available to all users, regardless of locale,
training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the
manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we
have made some early steps towards simplifying access to Semantic Web resources.

Background
The health care and life science sectors have been some
of the most enthusiastic adopters of Semantic Web
technologies. The benefits of the RDF/OWL data model
are well-understood by bioinformaticians who have too
long had to deal with the problem of integrating data
from multiple sources with wildly different underlying
schema. These benefits are less obvious, however, to
clinicians and researchers who merely see one myster-
ious query language (SQL) exchanged for another
(SPARQL). Even a Semantic Web-savvy informatician
can be daunted when faced with the challenge of query-
ing an unfamiliar data source whose particular RDF
vocabulary is initially unknown.
The issue is compounded by the growing use of opa-

que, semantic-free URIs for ontological classes and
properties (OBO [1], SIO [2], CWA [3]). While the
meaning of rdf:type or dc:title is relatively clear to the
human reader, the meaning of, for example, sio:

SIO_010302 is considerably harder to glean without
looking up its ontological definition. This becomes par-
ticularly acute in the context of SPARQL queries. While
often the subject and object portions of a SPARQL
WHERE clause contain variables, and therefore are
inherently human-readable, the predicates are usually
explicitly specified in the query. Thus while:

?gene SIO:is_homologous_to ?gene

is quite clear to both the query composer and the
human reader, the opaque equivalent

?gene SIO:010302 ?gene

is effectively meaningless to the reader, and absurdly
difficult for the query composer to remember. Neverthe-
less, there are many valid reasons for designing ontolo-
gies using opaque identifiers, not the least of which is
language neutrality.
RDF/XML provides built-in language neutrality by way

of the xml:lang attribute; an ontology can therefore
* Correspondence: mark@illuminae.com
Providence Heart + Lung Institute at St. Paul’s Hospital, University of British
Columbia, Room 166 - 1081 Burrard St., Vancouver, BC, Canada V6Z 1Y6

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

© 2011 McCarthy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

mailto:mark@illuminae.com
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0


easily be internationalized by providing multiple rdfs:
label or rdfs:comment properties with appropriate xml:
lang attributes. However, even those projects who have,
in principle, adopted language neutrality for their classes
(e.g. OBO), most have not done so for their properties
(OBO Relationship Ontology [4]). This is no-doubt due,
at least in part, to the already discussed difficulty of
composing SPARQL queries in which predicates have
opaque identifiers. Nevertheless, it is crucial that we do
not allow convenience to direct the development of a
core global resource (the Semantic Web) and thus the
problem should be solved at the level of the tools pro-
vided, rather than the resources themselves.
SPARQL Assist is a web application that facilitates the

construction of SPARQL queries by providing context-
sensitive type-ahead completion. In addition to assis-
tance with basic syntax, ontological terms are indexed
by their labels, using the xml:lang attribute to record
the language of each label for each term. Ontological
terms and their labels, are read on-the-fly from any
ontology specified in a SPARQL FROM clause, but
SPARQL Assist can also be configured to pre-load
terms from particular ontologies or SPARQL endpoints,
reducing the burden on the user to know the existence
and location of all relevant vocabularies.
The entire query, as it is being constructed, is used to

provide context for the type-ahead suggestions. Pre-
viously declared variables or known individuals (i.e.
values) are suggested during type-ahead for the subject
or object position of the WHERE clause. In the predi-
cate position, indexed ontological predicates are sug-
gested, with preference given to properties that an
individual is known to have if this information is avail-
able from ontological indexing and/or other query
clauses. Similarly, if a clause contains a variable that can
ultimately be connected to a known individual in
another part of the query, that connection is used to
find the most likely properties in the current clause.
Together, these functionalities should simplify the

manual construction of SPARQL queries by (a) making
the query more similar to natural language, and (b) sup-
porting any language in which the required terms have
been labeled. Moreover, in so doing, SPARQL Assist
also provides ontology designers more freedom to follow
best-practices in ontology design and internationaliza-
tion by reducing the barrier to query construction using
opaque terms. SPARQL Assist thus represents one alter-
native, alongside visual query builders and faceted brow-
sers, for helping unfamiliar users explore semantic data.

