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Abstract

Background: To infer a species phylogeny from unlinked genes, phylogenetic inference methods must confront
the biological processes that create incongruence between gene trees and the species phylogeny. Intra-specific
gene variation in ancestral species can result in deep coalescence, also known as incomplete lineage sorting,
which creates incongruence between gene trees and the species tree. One approach to account for deep
coalescence in phylogenetic analyses is the deep coalescence problem, which takes a collection of gene trees and
seeks the species tree that implies the fewest deep coalescence events. Although this approach is promising for
phylogenetics, the consensus properties of this problem are mostly unknown and analyses of large data sets may
be computationally prohibitive.

Results: We prove that the deep coalescence consensus tree problem satisfies the highly desirable Pareto property
for clusters (clades). That is, in all instances, each cluster that is present in all of the input gene trees, called a
consensus cluster, will also be found in every optimal solution. Moreover, we introduce a new divide and conquer
method for the deep coalescence problem based on the Pareto property. This method refines the strict consensus
of the input gene trees, thereby, in practice, often greatly reducing the complexity of the tree search and
guaranteeing that the estimated species tree will satisfy the Pareto property.

Conclusions: Analyses of both simulated and empirical data sets demonstrate that the divide and conquer
method can greatly improve upon the speed of heuristics that do not consider the Pareto consensus property,
while also guaranteeing that the proposed solution fulfills the Pareto property. The divide and conquer method
extends the utility of the deep coalescence problem to data sets with enormous numbers of taxa.

Introduction
The rapidly growing abundance of genomic sequence data
has revealed extensive incongruence among gene trees
(e.g., [1,2]) that may be caused by processes such as deep
coalescence (incomplete lineage sorting), gene duplication
and loss, or lateral gene transfer (see [3-5]). In these cases,
phylogenetic methods must account for and explain the
patterns of variation among gene tree topologies, rather
than simply assuming the gene tree topology reflects the
relationships among species. In particular, there has been

much recent interest in phylogenetic methods that
account for deep coalescence, which may occur in any
sexually reproducing organisms (e.g., [6-8]). One such
approach is the deep coalescence problem, which, given a
collection of gene trees, seeks a species tree that minimizes
the number of deep coalescence events [4,9]. Although the
deep coalescence problem is NP-hard [10], recent algorith-
mic advances enable scientists to solve instances with a
small number of taxa [11,12] and efficiently compute
heuristic solutions for data sets with slightly more species
[13]. Still, the heuristics are based on generic local tree
search strategies with no performance guarantees, and
they cannot handle enormous data sets. In this study, we
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prove that the deep coalescence problem satisfies the Par-
eto consensus property. We then describe a new divide
and conquer approach, based on the Pareto property, that,
in practice, can greatly extend the utility of existing heuris-
tics while guaranteeing that the inferred species tree also
has the Pareto property with respect to the input gene
trees.

Related work
The deep coalescence problem is an example of a super-
tree problems, in which input trees with taxonomic over-
lap are combined to build a species tree that includes all
of the taxa found in the input trees (see [14]). In fact, it is
among the few supertree methods that use a biologically
based optimality criterion. One way of evaluating super-
tree methods is by characterizing their consensus proper-
ties (e.g., [15,16]). The consensus tree problem is the
special case of the supertree problem in which all the
input trees contain the same taxa. Since all supertree pro-
blems generally seek to retain phylogenetic information
from the input trees, one of the most desirable consensus
properties is the Pareto property. A consensus tree pro-
blem satisfies the Pareto property on clusters (or triplets,
quartets, etc.) if every cluster (or triplet, quartet, etc.) that
is present in every input tree appears in the consensus tree
[15-17]. Many supertree problems satisfy the Pareto prop-
erty for clusters in the consensus setting [15,16]. However,
this has not been shown for the deep coalescence problem.

Our contributions
We prove that the deep coalescence consensus tree pro-
blem satisfies the Pareto property for clusters. This result
provides useful guidance for the species tree search.
Instead of evaluating all possible species trees, to find the
optimal solution we need only to examine trees that
satisfy the Pareto property on clusters. These trees will
all be refinements of the strict consensus of the gene
trees. Furthermore, the Pareto property allow us to show
that the problem can be divided into smaller independent
subproblems based on the strict consensus tree. We
apply this property and describe a new divide and con-
quer method, and our experiments demonstrate that this
method can greatly improve the speed of deep coales-
cence tree heuristics, potentially enabling efficient and
effective estimates from inputs with several thousands of
taxa. Future work will exploit the independence of the
subproblems and solve these on parallel machines, which
should result in even larger and more accurate solutions.

