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Abstract

phylogenetic analyses.

Background: Gene tree - species tree reconciliation problems infer the patterns and processes of gene evolution
within a species tree. Gene tree parsimony approaches seek the evolutionary scenario that implies the fewest gene
duplications, duplications and losses, or deep coalescence (incomplete lineage sorting) events needed to reconcile
a gene tree and a species tree. While a gene tree parsimony approach can be informative about genome
evolution and phylogenetics, error in gene trees can profoundly bias the results.

Results: We introduce efficient algorithms that rapidly search local Subtree Prune and Regraft (SPR) or Tree
Bisection and Reconnection (TBR) neighborhoods of a given gene tree to identify a topology that implies the
fewest duplications, duplication and losses, or deep coalescence events. These algorithms improve on the current
solutions by a factor of n for searching SPR neighborhoods and n* for searching TBR neighborhoods, where n is
the number of taxa in the given gene tree. They provide a fast error correction protocol for ameliorating the
effects of gene tree error by allowing small rearrangements in the topology to improve the reconciliation cost. We
also demonstrate a simple protocol to use the gene rearrangement algorithm to improve gene tree parsimony

Conclusions: The new gene tree rearrangement algorithms provide a fast method to address gene tree error.
They do not make assumptions about the underlying processes of genome evolution, and they are amenable to
analyses of large-scale genomic data sets. These algorithms are also easily incorporated into gene tree parsimony
phylogenetic analyses, potentially producing more credible estimates of reconciliation cost.

Introduction

The availability of large-scale genomic data from a wide
variety of taxa has revealed much incongruence between
gene trees and the phylogeny of the species in which
the genes evolve. This incongruence may be caused by
evolutionary processes such as gene duplication and
loss, deep coalescence, or lateral gene transfer. The var-
iation in gene tree topologies can be used to infer the
processes of genome evolution. Gene tree - species tree
(GT-ST) reconciliation methods seek to map the history
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of gene trees into the context of species evolution and
thus potentially link processes of gene evolution to phe-
notypic changes and diversification. Yet these methods
can be confounded by error in the gene trees, which
also may cause incongruence between the gene and spe-
cies topologies. We introduce efficient algorithms to
correct gene tree topologies based on the gene duplica-
tion, duplication and loss, or deep coalescence cost
models. The algorithms work by identifying the small
rearrangements in the gene trees that reduce the recon-
ciliation cost. They are extremely fast and thus amen-
able to analyses of enormous genomic data sets.

Perhaps the most commonly used and computationally
feasible approach to GT-ST reconciliation is gene tree
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parsimony, which seeks to infer the fewest evolutionary
events (e.g., duplication, loss, coalescence, or lateral gene
transfer) needed to reconcile a gene tree and species tree
topology [1]. This approach also can be extended to infer
species phylogenies, finding the species tree that implies
the fewest evolutionary events implied by the gene trees
(e.g., [2-4]). However, the gene trees often are estimated
using heuristic methods from short sequence alignments,
and consequently, there is often much error in the esti-
mated gene tree topologies. Error in the gene trees cre-
ates more GT-ST incongruence and can radically affect
GT-ST reconciliation analyses, implying far more dupli-
cations, duplications and losses, or deep coalescence
events than actually exist. For example, Rasmussen and
Kellis [5] estimated that error in gene tree reconstruction
can lead to 2-3 fold overestimates of gene duplications
and losses. Gene tree error also can erroneously imply
large numbers of duplications near the root of the species
tree [6,7], and it can mislead gene tree parsimony phylo-
genetic analyses (e.g., [8-10]).

Several approaches have been proposed to address
gene tree error in GT-ST reconciliation. First, question-
able nodes in a gene tree or nodes with low support
may be collapsed prior to gene tree reconciliation, and
the resulting non-binary gene trees may be reconciled
with species trees [11-13]. Similarly, GT-ST reconcilia-
tions can use a distribution of gene tree topologies, such
as bootstrap gene trees, rather than a single gene tree
estimate [6,14,15]. Both of these approaches may help
account for stochastic error and uncertainty in gene tree
topologies, but they do not explicitly confront gene tree
error. Methods also exist to simultaneously infer the
gene tree topology and the gene tree reconciliation with
a known species tree [5,16]. While these sophisticated
statistical approaches appear very promising, they are
computationally intensive, and it is unclear if they will
be tractable for large-scale analyses. Another, perhaps a
more computationally feasible, approach is to allow a
limited number of local rearrangements in the gene tree
topology if they reduced the reconciliation cost [17,18].