Implementation
SPARQL Assist is implemented in JavaScript (jQuery)
and is intended to be accessed through a browser. In its
simplest configuration, SPARQL Assist preloads

properties, individuals and namespaces that have been
indexed in JSON format. It can also be deployed with a
server-side Java component that will index OWL ontolo-
gies directly. These ontologies may be parsed a priori as
part of the SPARQL Assist installation/configuration, or
may be referred to in the FROM clause of a SPARQL
query, in which case they are parsed dynamically at
query time. In the future, as much computation as pos-
sible will be transferred to the client side to improve
both performance and flexibility of deployment, but at
present the limited support for OWL in JavaScript
requires a server-side component for ontology parsing.
Our initial implementation of SPARQL Assist was

undertaken in the context of creating queries that will
be resolved by the Semantic Health and Research Envir-
onment (SHARE [5]), and we present here both the
core SPARQL Assist software, as well as the extension
specific to SHARE. SHARE is an advanced SPARQL
query client built on top of the SADI Framework [6] for
Semantic Web Services. SADI services attach properties
to input OWL instances and these services are indexed
in a central registry based on the properties they attach.
SHARE maps the triple patterns presented in the
WHERE clauses of a SPARQL query onto these indexed
properties, in order to discover SADI Web Services cap-
able of generating the required triples. The RDF data
required to answer a given query is thus dynamically
generated through the invocation of SADI services in
response to the query being posed.
In the context of SPARQL Assist, the fact that proper-

ties do not exist at query composition time might be
considered a barrier, since there is no pre-existing RDF
Store to inspect for candidate properties and individuals.
To compensate for this, the SADI extension to SPARQL
Assist uses the SADI registry, in addition to any loaded
ontologies, to suggest properties to be used in a query.
As in the generic case, if a clause contains a named
individual or a variable previously connected to an indi-
vidual, this information is used to further refine the sug-
gestions; in this case by filtering out properties
generated by services that cannot accept a particular
individual as input and highlighting properties generated
by services that can. Thus, not only is the lack of a static
triple store not a barrier to query composition, but the
ability to construct a likely-successful query is, in fact,
enhanced by utilization of the underlying SADI
infrastructure.
Although it was designed with SHARE in mind,

SPARQL Assist can be used with any SPARQL endpoint
that can be queried from client-side JavaScript. Due to
the limitations of cross-domain JavaScript requests, the
endpoint must reside at the same domain name as the
SPARQL Assist query form, or the endpoint must be
able to deliver query results in JSONP format, or a

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

Page 2 of 9



suitable proxy must be configured. Sample configura-
tions for common situations are available on the web
[7].

Results
The results of this software engineering project are best
described by a demonstrative walk-through using our
public SPARQL Assist interface available at [8]. In this
demonstration we will be answering the question:

select the genes that participate in the human caf-
feine metabolism pathway and the proteins that they
encode.

SPARQL Assist helps query construction at all points,
both with respect to correct SPARQL syntax, as well as
the content of the query itself. This includes the specifi-
cation of prefixes. Begin typing “PREFIX” and a type-
ahead prompt appears indicating that PREFIX is the
only valid option at this point (see Figure 1). Knowing
that we are going to be using KEGG pathways, but not
knowing what the correct URI prefix is, we then begin
typing “path...” and are prompted with several options,
one of which is the URI prefix for identifiers from the
Kyoto Encyclopedia of Genes and Genomes (see Figure
2).
Several steps later, after specification of the SELECT

variables (not shown), SPARQL Assist has a number of
features aimed at simplifying the construction of the
WHERE clause. First, previously-typed variables are
prompted. For example, typing “?g” prompts the user
with their previously entered “?gene” variable (see Figure
3). Knowing (a priori) the vernacular that genes “partici-
pate in” metabolic pathways, typing “parti...” results in
two choices of predicate “has participant”, and “is parti-
cipant in”, along with their human-readable descriptions
to help determine which predicate would be the correct
one (see Figure 4). In this case, “is participant in” is
selected, since genes are participants in pathways. The
opaque URI of the corresponding predicate (SIO:

SIO_000062 from the Semantic Science Integrated
Ontology) is added to the SPARQL query as a result of
this selection (see Figure 5).
With an interest in genes involved in caffeine metabo-

lism, and not knowing which KEGG pathway this corre-
sponds to, we then begin typing “caff...” in the object-
position of the WHERE clause. SPARQL assist has pre-
indexed the names and definitions of KEGG pathway
URIs, and thus prompts us with “human caffeine meta-
bolism pathway” as a type-ahead option (see Figure 5).
Selecting this option inserts the URI KEGG:hsa00232 in
the object position, corresponding to the identifier for
this pathway, and the first WHERE clause is complete
(see Figure 6).
In constructing the second WHERE clause, we will

reveal some limitations of the approach. After being
prompted for “?protein” in response to “?pro...” (see Fig-
ure 6) we then want to determine which genes code for
these proteins. Typing “code” reveals two, seemingly
identical, options, neither of which has a definition - “is
encoded by” and “isEncodedBy” (see Figure 7). This is
because these two predicates appeared in the ontologies
pre-indexed by SPARQL Assist and had no further
description. Since it is not possible to determine with
any certainty if they are truly redundant, or which
online resources will use which predicate, both are pre-
sented, and the user must make a choice. In Figure 8
we have selected “is encoded by”, and the corresponding
URI http://semanticscience.org/resource/SIO_010079
has been added to the query. We complete the query by
adding the final ?gene variable, and the query results are
shown in the same figure.
Three additional features of the SPARQL Assist soft-

ware, and its SADI extension – internationalization,
dynamic ontology indexing, and dynamic predicate-vali-
dation – will be demonstrated by a second walk-
through. In this example, we attempt to resolve the
same query as above, but will construct the query
clauses slightly differently to allow these additional fea-
tures to be revealed (in SPARQL, equivalent queries can

Figure 1 Type-ahead suggestion for structural components of a SPARQL query. The user has typed “pr...” and is being prompted that the
appropriate syntactic element for this position in a SPARQL query is “PREFIX”.

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

Page 3 of 9

http://semanticscience.org/resource/SIO_010079


be constructed in a wide variety of ways, particularly
when the desired predicates have an owl:inverse
predicate).
Figure 9 shows the initial phases of query construction

already completed as above, this time with the addition
of a FROM clause. When confronted with a FROM
URI, SPARQL Assist will immediately retrieve and index
the resulting ontology, extracting predicates and named
individuals from that ontology. In this example, the
props.de.owl ontology contains a variety of German-lan-
guage extensions for predicates defined by the SIO, and
individuals from KEGG. When constructing the first
WHERE clause in this case, we have decided to begin
with the KEGG caffeine metabolism pathway. This was
selected exactly as in Figure 5 above, but using the Ger-
man equivalent “Stoffwechselweg Koffein menschlichen”
as the individual name (not shown). With an explicit
individual as the starting-point, the SADI extension to
SPARQL Assist is able to utilize the semantics of the
SADI Web Services registry to enhance subsequent
type-ahead suggestions. To find the genes that

participate in this KEGG pathway, we begin typing
“parti...” in the predicate position of this WHERE clause.
As before, SPARQL Assist prompts us with a variety of
suggestions, however one of these suggestions has been
highlighted in green (see Figure 9 upper panel). This
highlighting indicates that SPARQL Assist has discov-
ered SADI Web Services capable of fulfilling that clause
of the query, given that individual’s semantic type, thus
giving the user more security that their query will be
answerable. Because the German-language ontology has
been loaded, we could equally have begun typing
“Bet...”, and been prompted by the German equivalent
predicate “hat Beteiligten”, also highlighted in green (see
Figure 9 lower panel).
We complete the first clause and continue to the next,

where we wish to find the proteins that are encoded by
a given gene. We begin the second WHERE clause with
“?gene”, and then (in the German language) attempt to
find the proteins that the genes “codiert für” (see Figure
10). Importantly, SPARQL Assist is able to suggest pre-
dicates based on the semantic type of the data that will

Figure 2 Type-ahead suggestion for the URI of a namespace PREFIX. The user has typed “path...” with the intention of finding the KEGG
Pathway URI prefix. This is suggested for them as the third suggestion in the list. This relieves the user of the burden both recalling these URIs,
and of correctly typing them.