Methods
Basic definitions, notations, and preliminaries
In this section we introduce basic definitions and nota-
tions and then define preliminaries required for this

work. For brevity some proofs are omitted in the text
but available in Additional file 1.
A graph G is an ordered pair (V, E) consisting of a

non-empty set V of nodes and a set E of edges. We
denote the set of nodes and edges of G by V(G) and E
(G), respectively. If e = {u, v} is an edge of a graph G,
then e is said to be incident with u and v. If v is a node
of a graph G, then the degree of v in G is the number of
edges in G that are incident with v.
A tree T is a connected graph with no cycles. T is

rooted if it has exactly one distinguished node of degree
one, called the root, and we denote it by Ro(T). The
unique edge incident with Ro(T) is called the root edge.
Let T be a rooted tree. We define ≤T to be the partial

order on V (T) where x ≤T y if y is a node on the path
between Ro(T) and x. If x ≤T y we call x a descendant
of y, and y an ancestor of x. We also define x <T y if x
≤T y and x ≠ y, in this case we call x a proper descen-
dant of y, and y a proper ancestor of x. The set of
minima under ≤T is denoted by Le(T) and its elements
are called leaves. A node is internal if it is not a leaf.
The set of all internal nodes of T is denoted by I(T).
Further, we will frequently refer to the subset of I(T)
whose degree is two, and we denote this by I2(T).
Let X ⊆ Le (T) , we write X to denote the leaf com-

plement of X when the tree T is clear from the context,
where X = Le (T) \X .
If {x, y} Î E(T) and x <T y then we call y the parent of

x denoted by PaT (x) and we call x a child of y. The set
of all children of y is denoted by ChT

(
y
)
. If two nodes

in T have the same parent, they are called siblings. The
least common ancestor (LCA) of a non-empty subset X
⊆ V(T), denoted as lcaT(X), is the unique smallest upper
bound of X under ≤T.
If e Î E(T), we define T/e to be the tree obtained from

T by identifying the ends of e and then deleting e. T/e is
said to be obtained from T by contracting e. If v is a ver-
tex of T with degree one or two, and e is an edge inci-
dent with v, the tree T/e is said to be obtained from T
by suppressing v.
Examples of the following definitions are shown in

Figure 1. Let X ⊆ V(T), the subtree of T induced by X,
denoted T(X), is the minimal connected subtree of T
that contains Ro(T) and X. The restricted subtree of T
induced by X, denoted as T|X, is the tree obtained from
T(X) by suppressing all nodes with degree two. The sub-
tree of T rooted above node v Î V (T), denoted as Tv, is
the restricted subtree induced by {u Î V (T): u ≤T v}.
T is binary if every node has degree one or three.

Throughout this paper, the term tree refers to a rooted
binary tree unless otherwise stated. Also, the subscript
of a notation may be omitted when it is clear from the
context.
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Deep coalescence
We define the deep coalescence cost function as demon-
strated in Figure 2. Note that our definition of the deep
coalescence cost given in Def. 3, is somewhat different, but
for our purposes equivalent, to its original definition also
termed extra lineage given in [4]. The relationship
between both definitions is shown in Additional file 1.
Throughout this section we assume T and S are trees

over the same leaf set.
Definition 1 (Path length). Suppose x ≤T y, the path

length from x to y, denoted plT(x, y), is the number of edges
in the path from x to y. Further, let X ⊆ Y ⊆ Le (T) , we
extend the path length function by plT(X,Y) ≜ plT(lcaT(X),
lcaT(Y)).

Definition 2 (LCA mapping). Let v Î V(T), the LCA
mapping of v in S, denoted MT⊳S(v), is defined by
MT�S (v) � lcaS (Le (Tv)) .
Definition 3 (Deep coalescence). The deep coales-

cence cost from T to S, denoted DC(T, S), is

DC(T, S) �
∑

{u,v}∈E(T)
u<v

plS(MT�S(u), MT�S(v))

Using the extended path lengths, the deep coalescence
cost can be equivalently expressed as

DC(T, S) =
∑

{u,v}∈E(T)
u<v

plS(Le(Tu), Le(Tv))

Figure 1 Examples of tree definitions. (a) A rooted tree T with four leaves {a, b, c, d}. (b) The subtree of T induced by X where X = {a, b}. (c)
The restricted subtree of T induced by X.

Figure 2 Example of deep coalescence cost definition. Example showing the deep coalescence cost from T to S. Each edge of T is
accompanied by its cost, and its corresponding path is shown on S.
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Consensus tree
Definition 4 (Consensus tree problem). Let
f : T x × T x → R be a cost function where X is a leaf
set and T x is the set of all trees over X. A consensus
tree problem based on f is defined as follows.
Instance: A tuple of n trees (T1,...,Tn) over X
Find: The set of all trees that have the minimum

aggregated cost with respect to f. Formally,

argmin
S∈TX

(
n∑
i=1

f (Ti, S)

)

This set is also called the solutions for the consensus
tree instance.
Definition 5 (Deep coalescence consensus tree pro-

blem). We define the deep coalescence consensus tree
problem to be the consensus tree problem based on the
deep coalescence cost function.
Cluster and Pareto
Definition 6 (Cluster). Let T be a tree, the clusters induced
by T, denoted, Cl (T) , is Cl(T) � {Le(Tv) : v ∈ V(T)} .
Further, X ∈ Cl (T) is called a trivial cluster if
X = Le (T) or |X| = 1, it is called non-trivial otherwise.
Let Y ⊆ Le (T) , we say that T contains (cluster) Y if
Y ∈ Cl (T) .
Definition 7 (Pareto on clusters). Let P be a consensus

tree problem based on some cost function. We say that P
is Pareto on clusters if: for all instances I = (T1,...,Tn) of
P, for all solutions S of I, we have ∩n

i=1C1(Ti) ⊆ C1(S) .