Previously [17,18] described a method to allow NNI-
branch swaps on selected branches of a gene tree to
reduce the reconciliation cost. Following [17,18], we
address gene tree error in the reconciliation process by
assuming that the correct gene tree can be found in a par-
ticular neighborhood of the given gene tree. We describe
this approach for the gene duplication, duplication and
loss, and deep coalescence models, which identify the few-
est respective events implied from a given gene tree and
given species tree. This neighborhood consists of all trees
that are within one edit operation of the gene tree. While
[17,18] use Nearest Neighbor Interchange (NNI) edit
operations to define the neighborhood, we use the stan-
dard tree edit operations SPR [19,20] and TBR [19], which
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significantly extend upon the search space of the NNI
neighborhood. The SPR and TBR local search problems
find a tree in the SPR and TBR neighborhood of a given
gene tree, respectively, that has the smallest reconciliation
cost when reconciled with a given species tree. Using the
algorithm from Zhang [21] the best known (naive) run-
times are O(#®) for the SPR local search problem and O
(n*) for the TBR local search problem, where 7 is the
number of taxa in the given gene tree. These runtimes
typically are prohibitively long for the computation of lar-
ger GT-ST reconciliations. We improve on these solutions
by a factor of n for the SPR local search problem and a
factor of n* for the TBR local search problem. This makes
the local search under the TBR edit operation as efficient
as under the SPR edit operation, and it provides a high-
speed gene tree error-correction protocol that is computa-
tionally feasible for large-scale genomic data sets.

We also evaluated the performance of our algorithms
using the implementation of SPR based local search algo-
rithms. Note, that the SPR neighborhood is properly con-
tained in the TBR neighborhood for any given tree. Thus
the performance of the SPR based program provides a
conservative estimate of the performance of the TBR
based program. We test our programs on a collection of
106 yeast gene trees, some of which contain hundreds of
leaves, and we demonstrate how it can be easily incorpo-
rated into large-scale gene tree parsimony phylogenetic
analyses.

Basic notation and preliminaries
Throughout this paper, the term tree refers to a rooted
full binary (phylogenetic) tree.

Let T be a tree. The leaf set of T is denoted by Le(T).
The set of all vertices of T is denoted by V(T) and the set
of all edges by E(T). The root of T is denoted by Ro(T).
The set of internal vertices of T is I(T):= V(T)\Le(T).

Given a vertex ve V(T), we denote the parent of v by
Par(v). Let u := Pa(v). The edge that connects v with u is
written as (i, v). The first element in the pair is always the
parent of the second element. The set of all children of v
is denoted by Ch{(v) and the children are called siblings.
For w e Chg{v), the sibling of w is denoted by Sbr{(w).

We define <y to be the partial order on V(T) where
x<7 y if y is a vertex on the path between Ro(T) to x, and
write x <7y if x < 7y and x # y. The least common ances-
tor of a non-empty subset L € V(T), denoted as LCA (L),
is the unique smallest upper bound of L under <7. Given
x, y€ V(T), dr{x, y) denotes the number of edges on the
unique path between x and y in 7.

Given U € V(T), we denote by T(U) the unique rooted
subtree of T that spans U with the minimum number of
vertices. Furthermore, the restriction of T to U, denoted
by Ty, is the rooted tree that is obtained from T(L/) by
suppressing all non-root vertices of degree two. The
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subtree of T rooted at u € V(T), denoted by T,, is
defined to be Ty, for U:= {v € Le(T): v <7 u}. Two
trees T, and T, are called isomorphic if there exists a
bijection between the vertex sets of 77 and T, which
maps a vertex u; of T; to vertex u, of T, if the subtree
rooted at u; in T; has the same leaf set as the subtree
rooted at u, in T,. If an isomorphism exists between T}
and T,, we write T} = T,.

Given function f: A — B, we denote by flA’) where A’ €
A a set of images of each element in A’ under f.

The reconciliation cost models

A species tree is a tree that depicts the branching pat-
tern representing the divergence of a set of species,
whereas a gene tree is a tree that depicts the evolution-
ary history among the sequences encoding one gene (or
gene family) for a given set of species. We assume that
each leaf of the gene tree is labeled with the species
from which that gene was sampled. Let G be a gene tree
and S a species tree. In order to compare G with S, we
require a mapping from each gene g€ V(G) to the most
recent species in S that could have contained g.

Definition 1 (Mapping). The leaf-mapping Lg s : Le
(G) > Le(S) is a surjection that maps each leaf ge Le
(G) to that unique leaf s € Le(S) which has the same
label as g. The extension Mg : V(G) - V(S) is the
mapping defined by Mg, s(g):= LCA(Lg s(Le(Gy))). For
convenience, we write M(g) instead of Mg s(g) when G
and S are clear from the context.

Definition 2 (Comparability). Given trees G and S,
we say that G is comparable to S if a leaf-mapping Lg s
(g) is well defined.

Throughout this paper we use the following terminol-
ogy: G is a gene tree that is comparable to the species
tree S through a leaf-mapping Lgs, and # is the number
of taxa present in both input trees.

Now we define different reconciliation costs from G to
S for a given mapping #g s that extends Lgs. The
reconciliation cost are based on the models of gene
duplication [22,23], duplication-loss [21], and deep coa-
lescence [21].

