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Abstract

Background: Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI
networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are
computationally expensive. However, recent analysis indicates that experimentally detected protein complexes
generally contain Core/attachment structures.

Methods: In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The
GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the
edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves
the prediction accuracy compared to other similar module detection approaches, however it is computationally
expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also
computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide
adequate information to identify whether a network belongs to a module structure or not. In order to speed up
the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work.
The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the
network into the suitable set of modules.

Results: The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results
indicate that many significant functional modules are detected, most of which match the known complexes. Results
also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms.

Conclusions: Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy
search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the
identified modules are statistically significant. The algorithm can reduce the computational time significantly while
keeping high prediction accuracy.

Background
With the rapid development of technologies to predict
protein interactions, huge data sets portrayed as networks
have been available. Most real networks typically contain
parts in which the nodes are more highly connected to

each other than to the rest of the network. The sets of
such nodes are usually called clusters, communities, or
modules [1-4]. The presence of biologically relevant func-
tional modules in Protein-Protein Interaction (PPI)
graphs has been confirmed by many researchers [4,5].
Identification of functional modules is crucial to the
understanding of the structural and functional properties
of networks [6,7]. There is a major distinction between
two biological concepts, namely, protein complexes and
functional modules [7]. A protein complex is a physical
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aggregation of several proteins (and possibly other mole-
cules) via molecular interaction (binding) with each other
at the same location and time. A functional module also
consists of a number of proteins (and other molecules)
that interact with each other to control or perform a par-
ticular cellular function. Unlike protein complexes, pro-
teins in a functional module do not necessarily interact at
the same time and location. In this paper, we do not dis-
tinguish protein complexes from functional modules
because the protein interaction data used for detecting
protein complex in this work do not provide temporal
and spatial information.
Recently, many research works have been conducted to

solve the problem of clustering protein interaction net-
works [8-10]. Some of them are using the graph-based
clustering methods for mining functional modules
[11,17-20]. These studies are mainly based on the observa-
tion that densely connected regions in the PPI networks
often correspond to actual protein functional modules. In
short, methods proposed in these studies are used to
detect densely connected regions of a graph that are sepa-
rated by sparse regions. Some graph clustering approaches
using PPI networks for mining functional modules
are introduced in the following. Bader and Hogue [17]
proposed the Molecular COmplex Detection (MCODE)
algorithm that utilizes connectivity values in protein inter-
action graphs to mine for protein complexes. The algo-
rithm first computes the vertex weight value from its
neighbour density and then traverses outward from a seed
protein with a high weighting value to recursively include
neighbouring vertices whose weights are above a given
threshold. However, since the highly weighted vertices
may not be highly connected to each other, the algorithm
does not guarantee that the discovered regions are dense.
A simultaneous protein interaction network (SPIN) intro-
duced by Jung et al [12] specifies mutually exclusive inter-
actions (MEIs). Taking advantages of the SPINs,
SPIN_MCODE has outperformed the plain MCODE
method.
Amin et al. [18] proposed a cluster periphery tracking

algorithm (DPClus) to detect protein complexes by keep-
ing track of the periphery of a detected cluster. DPClus
first weighs each edge based on the common neighbours
between two proteins and further weighs nodes by their
weighted degree. To form a protein complex, DPClus first
selects the seed node having the highest weight as the
initial cluster and then iteratively augments this cluster by
including vertices one by one, which are out of but closely
related with the current cluster. Li et al. [13] modified the
DPClus algorithm for identifying protein complexes that
have a small diameter (or a small average vertex distance)
and satisfy a different cluster connectivity-density prop-
erty. The performance of such algorithms depends heavily

on the quality of the seeds and the criterion of extending
clusters.
Adamcsek et al. [19] provided a software called CFinder