Theorem overview
We wish to show that the deep coalescence consensus tree
problem is Pareto on clusters. We describe a high level
structure of the proof in this section and provide necessary
supporting lemmata in the next section. The proof pro-
ceeds by contradiction, assuming that the deep coales-
cence consensus tree problem is not Pareto on clusters. By
Def. 7, the assumption implies that there exists an instance
I = (T1,...,Tn), a solution S for I, and a cluster X ⊆ Le (S)

where X ∈ ∩n
i=1 Cl(Ti) but X �∈ Cl(S) . S being a solution

for I, implies by Def. 4, that the aggregated deep coales-

cence cost, i.e.
∑n

i=1
DC(Ti, S) is minimized. Then,

based on the existence of the cluster X, we edit S and form
a new tree R using a tree edit operation which will be
introduced in the next section. The properties of this new
operation together with the properties of X (proved in the
next section), provides the key ingredients to calculate
the changes in deep coalescence costs. With some further
arithmetics, this allows us to conclude that R in fact
has a smaller aggregated deep coalescence cost, i.e.∑n

i=1
DC(Ti, S) >

∑n

i=1
DC(Ti, R) , hence contradicting

the assumption that S is a solution for I.

Supporting lemmata
Shallowest regrouping operation
In this section we formally define the new tree edit opera-
tion that forms the key part of the theorem. We begin
with some useful definitions related to the depth of nodes.
An example of this operation is shown in Figure 3.
Definition 8 (Node depth). The depth of a node vÎV

(T), denoted depT (v), is pl (v, Ro (T)) .
Definition 9 (Shallowest nodes). Let T be a tree and

X ⊆ V(T), the shallowest function, denoted shallowestT
(X), is the set of nodes in X which have the minimum
depth among all nodes in X. Formally, we define shallo-
westT (X) ≜ argminvÎX (depT(v)).
Now we have the necessary mechanics to define the

new tree edit operation. In what follows, we assume S
to be a tree, ∅ ⊂ X ⊂ Le(S) , and S′ = S(X) .
Definition 10 (Regroup). Let v Î I2(S’). The regroup-

ing operation of S by X on v, denoted Γ(S, X, v), is the
tree obtained from S’ by

1. (R1) Identify Ro(S|X) and v. In other words we
adjoin the root of tree S|X onto the node v.
2. (R2) Suppress all nodes with degree two.

Definition 11 (Shallowest regroup). The shallowest
regrouping operation of S by X, denoted �̂(S, X),
defines a set of trees by �̂(S, X) � {�(S, X, v) : v ∈ shallowestS′ (I2(S′))}.
As Figure 3 shows, the shallowest regrouping opera-

tion pulls apart X from S and regroups X back onto
each of the shallowest nodes in S.
Counting the number of degree-two nodes
The regrouping operation includes the step of suppres-
sing nodes with degree two. Since this step affects path
lengths and ultimately deep coalescence costs, we are
required to count carefully the number of degree-two
nodes under various conditions. Here we assume that T
is a tree and {X, Y} is a bipartition of Le(T). We begin
with two observations that assert existence of degree-
two nodes, and assert existence of leaf sets given a
degree-two node.
Observation 1. I2(T(X) ≠ Ø and. I2(T(Y) ≠ Ø.
Observation 2. If v Î I2(T(X)), then Le (Tv) ∩ X �= Ø

and. Le (Tv) ∩ Y �= Ø .
The next Lemma says that if the root of T is the par-

ent of lca(X), then the number of degree-two nodes in
T(X) is at least the depth of v, where v is a shallowest
degree-two node of T(Y).
Lemma 1. If Pa (lca (X)) = Ro (T) and v Î shallowest

(I2(T(Y))), then dep(v) ≤ |I2(T(X))|.
Proof. Assume the premise. Let n = dep(v), we observe

that n ≥ 1 because of the root edge. Figure 4 shows the
setup and variable assignments for this proof. Let v = v1
< ... <vn, and let B, A1, ... , An be the leaf sets of the indi-
cated subtrees. We observe the following:
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Figure 3 Example of the shallowest regrouping operation. Example of the shallowest regrouping operation of S by X where X = {a, c, d}.

The intermediate tree S′ = S(X) shows its two shallowest degree-two nodes v1 and v2. R1 and R2 are the resulting trees of this operation.

That is, �̂(S,X) = {R1,R2} where R1 = Γ(S, X, v1) and R2 = Γ(S, X, v2).

Figure 4 Setup and variable assignments for the proof of Lemma 1. Tree showing the variable assignments in the proof of Lemma 1.
Dotted lines represent omitted parts of the tree, and triangles represent subtrees.
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• vn = lca(X) because Pa (lca (X)) = Ro(T) .
• B ⊆ X and A1 ∩ Y ≠ ∅, because v is a degree-two
node of T(Y).
• A1 ∩ Y ≠ ∅ implies that A2,..., An each contains at
least an element of Y. For otherwise, each of v2, ...,vn
becomes a degree-two node in T(Y), contradicting
the assumption that v = v1 is the shallowest degree-
two node in T(Y).