Figure 3 Type-ahead selection of known query variables. The user has already created two variables, “gene” and “protein” in their SELECT
clause, and now is being prompted to reuse the “gene” variable in the WHERE clause under construction.

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

Page 4 of 9



fill the ?gene variable. It is able to do this because, dur-
ing the previous SADI registry query for the “has parti-
cipant” predicate, it determined the output data-type of
that SADI service and assigned that data-type to ?gene.
As such, SPARQL Assist is now able to indicate
(through green highlighting) that there is a SADI service
that attaches the “codiert für” predicate to the indivi-
duals that will, at execution-time, fill the ?gene variable.

Finally, the “codiert für” predicate is selected and
replaced by the appropriate URI, and query construction
continues through to resolution (see Figure 11).

Discussion
The two walk-through scenarios above reveal the beha-
viours of the SPARQL Assist software and demonstrate
what we believe is an environment that assists query

Figure 4 Type-ahead selection of ontological predicates based on their human-readable label. The user has started typing “parti...”, with
the intention of finding some predicate relating to “participation”. Two possible predicates, “has participant” and “is participant in”, are
suggested, along with their human-readable descriptions.

Figure 5 Type-ahead selection of individuals by their human-readable name. The user begins typing the word “caffeine” and is prompted
by “human caffeine metabolism pathway”, a specific pathway in the KEGG database. Selection of this pathway results in the insertion of the
corresponding URI into the SPARQL query.

Figure 6 Replacement of named individuals by their URI. In this figure, “human caffeine metabolism pathway” has been replaced by its URI
http://lsrn.org/KEGG_PATHWAY:hsa00232. The user is now being prompted to use the previously-defined “protein” variable for their next clause.

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

Page 5 of 9

http://www.biomedcentral.com/1471-2105/13/S1/S2


construction not only by “naïve” end-users, but also by
experienced informaticians already comfortable with
the SPARQL language. While these behaviours (e.g.
type-ahead) are not themselves novel, the utility comes
in the way they have been applied, particularly with
respect to dynamic indexing of ontological terms,

predicates, and individuals, and explicit support for
internationalization.
We are aware that it may seem unsustainable and/or

excessive to index individuals, such that “real things”
(molecules, structures, genes, etc) can be referred-to
during construction of the query and resolved by

Figure 7 Naming collisions are observed. In this figure, the user is looking for a predicate related to gene coding. They are presented with
two seemingly identical predicates, neither of which has a description. In cases where independent ontologies use the same term and do not
define that term, it is not possible for the software to automatically infer equivalence. As such, both terms are presented to the user and they
must make a choice based on minimal information.

Figure 8 Query completion and execution. The predicate “is encoded by” has been replaced by its URI http://semanticscience.org/resource/
SIO_010079 the final variable was added to the second clause, and the query was executed with the results shown.

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

Page 6 of 9

http://www.biomedcentral.com/1471-2105/13/S1/S2
http://www.biomedcentral.com/1471-2105/13/S1/S2


Figure 9 SADI registry lookups and internationalization. This figure shows support for internationalization as well as the additional
functionality of SPARQL Assist provided by the SADI extension. When a named individual is present in a query, the SADI extension to SPARQL
Assist utilizes the semantic type of this individual to initiate a search of the SADI registry for Services that could consume this individual as input.
The predicates created by those services are highlighted in green in the type-ahead prompt, providing visual assurance that selection of those
predicates is “semantically meaningful” and is likely to resolve successfully during query execution. In the top panel, the user has started typing
(in English) “parti...”, and the predicate “has participant” from the type-ahead choices is highlighted in green, indicating that a SADI Service is
available that will generate that predicate based on that input individual. In the lower panel, at the same point in the query, the user has started
typing (in German) “Bet...”, and is provided with the predicate “hat Beteiligten”. Since “hat Beteiligten” and “has participant” are alternative labels
for the same predicate URI (http://semanticscience.org/resource/SIO_000132), this predicate is also highlighted in green indicating that there is a
SADI service capable of resolving it.