Definition 3 (Duplication cost).

o The duplication cost from g € V(G) to S,
1, ifM(g) € M(Ch(g));

Cp (G S, g) =

b 3) 0, otherwise.

o The duplication cost from G to S,
Cr(G,S=)  Cp(GSg).

3€l(G)

Definition 4 (Duplication-loss cost).
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« The loss cost from ge V(G) to S,

o, ifVh € Ch(g) : M(g) = M(h);
LG S.8) = { S hecnip 1ds(M(g), M(R)) — 11, otheruwise.

+ The duplication-loss

CoL (G, 8):=)

8el

cost from G to S,
(Cp(G.S,8) +CL(G,S,3)).
(@)

Definition 5 (Deep coalescence cost).

+ The number of lineages from ge V(G) to h € Ch
(@) in S,

Coc(G, S 8) =) ds(M(g), M(h)).

heCh(g)

o The deep_coalescence cost from G to S,

Coc(G,S) =) Cpc(G.S g) — [ES),

8el(G)

The error-correction problems

Here we give definitions for tree rearrangement opera-
tions TBR [19] and SPR [19,20], and then formulate the
Error-Correction problems that were motivated in the
introduction.

Definition 6 (Tree Bisection and Reconnection
(TBR)). Let T be a tree. For this definition, we regard the
planted tree PI(T) as the tree obtained from adding the
root edge{r, Ro(T)} to E(T), where r ¢ V(T).

Let e := (4, v) € E(T), and X and Y be the connected
components that are obtained by removing edge e from
T such that ve X and u € Y. We define TBRy (v, x, y)
for x| X and y € Y to be the tree that is obtained from
PI(T) by first deleting edge e, and then adjoining a new
edge f between X and Y as follows:

1. If x # Ro(X) then suppress Ro(X) and create a new
root by subdividing edge (Pa(x), x).

2. Subdivide edges (Pa(y), y) by introducing a new
vertex y’.

3. Re-connect components X and Y by adding edge
f= () Ro(x).

4. Suppress the vertex u, and rename vertex y’ as u.
5. Contract the root edge.

We say that, the tree TBRt (v, x, ) is obtained from T
by a tree bisection and reconnection (TBR) operation
that bisects the tree T into the components X and Y ,
and reconnects them above the nodes x and y. (See
Figure 1.) We define the following neighborhoods for the
TBR operation:
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Flgure 1 An TBR operation. Tree T = TBRT(v, X, y) results from T after performing single TBR operation.
A

d a

C

1. TBRg(v, %) := U iy TBRg(v, %, )
2. TBRg(v) := Uy x TBRg(v, x)
3. TBRg := U, v)e E(G) TBRs(v)

Definition 7 (Subtree Prune and Regrafting (SPR)).
The SPR operation is defined as a special case of the
TBR operation. Let e := (u, v) € E(T), and X and Y be
the connected components that are obtained by remov-
ing edge e from T such that ve X and u € Y. We
define SPRy (v, y) for y € Y to be TBRy (v, v, ). We
say that the tree SPRt (v, y) is obtained from T by per-
forming subtree prune and regraft (SPR) operation that

We define the following neighborhoods for the SPR
operation:

1. SPRg(v) := Uy y SPRG(v, ¥)
2. SPRG := Ug, vye £G) SPRG(V)

We now state the SPR based error-correction pro-
blems for duplication (D), duplication-loss (DL), and
deep coalescence (DC). Let I' € {D, DL, DC}.

Problem 1 (SPR based error-correction for I' (SEC-T'))
Instance: A gene tree G and a species tree S.

prunes subtree T, and regrafts it above y. (See Figure 2 Find: A gene tree G* € SPRg such that
(a).) Cr(G*, S) = min Cr(G,S).
G'eSPRg
e 3
G’ x
%
Y. \K
N
/N
3/ £
F
G r.\ 5 >. / \l
/ » 2
/ N\ \ Vv P F g
{ o o
N\ SN e / ‘\ G
x./ my’ x // \.z' 2 / \ X
\ O R
/ % \ N ) b / \\
n z / : / \ z'
™ n . N\ v Z
< <o (¥
: £ e I\ A ~
(a) (b)

Figure 2 The NNI adjacency graph. (a) The tree (3 is obtained from G

right-child G, of G'in X.

VG) is suppressed, and the new vertex above root in (5 is named x. (b) Two NNI operations NNIs(Z) and NNIs(z) produce left-child G and

by pruning and regrafting subtree G, to the root of G. The vertex x €
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The TBR based error-correction for I' (TEC-T') pro-
blems are defined analogously to the SPR based error-
correction for I' (SEC-T") problems.

Solving the SEC-T" problems

In this section we study the SPR based error-correction
problems, for duplication (D), duplication-loss (DL), and
deep coalescence (DC), in more detail. Our efficient
solution for these problems are based on solving
restricted versions of these problems efficiently. For
each I € {D, DL, DC} we first define a restricted version
of the SEC-T" problem, which we call the restricted SPR
based error-correction for the I' (R-SEC-T") problem.