In order to obtain T(X), we must prune subtrees in A1

whose leaves are in Y (which could be the entire subtree
A1). Thus there must be at least one degree-two node in
A1 (or v1 if A1 is pruned). Similarly, for 1 <i ≤ n, either vi
has degree two or there exists a degree-two node in Ai.
Overall T(X) has at least n degree-two nodes, as required. □
Properties of the regrouping operation
We examine some properties of the regrouping opera-
tion in this section. In general, these properties show
that the path lengths defined by LCA’s do not increase
under several different assumptions. This preservation
of path lengths would later assist in the calculation of
deep coalescence costs. Throughout this section, we
assume S to be a tree, ∅ ⊂ X ⊂ Le(S) , and S′ = S(X).
Further we let R = Γ(S, X, v) where v Î I2(S’).
Lemma 2. If A ⊆ B ⊆ Le(S) and B ⊆ X , then plS(A,

B) = plS’ (A, B).
Lemma 3. If A ⊆ B ⊆ Le(S) and B ⊆ X , then plS(A,

B) ≥ plR(A, B).
Lemma 4. If A ⊆ B ⊆ Le(S) and B ⊆ X , then plS(A,

B) ≥ plR(A, B).
Lemma 5. If A ⊆ B ⊆ Le(S) , A ⊆ X , and X ⊆ B,

then plS(A, B) ≥ plR(A, B).
Proof. Let S“ be the tree obtained from S’ by identifying

Ro(S|X) and v. In other words, S“ is the tree after step
(R1) of the regroup operation Γ(S, X, v). We will show
that plS ≥ (A, B) ≥ plS” (A, B) ≥ plR(A, B). We begin with
the first inequality. First, since A ⊆ X we know that lcaS
(A) = lcaS’(A) = lcaS” (A). Let x = lcaS(X) and b = lcaS(B),
then the assumption of X ⊆ B implies x ≤S b. Since v has
degree two in S’, we know that Le (Sv) ∩ X �= ∅ (Obser-
vation 2), and so v ≤S x. Now let x“ = lcaS” (X) and b“ =
lcaS”(B). By (R1) we have that x” ≤ S” v, and so x“ ≤ S” x,
which implies b“ ≤ S” b. Furthermore, lcaS(A)= lcaS” (A) is
a descendant of both b and b“ because A ⊆ B, and hence
b“ ≤ S” b implies that plS(A, B) ≥ plS” (A, B).
Next, by (R2) R is obtained from S“ by suppressing

some nodes, therefore a path in S“ can only be made
shorter in R, hence we have plS”(A, B) ≥ plR(A, B).
Finally, combining the above results we have plS(A, B)

≥ plR(A, B). □

Main theorem
Theorem 1. Deep coalescence consensus tree problem is
Pareto on clusters.

Proof. Assume not for a contradiction, then there exists
an instance I = (T1,...,Tn), a solution S for I, and a cluster
X ⊆ Le(S) where X ∈ ∩n

i=1Cl(Ti) but X /∈ Cl (S) . Since

X /∈ Cl (S) , X must be non-trivial, therefore �̂(S, X)

does not contain S and is not empty. Let R ∈ �̂(S, X) .
We will show that (∀ 1 ≤ i ≤ n) (DC(Ti, S) >DC(Ti, R)),

which implies
∑n

i=1
DC(Ti, S) >

∑n

i=1
DC(Ti, R),

contradicting the assumption that S is a solution for I.
Let T = Ti where 1 ≤ i ≤ n, we will show that DC(T,

S) >DC(T, R). This requires that DC(T, S) - DC(T, R) >
0, in other words∑

{u,v}∈E(T)
u<v

(
plS(Le(Tu), Le(Tv)) − plR

(
Le(Tu), Le(Tv)

))
> 0

(1)

Since (1) sums over all edges in T, for convenience we
partition the edges of T and compute the differences in
path lengths for each partition individually. Figure 5
depicts a running example for T, S, and R where X = {a,
b, c}.
We identify some specific nodes in order to partition

the edges of T. Let S′ = S(X̄), w ∈ I2(S′) where R = Γ(S,
X, w). Since X /∈ Cl (S) , S’ contains at least two nodes
with degree two. Let w’Î I2(S’) such that w’ ≠ w, then
Sw’ contains some leaf y ∉ X (Observation 2).
Let x = lcaT (X) and z = lcaT (X ∪ {y}), we partition

the edges of T into {E1, E2, E3, E4} as follows.

1. E1 ≜ {{u, v} Î E(T) : u <v ≤ x} = A ll edges under
x
2. E2 ≜ {{u, v} Î E(T) : x ≤ u <v} = Edges forming
the path from x to Ro(T)
3. E3 ≜ {{u,v} Î E(T) : y ≤ u <v ≤ z} = Edges forming
the path from y to z
4. E4 ≜ E(T) \ (E1 ∪ E2 ∪ E3)

We consider (1) for each of the partition separately.
For clarity, we define the aggregated cost difference Σi
for partition Ei as follows.