to find functional modules in PPI networks. CFinder
detects the k-clique percolation clusters as functional
modules using a Clique Percolation Method (CPM)[20].
In particular, a k-clique is a clique with k nodes and two
k-cliques are adjacent if they share (k - 1) common nodes.
A k-clique percolation cluster is then constructed by link-
ing all the adjacent k-cliques as a bigger subgraph. Li et al.
[14] proposed a new clustering algorithm called IPC-MCE
to identify protein complexes based on maximal clique,
and then extend all the maximal cliques by adding their
neighbourhoods iteratively. Liu et al [15] developed an
algorithm called Clustering based on Maximal Cliques
(CMC) to discover complexes from the weighted PPI net-
work. CMC first finds maximal cliques from PPI networks,
and then removes or merges highly overlapped maximal
cliques based on their inter-connectivity. However, CMC
generates less number of significant functional modules
having P-value less than 1E-5 than the DPClus algorithm
in the unweighted PPI network [11]. Wang et al. [16] also
developed an algorithm called CP-DR based on the new
topological model for identifying protein complexes.
Wang’s algorithm extended the definition of k-clique com-
munity of the CPM algorithm and introduced distance
restriction.
Above computational studies mainly focus on detecting

highly connected subgraphs in PPI networks as protein
complexes but ignore their inherent organization. How-
ever, recent analysis indicates that experimentally detected
protein complexes generally contain Core/attachment
structures. Protein complexes often include cores in which
proteins are highly co-expressed and share high functional
similarity. And core proteins are usually more highly con-
nected to each other and may have higher essential char-
acteristics and lower evolutionary rates than those of
peripheral proteins [26]. A protein complex core is often
surrounded by some attachments, which assist the core to
perform subordinate functions. Gavin et al.’s work [28]
also demonstrates the similar architecture and modularity
for protein complexes. Therefore, protein complexes have
their inherent organization [26,27,29] of core-attachment.
To provide insights into the inherent organization of pro-
tein complexes, some methods [21,26,29] are proposed to
detect protein complexes in two stages. In the first stage,
protein complex cores, as the heart of the protein com-
plexes, are first detected. In the second stage, protein com-
plexes are expanded by incorporating attachments into the
protein complex cores. Wu et al. [21] presented a COre-
AttaCHment based method (COACH) and Leung et al.
also developed an approach called CoreMethod. These
approaches are used to detect protein complexes in PPI
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networks by identifying their cores and attachments sepa-
rately [29]. To detect cores, COACH performs local search
within vertex’s neighbourhood graphs while the Core-
Method [29] computes the p-values between all the pro-
teins in the whole PPI networks.
In this paper, a Greedy Search Method based on Core-

Attachment structure called GSM-CA is introduced.
Comparing with the other methods of core-attachment,
the new edge weight calculation method and evaluation
criterion for judging a node as a core node or an attach-
ment node are proposed in our GSM-CA method. The
GSM-CA method uses a pure greedy procedure to move
a node between two different sets. The detected clusters
are also core-attachment structures. In particular, GSM-
CA firstly defines seed edges of the core from the neigh-
bourhood graphs based on the highest weight and then
detects protein-complex cores as the hearts of protein
complexes. Finally, GSM-CA includes attachments into
these cores to form biologically meaningful structures.
The new algorithm is applied to the protein interaction
network of S. cerevisiae. The modules identified by the
new algorithm are mapped to the MIPS [22] benchmark
complexes and validated by GO [23] annotations. The
experimental results show that the identified modules are
statistically significant. In terms of prediction accuracy,
the GSM-CA method outperforms several other compet-
ing algorithms. Moreover, most of the previous methods
can not detect the overlapping functional modules by
generating separate subgraphs. But GSM-CA can not
only generate non-overlapping clusters, but also overlap-
ping clusters.
The GSM-CA method achieves high accuracy. However,

it is computationally expensive. Many module detection
approaches are based on the traditional hierarchical meth-
ods, which is also computationally inefficient because the
hierarchical tree structure generated by the repeated com-
putational process cannot provide adequate information to
identify whether a network belongs to a module structure
or not. To further improve the computational process of
these module detection approaches, the Greedy Search
Method based on Fast Clustering (GSM-FC) is proposed
in this paper. The edge weight based GSM-FC method
uses the greedy procedure to traverse all edges just once
to separate the network into the suitable sets of modules.
The experimental results demonstrate that the newly pro-
posed algorithm can reduce the computational time
noticeably while maintaining high prediction accuracy
compared to GSM-CA.
Briefly then, the outline of this paper is as follows. In

Section 2 the implementation of our two methods are
described in details. In Section 3, our algorithm is
applied to the protein interaction network of S. cerevi-
siae yeast and the results are analyzed. In Section 4, the
conclusions are given.