Problem 2 (Restricted SPR based error-correction for (R-

SEC-IN)

Instance: A gene tree G, a species tree S, and v e V(G).
Find: A gene tree G* € SPRg(v) such that

Cr(G*,S)= min Cr(G,S
r(G*,S) olnin r(G,S),

Observation 1. Let I' € {D, DL, DC}. Given a gene
tree G and a species tree S, the SEC-T" problem can be
solved as follows: (i) solve the R-SEC-T" problem for every
v e V(G) where v # Ro(G), (ii) under all solutions found
return a minimum scoring gene tree G*.

Naively, the R-SEC-T problem can be solved in ©(n?)
time by computing the cost Cr (G, S) for each G’ €
SPRs(v). The cost for a given gene and species tree can
be computed in O(n) time [21]. We introduce a novel
algorithm for the R-SEC-I" problem that improves by a
factor of n on the naive solution. This speedup is
achieved by semi-ordering the trees in SPRg(v), for each
v e V(G), such that the score-difference of any two con-
secutive trees in this order can be computed in constant
time.

Ordering the trees in SPRg(v)

Consider a graph on trees in SPRg(v), in which every
two adjacent trees are one NNI [19] operation apart.
We show that such a graph is a rooted full binary tree,
after providing necessary definitions.

Definition 8 (Nearest Neighbor Interchange (NNI)).
We define the NNI operation as a special case of the
SPR operation. Let e € E(T) where e := (u, v), and X
and Y be the connected components that are obtained by
removing edge e from T such thatve X and ue Y. We
define NNIy (v) to be SPRy (v, y) for y:= Pa(u), and say
that NNIt (v) is obtained from T by performing nearest
neighbor interchange (NNI) operation that prunes sub-
tree T, and regrafts it above the parent of v’s parent.
(See Figure 2(b).)

Definition 9 (NNI distance). Let the NNI-distance,
denoted as dyni(T1, Ts), between two trees Ty and T,
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over n taxa be the minimum number of NNI operations
required to transform T, into T,.

Definition 10 (NNI-adjacency graph). The NNI-adja-
cency graph, denoted as X = (V,E) , is the graph where
V= SPRG(V) and {TL Tz} e E édeNI(Tl, Tz) =1.

Lemma 1. Xis a tree.

Proof. We prove it by showing that there exists a
unique path between every two vertices in X'. Let G,
G’ e V(X), thus G, G” € SPR¢g(v). Let G:= SPRg(v, x1)
and G”:= SPR¢g(v, x5). We use induction on dg(xq, x,).
Let dg(x1, x5) = 1 and assume without loss of generality
that xo = Pag(x,). Thus, G’ = NNlIg» (Sh(x,)). So the
hypothesis holds for dg(x, ;) = 1. Assume now that
the hypothesis is true for dg(x;, ;) < k and suppose dg
(%1, x2) = k + 1. Since G is a tree, there must be a
unique path between x; and x,; let y be a vertex on this
path. Let dg(y, x1) = 1, and G” := SPRg(v, ). If y = Pag
(%1), then G” = NNIg/(v); otherwise G” = NNIg/(Sb(y)).
Since dg(y, x3) = k, thus (by induction hypothesis) the
hypothesis is valid for dg(x;, x5) = kK + 1. O

Theorem 1. X is a rooted full binary tree.

Proof. In view of Lemma 1, it suffices to show that
except a unique vertex of degree 2 all other vertices in
X are of degree 1 or 3. Let G € V(X'), thus G’ = SPRg
(v, y) for some y € V(G). There are three cases:

Case 1: y is a root. Let y; € Chg(y). Let G' := SPRg(v,
1), thus G’ = NNIq1(v)). Hence {G', G} € E(.x). Since
|Chg(y)| = 2, G must be a degree 2 vertex in X.

Case 2: y is a leaf. Let y; = Pag(y). Let G! := SPRg(v,
y1), thus G' = NNIg{v). Hence {G}, G’} € E(X), and
consequently, G’ is a degree 1 vertex in X.

Case 3: y is an internal vertex. Let y; = Pag(y) and
y5 € Chg(y). Let G' := SPRg(v, y1), thus G' = NNIg(v).
Let G* := SPRg(v, ¥5), thus G’ = NNIg*(v). Since y has
one parent and two children in G, thus G’ is a degree 3
vertex in X .

This completes the proof.

The score difference of consecutive trees in X

To solve the R-SEC-T problems we traverse tree X .
Two adjacent trees in V(. X') are one NNI operation
apart. We show that Cr score of a tree can be com-
puted in constant time from the LCA computation of
its adjacent tree.

Let e := (G, G”) be an edge in X. Let x := Pa(v), y :=
Sb(v), and z, 7 € Ch(y) in G’ (see Figure 2(b)). Without
loss of generality, let G”:= NNIg-(z). (Observe, G” is
similar to G; of Figure 2(b).)

Lemma 2. Mg s(y) = Mg s(x).