�i �
∑

{u,v}∈Ei
u<v

(plS(Le(Tu), Le(Tv)) − plR(Le(Tu),Le(Tv)))

Hence (1) becomes

�1 + �2 + �3 + �4 > 0 (2)

Let x’ = lcaS(X) and p = plS (w, x’) + 1. For each i Î
{1, 2, 3, 4}, we claim and prove the bound of Σi as
follows.
Claim 1. Σ1 ≥ p
Proof. First we observe that the difference for each

path length in this partition is ≥ 0 (Lemma 4), so we
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have Σ1 ≥ 0. Since x’ = lcaS (X), we only need to con-
sider the subtree Sx’ in computing the path lengths in
this partition. Define U = Sx’. In particular, the number
of degree two nodes in U(X) gives us a lower bound on
the total decreases of path lengths, because these nodes
are removed to obtain U|X which is a subtree of R.
That is, Σ1 ≥ |I2(U(X))|. Lemma 1 applies to U with
bipartition {X,Le(U)\X} and the node w, so we have |I2
(U(X))| ≥ depU (w). The depth depU (w) is with respect
to U, and we relate it to a path length in S by taking
away the root edge, that is depU(w) − 1 = plS(w, x′) .
Finally, using the definition of p we obtain Σ1 ≥ |I2(U
(X))| ≥ depU (w)= plS (w, x’) +1= p.
Claim 2. Σ2 = −p
Proof.

�2 = plS(X,Le(T)) − plR(X,Le(T))

= [plS(x′,Ro(T)) − 1] − [1 + plR(w, x′) + plR(x′,Ro(T)) − 1]

= plS(x′,Ro(T)) − [1 + plR(w, x′) + plR(x′,Ro(T))]
= plS(x′,Ro(T)) − [1 + plS(w, x′) + plS(x′,Ro(T))]
= −[plS(w, x′) + 1]

= −p

The fourth equality holds because w is the shallowest
degree-two node in S’, so that no edges along the path
from w to x’ are contracted in R, hence plR(w, x’) = plS
(w, x’).
Claim 3. Σ3 ≥ 1
Proof. Let {a, b} Î E3 where a<T b, A = Le(Ta) , and

B = Le(Tb) . We know that A ⊆ X because otherwise
this edge should be in E1 or E2. We consider two cases
for B.

1. If B ⊆ X , then Lemma 3 applies on S, R, A, B, so
plS(A, B) − plR(A, B) ≥ 0.
2. If X ⊆ B, then Lemma 5 applies on S, R, A, B, so
plS(A, B) − plR(A, B) ≥ 0.

In any case, we have plS(A, B) − plR(A, B) ≥ 0 for each
edge {a, b} Î E3. This implies that Σ3 ≥ 0. Further, since
w’ Î I2(S’) and w’ ≠ w, w’ does not exist in R. We also
know that y<Sw′<SlcaS(X ∪ {y}) by the definitions of w’
and y. Therefore there exists an edge {a, b} Î E3 such
that plS(A, B) − plR(A, B) ≥ 1. Hence we have Σ3 ≥ 1.
Claim 4. Σ4 ≥ 0

Figure 5 Running example for the proof of Theorem 1. A running example for the proof of Theorem 1 where T is a tree in the instance
tuple I, S is an assumed solution for I,X = {a, b, c}, S′ = S(X), U = Sx′ , and R = Γ(S, X, w). Highlighted regions in T are the edge
partitions E1, E2, and E3. The rest of edges form the partition E4. By counting the costs for each partition we have Σ1 =6 - 4 = 2, Σ2 =1 - 3 = −2,
Σ3 = 2 − 1 = 1, and Σ4 =3 − 3 = 0. Overall we have DC(T, S) − DC(T, R) = 1.
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Proof. Let {a, b} Î E4 where a <T b, A = Le(Ta) , and
B = Le(Tb) . The proof follows from the same argument
as in Claim 3 where we have plS (A, B) − plR(A, B) ≥ 0
for each edge {a, b} Î E4, hence Σ4 ≥ 0.
Finally, we have Σ1 +Σ2 +Σ3 +Σ4 ≥ p + (-p) + 1+ 0 =1

> 0. Hence (2) is satisfied, and so is (1). In sum, we
have constructed a tree R and showed that∑n

i=1
DC(Ti, S) >

∑n

i=1
DC(Ti, R), which contradicts

with the assumption that S is a solution for I, in other
words the assumption that S has the minimum aggre-
gated cost with respect to the deep coalescence cost
function. □

Algorithm for improving a candidate solution
Algorithm 1 takes a consensus tree problem instance
and a candidate solution as inputs. If the candidate solu-
tion does not display the consensus clusters, it is trans-
formed into one that includes all of the consensus
clusters and has a smaller (more optimal) deep coales-
cence cost.
Algorithm 1 Deep coalescence consensus clusters

builder
1: procedure DCConsensusClustersBuilder (I, T)
Input: A consensus tree problem instance I = (T1,...,

Tn), a candidate solution T for I
Output: T, or an improved solution R that contains all

consensus clusters of I
2: R ¬ T
3: C ¬ Set of all consensus clusters of I
4: for all cluster X Î C do
5: if R does not contain X then
6: v ¬ A node in shallowest (I2(R(X))) (shal-

lowest degree-two node of R(X) )
7: R ¬ Γ(R, X, v) (regrouping operation of R by

X on v)
8: end if
9: end for
10: return R
11: end procedure
The correctness of Algorithm 1 follows from the proof

of Theorem 1. We now analyze its time complexity. Let
m be the number of taxa present in the input trees. Line
3 takes O(nm) time. Line 5, 6, and 7 each takes O(m)
time, and there are O(m) iterations. Overall Algorithm 1
takes O(nm + m2) time.