Methods
Definitions
Protein interaction networks can be represented as an
undirected graph G = (V , E), where V is the set of ver-
tices and E = {(u,v)| u,v Î V} is the set of edges between
the vertices. For a node v Î V , the set of v’s direct
neighbours is denoted as Nv. Nv is defined as Nv = {u| u
Î V,(u,v) Î E}. Before introducing details of the algo-
rithm, some terminologies used in this paper are
defined.
The closeness cnnk of any node n with respect to some

node k in cluster c is defined by (1).

cnnk =
|NCn ∩ NCk|

|NCk| (1)

Here, NCn is the set of n’s direct neighbours in cluster c,
and NCk is the set of k’s direct neighbours in cluster c.
The DPClus algorithm defines the weight wuv of an

edge (u,v) Î E as the number of the common neigh-
bours of the nodes u and v. It is likely that two nodes
that belong to the same cluster have more common
neighbours than two nodes that do not. For two edges
having the same number of common neighbours, the
one that has more interactions between the common
neighbours is more likely to belong to the same
cluster.
Therefore, the definition of wuv is modified in the

paper by (2)

wuv = |Nuv| + α ∗ |Euv| (2)

Here Nuv = Nu ∩ Nv, Euv = {(vj, vk)| (vj, vk) Î E, vj, vk
Î Nuv} and a is the interaction factor to indicate how
important the interactions are. a’s default value is set
as 1.
The number of common neighbours between any two

nodes is actually equal to the number of paths of length
2 between them. This definition of weight is used to
cluster the graphs that have densely connected regions
separated by sparse regions. In relatively sparse graphs,
the nodes on the path of edges with length 3 or length
4 can be considered.
The highest edge weight of a node n is defined as hwn =

max (wnu) for all u such that (n, u) Î E. The highest
weight edge (n, v) of node n is the edge satisfying the
condition that wnv = hwn.

Greedy Search Method based on Core Attachment
structure (GSM-CA)
Because core and peripheral proteins may have different
roles and properties due to their different topological
characteristics, a Greedy Search Method based on Core
Attachment structure called GSM-CA is proposed based
on the definition of the edge weight and two evaluation
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criterion for judging a node as a core node or an attach-
ment node. GSM-CA uses a greedy procedure to get the
suitable set of clusters. It first generates the core of a
cluster, and then selects reliable attachments cooperat-
ing with the core to form the final cluster. The algo-
rithm is divided into six steps: 1) Input & initialization;
2) Termination check; 3) Seed selection; 4) Core forma-
tion; 5) Attachments selection; 6) Output & update. The
functional modules are determined by final clusters. The
whole description of the GSM-CA algorithm is shown
in the following.

Input & initialization
The input to the algorithm is an undirected simple
graph and hence the associated matrix of the graph is
read first. The user need decide the minimum value for
closeness in cluster formation. The minimum value will
be referred to as cnin. Each edge’s weight is computed
based on formula (2). It is computed just once and will
not be recalculated in the following steps.

Termination check
Once a cluster is generated, it is removed from the
graph. The next cluster is then formed in the remaining
graph and the process goes on until no seed edge whose
weight is above one (i.e. wuv > 1) can be found in the
remaining graph.

Seed selection
Each cluster starts at a deterministic edge called the
seed edge. The highest weight edge (n, v) of node n
satisfying the condition that wnv =hwn is considered as
the seed edge in the remaining graph.

Core formation
A protein complex core is a small group of proteins
which show a high co-expression patterns and share
high degree of functional similarity. It is the key func-
tional unit of the complex and largely determines the
cellular role and essentiality of the complex [21,26-28].
For example, a protein in a core often has many inter-
acting partners and protein complex cores often corre-
spond to small, dense and reliable subgraphs in PPI
networks [28].
The core starts from a single edge and then grows

gradually by adding nodes one by one from the neigh-
bours. The neighbours of a core are the nodes con-
nected to any node of the core but not part of the core.
The core is referred to as C. For a neighbour u of C, if
u’s neighbour v linked by u’s highest weight edge (u, v)
is in C, u is considered to be included into the core.
Before including u to C, the condition, cnuv >= cnin , is
checked and the neighbour whose highest edge weight
is largest is included. This process goes on until no such

neighbour can be found, and then the core of one clus-
ter is generated.