Proof. From NNI operation, v, 2’ € Chg~(x) and z,
x € Chgy). Also, G,~G, G,~G,G,~G,
so Le(G,) = Le(G,). Thus,
M s (x) = LCA(Lqs(Le(G,))) = LCA(Le s(Le(G,))) = Mars (v). O

k4 z'r
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Lemma 3. Mg s(w) = Mg s(w), for all w e V(G)\{x,
)

Proof. For g V(G,)U(G,)U(G,), since G, ~ G,,
therefore M. s(g) = Mg~ s(g). Also, except for subtree
G;C, the rest of the tree remains the same in Gx Thus
by Lemma 2, Mg s(Pag (x)) = Mg-s(Pag(y)). Induc-
tively, Mg s(g) = Mg s(g), for all ge V(G©\V(G’). O

Lemma 4. AMg»s(x) = LCA( Mg s(v), Mg 5(2)).

Proof. From Lemma 3, Mg»s(v) = Mg s(v) and Mg~
(2) = Mgs(Z). Thus, Mgs(x) = LCA(Mc,s(v), Mcs
(2) = LCA( MG, 5(v),Mc,5(2)). O

Lemma 5. Cr(G”, S, g) = Cr (G, S, g), for all ge VIG")\
{x, v} and T € {D, DL, DC}.

Proof. The gene duplication and loss status of a vertex,
and the number of lineages from a vertex to its children
in G’ can change in G” if its mapping or mapping of any
of its children changes in «#g»s. From Lemma 3, and
also, since Mg»s(w) = Mg s(w), for w e Ch(Pag(x)),
must have Cr(G", S, Pac (x)) = Cr(G, S, Pac(x)). Thus
the Lemma follows. O

Let e := (G, G”) € E(X) and I" € {D, DL, DC}. We
define T'e:=Cr(G",S) — Cr(G,S) with respect to the
given species tree S. Observe that this score can be
negative too. We study how I', can be computed effi-
ciently for each edge e in X.

Theorem 2. L ¢ = Z (Cr(G", S, 8) = Cr(G) S, g))
ge{xy}

L. =Cr(G,8) = Cr(G,S) = Y (Cr(G",S,8) —Cr(G.S,8)= Y.
$eV(G") SEV(G )\ iy}

Cr(G.8,8) + ) (Cr(G,5,8) ~Cr(GS,9) = D (Cr(G,5,9) = Cr(GS,8)-
gelxy) gelxy)

(Cr(C" 8,9

Proof .
o

Definition 11. Let G := SPR¢ (v,Ro(G)) , and let Pg
be a path from Gto G in X. For G, we define the

score-difference I'¢ g,as Tee = Z T,
ecE(Pg))

Theorem 3. For given S, G, and v € V(G), the tree G’
e V(X) is the output of a R-SEC-T' problem iff
Pe e =mingevix) T e .

Proof. Let I'¢ o = mingrev(x)l'¢ g We prove that G’
is the output of R-SEC-I' problem. Since
Feo = Z Fe=T(C, §) -T(G S), thus G’ gives

eeE(Pc/)
the minimum normalized Cr score over all trees in V
(X'). Hence, G’ must be the output of the R-SEC-T" pro-
blem. The other direction follows similarly. O

The algorithm

We describe a general algorithm, called Algo-R-SEC-T,, to
solve the R-SEC-T" problem for each I € {D, DL, DC}.
Initially Algo-R-SEC-T" computes (i) the root vertex of
the NNI-adjacency graph X, which we call G, by
regrafting the subtree G, above the root of G, (ii) the
LCA mapping from G to S, and (iii) the I score from G
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to S. Then recursively Algo-R-SEC-I" computes the LCA
mapping and I score for every vertex G’ in X when the
LCA mapping and T score of its parent vertex in X is
known. Algorithm 1 details Algo-R-SEC-T".

Algorithm 1 - Algo-R-SEC-T'
Input: A gene tree G, a species tree S, and v e V(G)

Output: A tree G* € SPRg(v) such
CI‘(G*, S) = mincrespRc(v)Cr(G/, S)

01. Compute G by pruning G, and regrafting at Ro(G)

02. Compute LCA mapping Mg s

03. Call Cg(G,S) = Algo — Comp — Score(G, S, M, 5)

04. Set BestTree = G » BestScore = 0

05. Set G =G, Ma,s=Mgs, Cr(G, S) =Cr(G, S),
Feg, =0

06. For each k # Ro(CSb(,,))in preorder traversal of
Gsp(v)» do

07.  If not backtracking, then

08. Set x = Pag(v), y = Sbg'(v)

09. Set G” = NNIG’(SbG’(k))

10. Set Mcs = Mgs, MG",s(y) = Mg s(x)

11. Mes(x) = LCA( M 5(K), M 5(v))

12, Call ree - D iy Al = G = Score(@, S, Mz, h) = Algo = G = Seore(, S, Mas, h)

that

13. Fee =Tgq + ey

14. If T'¢ o < BestScore, then

15. Set BestTree = G”, BestScore = I'¢, o

16. Else,

17. Set x = Pag (v), y = Pag (x)

18. Set G” = NNIg(v)

19. Set Mcrs = Mg s, Mars (%) = Mas ()
20. Set M s(y) = LCA (Mg s (Sbe (x)) , M s(k))
21. Call reo- oy g0 = G = Score(C, S, Mo, ) = Algo — G = Score(C", S, M- h)
22, Set Teor =Tee — o