General method for improving a search algorithm
In this section we extend the result of Theorem 1 and
show that the deep coalescence consensus tree problem
exhibits optimal substructures based on the strict consen-
sus tree of the problem instance. This leads to another
simple and general method that improves an existing

search algorithm. Figure 6 depicts a running example for
this section. We now begin with some useful definitions.
Definition 12 (Strict consensus tree [18]). Given a

tuple of n trees I = (T1,...,Tn), the strict consensus tree of
I, denoted StrictCon(I), is the unique tree that contains
those clusters common to all the input trees. Formally,
StrictCon(I) is a (possibly non-binary) tree S such that

Cl(S) =
⋂n

i=1
Cl(Ti) .

Definition 13 (Cut on trees). Let H and T be two
trees over the same leaf set, such that H is a non-binary
tree and T is a binary tree that refines H. Given an
internal node h in H, a cut on T via H and h, denoted
CutH,h(T) , is the minimal connected subtree of T that
contains {MH�T(c) : c ∈ ChH(h)} , and we rename each
leaf x by Le(Tx) .
We further extend this to a tuple of trees I = (T1,...,Tn)

by CutH,h(I) � (CutH,h(T1), . . . ,CutH,h(Tn)) .
Theorem 2. Let I =(T1,...,Tn) be an instance of the

deep coalescence consensus tree problem, and let S be a
solution for I (having the optimal deep coalescence cost).
Further suppose H is the strict consensus tree of I, and h
is an internal node in H. Then CutH,h(S) is a solution
for the instance CutH,h(I) of the deep coalescence con-
sensus tree problem.
Proof. Let CutH,h(S) = S’ and

CutH,h(I) = (CutH,h(T1), . . . ,CutH,h(Tn)) = (T′
1, . . . ,T

′
n) .

First we observe that S must be a refinement of H by
Theorem 1, therefore S’ is defined. We continue to
prove by contradiction, assuming the premise holds but
S’ is not a solution for the instance CutH,h(I) . So let R’
be a solution for the instance CutH,h(I) , this implies

that
∑n

i=1
DC(T′

i, S′) >
∑n

i=1
DC(T′

i, R′) . We now

modify S by replacing S’ with R’ as follows:

1. Remove all edges of S’, and remove all nodes of S’
excepts the root and the leaves.
2. Identify Ro

(
S′) with. Ro

(
R′)

3. For each leaf v of S’, identify v with a leaf x of R’
where x = Le(Sv) .

Let the resulting tree be R. We will show that R has a
lower deep coalescence cost, contradicting the assump-
tion that S is a solution for I.
Let T = Ti where 1 ≤ i ≤ n, it suffices to show that DC

(T,S) >DC(T, R), in other words∑
{u,v}∈E(T)

u<v

(
plS(MT�S(u), MT�S(v)) − plR(MT�R(u), MT�R(v))

)
> 0

(3)

For convenience, let ChH(h) = {c1, . . . , cm}, h′ = MH�T(h) ,

and c′j = MH�T(cj)where 1 ≤ j ≤ m.
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Similar to the proof of Theorem 1, we partition the
edges of T into {Eunder, Eout, Ein} as follows.
1. Eunder � {{u, v} ∈ E(T) : u < v and (∃j)(v ≤ c′j)}
2. Eout � {{u, v} ∈ E(T) : u < v and v �≤ h′}
3. Ein � E(T)\(Eunder ∪ Eout)
Recall that the modification of S into R only involves

the subtree S’, therefore MT�S(v) is unchanged for
every v occurs in Eunder and Eout. Hence it suffices to
evaluate (3) on Ein only. However we have already

assumed that
∑n

i=1
DC(T′

i, S′) >
∑n

i=1
DC(T′

i , R
′) ,

therefore (3) holds. Overall we have that R has a lower
deep coalescence cost, contradicting the assumption
that S is a solution for I. □
Theorem 2 implies that every internal node of the

strict consensus tree defines an independent subpro-
blem, and solutions of these subproblems can be com-
bined to give a solution to the original deep coalescence
consensus tree problem. This leads to the following

general divide and conquer method that improves an
existing search algorithm.
Method 1 Deep coalescence consensus tree method
1: procedure DCConsensusTreeMethod(I)
Input: A DC consensus tree problem instance I =

(T1,...,Tn), an external program DC-SOLVER.
Output: A candidate solution T for I
2: H ¬ StrictCon(I)
3: for all internal node h of H do
4: Ih ¬ CutH,h(I)
5: Sh ¬ DC-SOLVER(Ih)
6: Refine the children of h on H by the tree Sh
7: end for
8: return H
9: end procedure

Results
We used simulation experiments to (i) test if the solu-
tions obtained from efficient heuristics presented in [13]