Figure 10 Additional utilization of SADI registry semantics. The German-language “codiert für” (English “codes for”) is being suggested, and
is highlighted in green. The green highlighting indicates that the SPARQL Assist software, after the previous SADI Registry lookup (see Figure 9)
knows what semantic datatype will be contained in the variable ?gene after invocation of that SADI service, and is therefore able to determine
that another SADI service is available that will be able to consume individuals from ?gene and attach the “codiert für” predicate to them.

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

Page 7 of 9

http://www.biomedcentral.com/1471-2105/13/S1/S2


SPARQL Assist to their native identifiers, but we don’t
think this is necessarily the case. First, we believe it is
crucial to do so since (as with browser bookmarks for
URLs) we cannot and should not expect users to know
or remember the URI of their data-of-interest. Second,
the amount of storage required to achieve this (a URI
and it’s various labels) is minimal and lookups over this
data can be quite rapid. Third, we anticipate that
SPARQL Assist will be deployed by specific commu-
nities or on specific portals, where the individuals of
greatest interest to that community can be anticipated
and selectively indexed to minimize lookup time and
index size.
SPARQL Assist does not aim to be a query interface

that understands natural language. It relies on ontol-
ogy authors creating “obvious” labels for their predi-
cates and, even in that case, a user will often need to
try several “words” before discovering the phrase that
the ontology author used. However, we believe that
this is nevertheless better than the status quo and,
moreover, makes it easier for ontology authors to jus-
tify following best-practices of ontology design and

internationalization by reducing the resulting burden
of complexity placed on their end-users.
There are some areas where the SPARQL Assist inter-

face can be further improved. In particular, while the
query construction process itself is guided by “natural
language”, the interface immediately converts this into
SPARQL clauses with opaque identifiers; thus, the final
query in SPARQL Assist is just as unreadable as any tra-
ditional SPARQL query. This implementation barrier
results from limitations in the JavaScript language: the
content of a Web text-box cannot be marked-up and
thus SPARQL query clauses cannot be individually
referenced and linked to an external, non-SPARQL
representation. We would welcome participation of any
community members who might have a solution to this
problem!

Conclusions
SPARQL Assist provides prototype solutions for two
important problems. First, to hasten the uptake of
Semantic Web technologies, it is important to improve
access to, and usability of, Semantic Web resources for

Figure 11 Query completion and solution. In this figure, “codiert fur” has been properly converted to its SIO URI. Note also that the query
results are identical to those in Figure 8, demonstrating that these queries, regardless of language chosen, are equivalent.

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

Page 8 of 9



the lay-end-user while still maintaining best-practices in
the way these resources are modeled. Opaque identifiers
for both classes and properties are important, as they
allow us to avoid “churn” as an ontology evolves over
time. We must therefore support the end-user in con-
structing queries over resources formatted in this way.
Second, the Semantic Web is intended to be a global
resource, of use to all. As such, a respect for internatio-
nalization is also critical, even at these early stages in
Semantic Web evolution. We believe that SPARQL
Assist provides motivation to more widely adopt what
are clearly best-practices in Semantic Web data
provision.