23, Set G = G//,Mcgs = Mgrs, FC/C/ = FC/C”
24. Return BestTree

Algorithm 2 - Algo-Comp-Score
Input: A gene tree G, a species tree S, and LCA mapping
Me,s
Output: Cr (G,S)
01. score = 0
02. For each g € I(G) in preorder traversal of G, do
03. Callscore = score + Algo — G — Score(G, S, Mg, 8)
04. If Tis DC, then
05.  score = score - |I(S)|
06. Return score

Algorithm 3 - Algo-G-Score
Input: A gene tree G, a species tree S, LCA mapping Mg,s,
and ge 1(G)

Output:Cr (G, S, g)

01 If T is D, then
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02. Ifiu(g) € M(Ch(g)), then
03. Return 1
04. Elself Tis DL, then

05 Is=3 0 o 1dp(M(1) = dp(M(g)) 1]

06. Ifdlg) € AMCh(g), then
07. Return Is + 1

08. Else

09. Return s

10. Else //T is DC

11 Return ZheCh(g) ldp(M(h)) — dp(M(g))I

Lemma 6. The R-SEC-T" problem is correctly solved by
Algo-R-SEC-T.

Proof. Lemma 1-5 and Theorem 1-3 directly imply
that in order to prove the correctness of algorithm
Algo-R-SEC-T, it is sufficient to prove that it correctly
returns G’ of minimum I'g g, among all G € V(X). We
will show that algorithm Algo-R-SEC- accounts each G’
€ V(X), correctly computes I'¢ ¢, for I' € {D, DL, DC},
and returns the right G’ as output.

From Definition 10, V( X') = SPRg(v). In Algo-R-SEC-
I', step 1 prunes subtree G, and regrafts it above the
root of G to create . Step 5 sets G’ to G. The for-

loop in step 6 traverses subtree ést;(u) in preorder. For

each traversed vertex k #Ro((_}Sb(,,)), step 9 builds the
tree G”:= SPRg(v, k) by applying NNI operation on the
last build G”. Each for-loop iteration sets G’ to the last
build G” in step 23. G and G”s constitute all the trees
in SPR;(v).

For G, step 2 computes the LCA mapping and step 5
sets ' o to zero. Following Lemma 2-4 and Theorem
2, step 10 and 11 update the LCA of G” and step 12
computes I'ig,¢7y by calling algorithm Algo-G-Score.
Depending on I' € {D, DL, DC}, there are three cases:

Case 1: I" is D. Algo-G-Score returns 1, if the vertex g
€ V(G”) maps to the same vertex in S as any of its chil-
dren maps to, otherwise 0.

Case 2: I' is DL. Algo-G-Score computes losses by
applying the formula of Definition 4. Further, it adds 1
if there is a duplication.

Case 3: I is DC. Algo-G-Score, returns the number of
lineages from g to each of its children # € Ch(g) in S.
For each i € Ch(g), depth of -#(g) is subtracted from
depth of .#(h) to count number of edges between #(g)
and 4(h).

In Algo-R-SEC-T, step 13 computes I'¢ s by adding
I'ce and I'ie,¢rp. When backtracking, steps 17-22 are
executed to restore the right G’ to compute the next
unique G” € Ch y(G). This ensures that the correct
I'¢. is computed for each G’ e V(X).

In Algo-R-SEC-T, step 4 sets G as the BestTree and
I'é. ¢ = 0 as BestScore. Every time a new G” € Ch y(G)
is encountered, step 14 compares I'g -, with BestScore,
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and updates BestTree with G” of the minimum I'g ...
After the for-loop, step 24 returns the BestTree. O

Lemma 7. The R-SEC-T" and SEC-T' problems can be
solved in O(n) and O(n?) time, respectively.

Proof. We will prove that the algorithm Algo-R-SEC-
I'solves the restricted SPR based error-correction problems
for each I' € {D, DL, DC} in ®(n) time. In Algo-R-SEC-T,
step 1 takes constant time. Step 2 precomputes LCA values
for species tree in O(n) time [24], and so, finds LCA map-
ping from G to S in O(n) time in bottom-up manner. Step
3 computes the duplication, duplication-loss or deep coa-
lescence score of G and S by calling Algo-Comp-Score. In
Algo-Comp-Score, step 1 and step 2 runs for O(1) and O
(n) time, respectively. Step 3 calls Algo-G-Score in each
iteration of for-loop. Algo-G-Score runs for O(1) time for
I'e {D, DL, DC}.