Figure 6 Running example for the definitions and proof of Theorem 2. A running example for the definitions and proof of Theorem 2.
Arrows are marked by numbers 1 to 6, demonstrating the steps of the proof. Each step is explained below: (1) Given an instance I = (T1,...,Tn), let
H be the strict consensus tree of I. An internal node of H and its four children are shown. (2) Let S be a solution for I, having the optimal deep

coalescence cost. (3) Cut trees via H and h, obtaining CutH,h(I) and CutH,h(S) = S′. Let A, B, C, D be the leaf sets of each subtree. (4) We

assume by contradiction that S’ is not a solution for CutH,h(I) , and so we let R’ be a solution for CutH,h(I). (5 and 6) Modify S to obtain

R, by replacing S’ with R’.
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display the Pareto property, and (ii) compare the perfor-
mance of our new divide and conquer approach based
on the Pareto property to the generic heuristic in [13].

Experiment results 1
First to examine if subtree pruning and regrafting (SPR)
heuristic solutions from [13] display the Pareto property,
we generated a series of four 14-taxon trees that share few
clusters. To do this, we first generated random 11-taxon
trees. Next, we generated random 4-taxon trees containing
the species 11-14. We then replaced the one of the leaves
in the 11-taxon tree with the random 4-taxon tree. This
procedure produces gene trees that share at least a single
4-taxon cluster in common. Although this simulation does
not reflect a biological process, it represents extreme cases
of error or incongruence among gene trees. In three cases
with the 14-taxon gene trees, we found that the SPR heur-
istic did not return a result that contained the consensus
cluster. In these cases, our proof demonstrates that there
exists a better solution that also contained the consensus
cluster. However, the failure of the SPR heuristic in these
cases appears to depend on the starting tree; these data
sets did not fail with all starting trees. Thus, the shortcom-
ings of the SPR heuristic may be ameliorated by perform-
ing multiple runs from different starting trees.

Experiment results 2
We next evaluated the efficacy and scalability of Method 1
and compared it to the standalone SPR heuristic. We gen-
erate sets of gene trees, each with different consensus tree
structures (depths and branch factors) as follows. The
depth of a tree is the maximum number of edges from the
root to a leaf, and the branch factor of a tree is the maxi-
mum degree of the nodes. For each depth d and a branch
factor b, we first generate a complete b-ary tree of depth
d, denoted Cd,b. This tree represents the consensus tree.
We used depths of 2-5, and branch factors of 3-30. For
each Cd,b, we then generated 10 sets of 20 random gene
trees, such that each gene tree is a binary refinement of
Cd,b. Each set of input trees was given as input to Method
1, using [13] as the external deep coalescence solver. For
comparison, we ran the same data sets using [13] as the
standalone deep coalescence solver. We calculated the
deep coalescence score for each output species tree, and
we report the average score of 10 profiles as the score for
each Cd,b. We also measured and recorded the average
runtime of each run. We terminate the execution of the
standalone solver if the runtime exceeds two minutes, and
in this case the results are not shown. In general, Figure 7
shows that the scores of the trees were very similar from
Method 1 and the standalone SPR heuristic. Thus, Method
1 does not appear to improve the quality of the deep coa-
lescence species trees. However, Method 1 shows extreme

improvements in the runtime, especially as the branch fac-
tors increase.

Experiment results 3
Finally, we examined the performance of Method 1 and
compare it to the standalone SPR heuristic using more
biologically plausible coalescence simulations. We fol-
lowed the general structure the coalescence simulation
protocol described by Maddison and Knowles [9]. First,
we generated 40 256-taxon species trees based on a Yule
pure birth process using the r8s software package [19]. To
transform the branch lengths from the Yule simulation to
represent generations, we multiplied them all by
1,000,000. Next, we simulated coalescence within each
species tree (assuming no migration or hybridization)
using Mesquite [20]. All simulations produced a single
gene copy from each species. For each species tree, we
simulated 20 gene trees assuming a constant population
size. The population size effects the number of deep coa-
lescence events, with larger populations leading to more
incomplete lineage sorting and consequently less agree-
ment among the gene trees. Thus, to incorporate different
levels of incomplete lineage sorting, for 20 of the species
trees, we used a constant population size of 10,000, and
for 20 we used a constant population size of 100,000.
Thus, in total, we produced 40 sets of 20 gene trees, with
each set simulated from a different 256-taxon species tree.
For each data set, we performed a phylogenetic analyses

using Method 1 and also using only the SPR heuristic
from Bansal et al. [13]. In contrast to the simulations in
Experiment 1, the standalone SPR heuristic of Bansal et al.
[13] always returned species trees with all consensus clus-
ters. Of course, all solutions from Method 1 must display
the Pareto property. The deep coalescence reconciliation
score for the best trees were similar with both algorithms.
When the population size was 10,000, the average coales-
cence cost was 279, and all the gene trees shared an aver-
age of 29.4 clusters. In 19 out of the 20 of these
simulations, both approaches produced the same results,
while in one case, Method 1 found a species tree with a
one fewer implied deep coalescence event. When the
population size was 100,000, the average coalescence cost
was 2142, and the all gene trees shared an average of 19.1
clusters. Although the reconciliation cost never differed by
more than 15, Method 1 had a better score in 6 replicates,
and the standalone SPR had a better score in 11 replicates.
All analyses finished within 30 seconds in a laptop PC, but
Method 1 was always faster than SPR alone.