Availability and requirements
Project name: SPARQL Assist
Project home page: http://code.google.com/p/sadi/
Operating system(s): Platform independent
Programming language: Java
License: New BSD

List of abbreviations
CWA: Concept Web Alliance; JSON: JavaScript Object Notation; JSONP:
JavaScript with Padding; KEGG: Kyoto Encyclopaedia of Genes and Genomes;
OBO: Open Biomedical Ontologies; OWL: Web Ontology Language; RDF:
Resource Description Framework; SADI: Semantic Automated Discovery and
Integration; SHARE: Semantic Health And Research Environment; SIO:
Semantic Science Integrated Ontology; SPARQL: SPARQL Protocol and RDF
Query Language; SQL: Structured Query Language; URI: Uniform Resource
Identifier; URL: Uniform Resource Locator; XML: Extensible Markup Language.

Acknowledgements
This work has been supported by the Heart + Stroke Foundation of BC and
Yukon, Microsoft Research, The Canadian Institutes for Health Research, The
Natural Sciences and Engineering Research Council of Canada, and CANARIE.
Thank you to Anna-Lena Lamprecht for assisting us with the German
translations of the SIO and KEGG terms.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 1, 2012: Semantic Web Applications and Tools for Life Sciences
(SWAT4LS) 2010. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S1.

Authors’ contributions
LM wrote the SPARQL Assist software and wrote significant portions of this
manuscript. BV invented and implemented the optimizer algorithm of
SHARE allowing SPARQL queries to be efficiently converted to Web Service
workflows for this software demonstration and assisted with portions of this
manuscript. MW conceived of the SADI project, together with LM conceived
of the SPARQL Assist concept, and wrote the majority of this manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 25 January 2012

References
1. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ,

Eilbeck K, Ireland A, Mungall CJ, The OBI Consortium, Leontis N, Rocca-
Serra P, Ruttenberg A, Sansone S-A, Scheuermann RH, Shah N, Whetze PL,
Lewis S: The OBO Foundry: coordinated evolution of ontologies to
support biomedical data integration. Nature Biotechnology 2007,
25:1251-1255.

2. Semantic Science - Scientific Knowledge Discovery. [http://
semanticscience.org/].

3. NBIC Declaration Concept Web Alliance. [http://www.nbic.nl/about-nbic/
affiliated-organisations/cwa/declaration/].

4. OBO Relationship Ontology. [http://www.berkeleybop.org/ontologies/obo-
all/relationship/relationship.owl].

5. Vandervalk BP, McCarthy EL, Wilkinson MD: SHARE: A Semantic Web Query
Engine for Bioinformatics. In Fourth Asian Conference, ASWC 6-9 December
2009; Singapore. Volume LNCS 5926. Heidelberg: Springer;Asunción Gómez-
Pérez, Yong Yu, Ying Ding 2009:367-369.

6. Wilkinson MD, Vandervalk BP, McCarthy L: SADI Semantic Web Services -
‘cause you can’t always GET what you want! Proceedings of the 2009 IEEE
Asia-Pacific Services Computing Conference 2010, 13-18.

7. SPARQL Assist language-neutral query composer. [http://sadiframework.
org/sparql-assist].

8. cardioSHARE. [http://biordf.net/cardioSHARE].

doi:10.1186/1471-2105-13-S1-S2
Cite this article as: McCarthy et al.: SPARQL Assist language-neutral
query composer. BMC Bioinformatics 2012 13(Suppl 1):S2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

McCarthy et al. BMC Bioinformatics 2012, 13(Suppl 1):S2
http://www.biomedcentral.com/1471-2105/13/S1/S2

Page 9 of 9

http://code.google.com/p/sadi/
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S1
http://www.ncbi.nlm.nih.gov/pubmed/17989687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989687?dopt=Abstract
http://semanticscience.org/
http://semanticscience.org/
http://www.nbic.nl/about-nbic/affiliated-organisations/cwa/declaration/
http://www.nbic.nl/about-nbic/affiliated-organisations/cwa/declaration/
http://www.berkeleybop.org/ontologies/obo-all/relationship/relationship.owl
http://www.berkeleybop.org/ontologies/obo-all/relationship/relationship.owl
http://sadiframework.org/sparql-assist
http://sadiframework.org/sparql-assist
http://biordf.net/cardioSHARE

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results
	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Authors' contributions
	Competing interests
	References