When T is DC, steps 4 and 5 are further executed in
Algo-Comp-Score for constant time. Thus in Algo-R-
SEC-T, step 3 runs for O(n) time. Further, steps 4 and 5
take constant time. The loop of step 6 runs for ®(n)
time. If condition of step 7 is true, steps 8-10 executes
in constant time. With precomputed LCA values from
step 2, step 11 executes in constant time. Algo-G-Score
runs for constant time for I' € {D, DL, DC}, and lets
step 12 to execute in constant time. Further, steps 13-15
execute for constant time too. If the condition in step 7
is false, then steps 17-22 execute in constant time, simi-
larly. Finally, step 23 runs for constant time, and hence,
the R-SEC-T" problem can be solved in ®(#n) time. From
Observation 1, Algo-R-SEC-T is called ®(n) time to
solve SEC-T" problem. Thus, the SEC-I" problem can be
solved in ®(#?) time. O

Solving the TEC-T" problems

In this section we study the TBR based error-correction
problems, for duplication (D), duplication-loss (DL), and
deep coalescence (DC). More precisely, we extend our
solution for the SEC-T" problems to solve the TEC-T'
problems. A TBR operation can be viewed as an SPR
operation, except that the pruned subtree can be
rerooted before it is regrafted. Our speed-up for the
SEC-T problems is achieved by observing that the scores
I'of any re-rooted pruned subtree and its remaining
pruned tree are independent of each other. We define
the R-TEC-T problems for the TEC-T" problems, as we
defined the R-SEC-T" problems for the SEC-T" problems.
We will show that the R-TEC-T" problems can be solved
by solving two smaller problems separately and combin-
ing their solutions.

Definition 12. Let T be a tree and x € V(T). RR(T, x)
is defined to be the tree T, if x = Ro(T) or x € Ch(Ro
(7). Otherwise, RR(T, x) is the tree obtained by suppres-
sing Ro(T), and subdividing the edge (Pa(x), x) by the
new root node.
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Lemma 8. Given a tuple (G, S, v), and G”:= TBRg(v, %,
y), for x e WV(G,), y e V(G\V(G,). Then,
Cr(G", S)<cerrew)Cr(G, S)iffCr(RR(G,, x), 8)=vev(c,Cr(RR(Gy, ¥), S)
and CF(G//, S)SG’ETBRG(wx)CF(G// S)

Proof. (=) Let G* := TBRg(v, x,, y), for x; € V(G,),
and X1 z x. Now observe that,
Vg € V(G)\V(G,), Cr(G", S, g§) =Cr(G', S, g) Also,
let G* := TBRs(v, %, y1), for y; € V(G)\V(G,), and y; # .
Observe that, Vg € V(G,), Cr(G”, S, g) = Cr(G?, S, g)-
Thus, if G” gives the minimum duplication, duplication-
loss, or deep coalescence score among all trees in TBRg
(v), then the score contribution of vertices in V(G,) and
V(G)\V(G,) is independent. Now looking at vertices of
G, the best score is achieved when G, is rooted at x, i.e.
Cr(RR(Gy, x), S)=<vxev(c,)Cr(RR(G,, x'), S); also the
best score is achieved when RR(G,, x) is regrafted at y, i.
e., Cr(G//, S)SG’ETBRG(v,x)CF(G// S)(<=) This follows
similarly. D

Lemma 8 implies that a tree in TBRg(v) with the
minimum duplication, duplication-loss, or deep coales-
cence cost can be obtained by optimizing the rooting
for the pruned subtree, and the regraft location, sepa-
rately. A best rooting for the pruned subtree is linear
time computable [17,25], and the solution to the R-SEC
problem identifies a best regraft location in ®(n) time.
This allows to obtain a tree in TBRg(v) with the mini-
mum duplication, duplication-loss, or deep coalescence
cost by evaluating only ®(n) trees. Thus the R-TEC-T'
problem can be solved in ®(n) time. The TEC-T pro-
blem can be solved by calling the solution of R-TEC-T’
problem ©(x) times, and Theorem 4 follows.

Theorem 4. The TEC-T" problem can be solved in
O(1?) time.

Experimental results

We tested the performance of the gene tree rearrange-
ment algorithms on a set of 106 gene alignments contain-
ing sequences from 8 yeast taxa from Rokas et al. [26].
There is a well accepted phylogeny for the yeast species,
and the data set has been used to test algorithms for gene
tree parsimony based on the deep coalescence problem
[27,28]. We constructed maximum likelihood gene trees
for each gene using RAXML-VI-HPC version 7.0.4 [29],
the gene trees were rooted with the outgroup Candida
albicans. We used the new error correction algorithms to
examine how much a single SPR rearrangement in the
gene tree reduces the reconciliation cost based on deep
coalescence and also gene duplications and losses. Over
all genes the SPR error correction reduced the total deep
coalescence cost from 151 to 53 (Table 1) and the dupli-
cation and loss cost from 481 to 175 (Table 2). Both the
algorithms took only seconds to run for all 106 genes on
a standard laptop.
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Table 1 Error correction based on deep coalescence
model

Reconciliation Cost Original Post-Correction
0 45 77
1 32 15
2 6 8
3 9 5
4 8 0
>4 6 1

The number of yeast gene trees with different reconciliation costs based on
the deep coalescence model both before (Original) and after (Post-Correction)
the SPR error correction.