Discussion
In addition to offering a biologically informed optimality
criterion to resolve incongruence among gene trees, we
prove that the deep coalescence problem also is guaranteed
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to retain the phylogenetic clusters for which all gene trees
agree. Since the deep coalescence problem is NP-hard [10],
most meaningful instances will require heuristics to esti-
mate a solution. We demonstrate that the Pareto property

can be leveraged to vastly improve upon the running time
of heuristics. Method 1 represents a new general approach
to phylogenetic algorithms. In most cases, heuristics to
estimate solutions for phylogenetic inference problems are

Figure 7 Deep coalescence score and runtime results for Experiment 2. Legend: blue represents Method 1 (divide and conquer) and
orange represents standalone SPR heuristic.
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based on a few generic search strategies such as the local
search heuristics based on nearest neighbor interchange
(NNI), SPR, or tree bisection and reconnection (TBR)
branch swapping. Although these search strategies often
appear to perform well, they are not connected to any spe-
cific phylogenetic problems or optimality criteria. Ideally,
however, efficient and effective heuristics should be tailored
to the properties of the phylogenetic problem. In the case
of the deep coalescence consensus tree problem, the Pareto
property provides an informative guiding constraint for the
tree search. Specifically, when considering possible solu-
tions, we need only consider solutions that contain all clus-
ters from the input gene trees, or, in other words, that
refine the strict consensus of the input gene trees.
Still, our simulation experiments suggest that, in many

cases, the SPR local search heuristic described by Bansal
et al. [13] performs well. While we identified cases in
which the estimate from the SPR heuristic did not con-
tain the Pareto clusters, in most cases SPR alone found
trees as good, or even slightly better, than Method 1. We
note that the size of the simulated coalescence data set,
256 taxa, exceeds the size of the largest published analysis
of the deep coalescence consensus tree problem and is
far beyond the largest instances (8 taxa) from which
exact solutions have been calculated [11], and the SPR
found good solutions within 30 seconds. Still, running
time for the SPR heuristic does not always scale well, and
the results of Experiment 2 suggest that it might not be
tractable for extremely large data sets. In these cases, in
practice Method 1 may vastly improve upon the running
time, while guaranteeing a solution with the Pareto
property.
Further, Theorem 2 shows that the deep coalescence

consensus tree problem exhibits independent optimal
substructures. This implies that, once we compute the
strict consensus tree of the problem instance, the rest of
Method 1 can be directly parallelized, regardless of which
external deep coalescence solver is used. In the case
where the external solver guarantees exact solutions, our
method would also give exact solutions, but can poten-
tially solve instances with a much larger taxa size com-
pared to running the external solver alone.
Although the Pareto property for the deep coalescence

consensus tree problem is desirable, and the divide and
conquer method is promising for large-scale analyses,
there are limitations to their use. First, the Pareto property
and Method 1 are limited to the consensus case, or,
instances in which all of the input gene trees contain
sequences from all of the species. Also, the Pareto prop-
erty is only useful when all input trees share some clusters
in common. If there are no consensus clusters among the
input trees, then Method 1 conveys no run-time benefits.
While this may seem like an extreme case, it is possible
with high levels of incomplete lineage sorting, or, perhaps

more likely, much error in the gene tree estimates. Also,
as we add more and more gene trees, we would expect
more instances of conflict among the gene trees, poten-
tially converging towards the elimination of consensus
clusters. Than and Rosenberg [21] recently proved the
existence of cases in which the deep coalescence problem
is inconsistent, or converges on the wrong species tree
estimate with increasing gene tree data. Although incon-
sistency is concerning, the Pareto property provides some
reassurance. Even in a worse case scenario in which the
deep coalescence problem is misled, the optimal solutions
will still contain all of the agreed upon clades from the
gene trees. Perhaps the greatest advantage of the deep coa-
lescence problem, especially compared to likelihood and
Bayesian approaches that infer species trees based on coa-
lescence models (e.g., [22-24]), is its computational speed
and the feasibility of estimating a species tree from large-
scale genomic data sets representing hundreds or even
thousands of taxa [13]. Not only can our method improve
the performance of any existing heuristic, the Pareto prop-
erty describes a limited subset of possible species trees
that must contain the optimal solution.

Conclusions
We prove that the deep coalescence consensus tree pro-
blem satisfies the Pareto property for clusters and
describe an efficient algorithm that, given a candidate
solution that does not display the consensus clusters,
transforms the solution so that it includes all the con-
sensus clusters and has a lower deep coalescence cost.
We extend the result and prove that the problem exhi-
bits optimal substructures based on the strict consensus
tree of the input gene trees. Based on this property, we
suggest a new, parallelizable tree search method, in
which we refine the strict consensus of the input gene
trees. In contrast to previously proposed heuristics, this
method guarantees that the proposed solution will con-
tain the Pareto clusters. Also, as our experiments
demonstrate, this method can greatly improve the speed
of deep coalescence tree heuristics, potentially enabling
efficient and effective estimates from input with thou-
sands of taxa.
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