We also implemented a protocol to use the gene rear-
rangement algorithm to correct for gene tree error in
gene tree parsimony phylogenetic analyses. We first
took a collection of input gene trees and performed a
SPR species tree search using Duptree [30], which seeks
the species tree with the minimum gene duplication
cost. We used the duplication only cost (instead of
duplications and losses) because when there is no com-
plete sampling of all existing genes, the loss estimates
may be inflated by missing sequences. After finding the
locally optimal species tree, we used our SPR gene tree
rearrangement algorithm to find gene tree topologies
with a lower duplication cost. We then performed
another SPR species tree search using Duptree, starting
from the locally optimal species tree and using the new
gene tree topologies. This search strategy is similar to
re-rooting protocol in Duptree, which checks for better
gene tree roots after a SPR species tree search [30,31].
We tested this protocol on data set of 6,084 genes (with
a combined 81,525 leaves) from 14 seed plant taxa. This
is the same data set used by [31], except that all gene
tree clades containing sequences from a single species
were collapsed to a single leaf. Our original SPR tree
search found a species tree with 23,500 duplications.
The SPR tree search after the gene tree rearrangements
identified the same species tree, but the new gene trees
had a reconciliation cost of only 18,213. This tree search

Table 2 Error correction based on duplication and loss
model

Reconciliation Cost Original Post-Correction
0 45 77
1-5 32 15
6-10 15 13
11-15 8 0
16-20 5 1
>20 1 0

The number of yeast gene trees with different reconciliation costs based on
the duplication and loss model both before (Original) and after (Post-
Correction) the SPR error correction.



Chaudhary et al. BVIC Bioinformatics 2012, 13(Suppl 10):511
http://www.biomedcentral.com/1471-2105-13-510-S11

protocol took just under 4 hours on a Mac Powerbook
with a 2 GHz Intel Core 2 Duo processor and 2 GB
memory.

Conclusion

GT-ST reconciliation provides a powerful approach to
study the patterns and processes of gene and genome
evolution. Yet it can be thwarted by the error that is an
inherent part of gene tree inference. Any reliable
method for GT-ST reconciliation must account for gene
tree error; however, any useful method also must be
computationally tractable for large-scale genomic data.
We introduce fast and effective algorithms to correct
error in the gene trees. These algorithms, based on SPR
and TBR rearrangements, greatly extend upon the range
of possible errors in the gene tree from existing algo-
rithms [17,18], while remaining fast enough to use on
data sets with thousands of genes. These algorithms can
correct trees based on a broad variety of evolutionary
factors that can cause conflict between gene trees and
species trees, including gene duplication, duplications
and losses, and deep coalescence.

Our analysis on 106 yeast gene trees demonstrates that
even a single SPR correction on the gene trees can radi-
cally improve upon the reconciliation cost. Our results in
the yeast analysis are very similar to the 2-3 fold improve-
ment in implied duplications and losses reported from the
parametric gene tree estimation and reconciliation method
of Rasmussen and Kellis [5]. However, in contrast, to this
computationally complex method, the gene tree rearrange-
ment algorithm is extremely fast, does not require
assumption about the rates of duplication and loss, and is
also amenable to corrections based on deep coalescence
and duplications as well as duplications and losses. We do
not claim that the gene correction algorithms produce a
more accurate reconciliation than these parametric meth-
ods. However, they do present an extremely fast and flex-
ible alternative.

We also demonstrated that this error correction proto-
col could easily be incorporated into a gene tree parsi-
mony phylogenetic analysis. Previous studies have
emphasized that gene tree parsimony is sensitive to the
topology of the input trees. For example, the species tree
may differ whether the gene trees are made using parsi-
mony or maximum likelihood [8,10]. In our study,
although the gene tree rearrangement did not affect the
species tree inference, it did greatly reduce the gene dupli-
cation reconciliation cost.

While the results of the experiments are promising, they
also suggest several directions for future research. First,
further investigation is needed to characterize the effects
of error on gene tree topologies. For example, it seems
likely that gene tree errors may extend beyond a single
SPR or TBR neighborhood. Yet, if we allow unlimited
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rearrangements, the gene trees will simply converge on
the species tree topology. One simple improvement may
be to weight the possible gene tree rearrangements based
on support for different clades in the gene tree. Thus,
well-supported clades may be rarely or never be subject to
rearrangement, while poorly supported clades may be sub-
ject to extensive rearrangements. Finally, these approaches
implicitly assume that all differences between gene trees
and species trees are due to either coalescence, duplica-
tions, or duplications and losses. Future work will seek to
combine these objectives and also address lateral transfer.
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