Attachments selection
After the core of one cluster has been detected, the per-
ipheral information of each core is extracted and reliable
attachments cooperating with it are selected to form the
final cluster. For each neighbour u of the core C, if u’s
neighbour v linked by u’s highest weight edge (u, v) is

in C,
|Vuv|
|Nuv| is computed. Vuv is the common neighbours

of u and v in the core C. Nuv is the common neighbours
of u and v in graph G.

If
|Vuv|
|Nuv| > 0.5, u will be selected as an attachment.

After all neighbours of the core are checked, the final
cluster is generated.

Output & update
Once a cluster is generated, graph G is updated by
removing the present cluster. The nodes belonging to
the present cluster and the incident edges on these
nodes are marked as clustered and not considered in
the following. Then in the remaining graph, each node’s
highest edge weight is updated by not considering the
edges that have been marked. The pseudocode of the
GSM-CA algorithm is shown in Table 1.

Generation of overlapping clusters
In the above algorithm, once a cluster is generated it is
marked as clustered and not considered in the following,
and the next cluster is generated in the remaining
graph. Therefore, non-overlapping clusters are gener-
ated. In order to generate overlapping clusters, the exist-
ing non-overlapping clusters are extended by adding
nodes to them from their neighbours in the original
graph (considering the marked nodes and edges). Then
in the original graph excluding the edges between the
nodes that have been marked as clustered, each node’s
highest edge weight is updated.

Greedy Search Method based on Fast Clustering (GSM-FC)
Many module detection approaches including GSM-CA is
computationally expensive. The traditional hierarchical
tree structure generated by these approaches can’t provide
adequate information to identify which subtree belongs to
a module structure. As a result, the module structure need
be evaluated repeatedly based on the module definition.
During the computational process, the edge weight of
neighbouring nodes need be recomputed after one edge is
deleted. The edge weight calculation is based on the short-
est path between vertices. Since the shortest path problem
has high time complexity, these approaches are even not
scalable for the networks with the medium size.
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The GSM-FC can avoid repeated module structure
evaluation because the module structure can be identi-
fied based on inherent network organization and the
greedy algorithm. The GSM-FC traverses all edges once
then generates the clusters. Moreover, the GSM-FC uti-
lizes properties of subnetworks, which can reflect the
network topology more effectively. As a result, the com-
putational efficiency of the GSM-FC method can be
improved noticeably.
The GSM-FC algorithm is divided into three steps: 1)

Input & initialization; 2) Cluster formation; 3) Output.

Input & initialization
The input to the algorithm is an undirected simple
graph and hence the associated matrix of the graph is
read first. Each edge’s weight is computed based on for-
mula (2). All vertices in the graph G are initialized as
singleton clusters at first step.

Cluster formation
During this step, all edges are traversed gradually and a
greedy procedure is used to assemble the nodes into
clusters. For one edge (u, v), if u and v are not in the
same cluster, they are considered to be merged. If the
edge weight wuv is u’s highest edge weight, and then an
edge from u to v is added in order to merge the cluster
including u into the cluster including v. Similarly, if the

edge weight wuv is v’s highest edge weight, and then an
edge between v and u is added in order to merge the
cluster including v with the cluster including u. If the
edge weight wuv is neither u’s highest edge weight nor
v’s highest edge weight, the edge (u, v) is ignored and
the next edge is evaluated.

Output
After all edges have been visited, the subnetworks gen-
erated during the cluster merging process are outputted.
These subnetworks are considered as modules. The
pseudocode of GSM-FC algorithm is shown in Table 2.

Efficiency analysis
Compared to the other algorithms, the advantage of the
GSM-FC algorithm are computationally efficient. The
GSM-FC algorithm just needs to visit all edges once
without any parameter input. The time complexity of
the clustering process is linear. The edge weight calcula-
tion is the most time-consuming step for the clustering
process. Let n and m denote the number of vertices and
edges in a protein interaction network respectively; k be
the average number of neighbours of all the vertices, i.e.

k =
1
n

∑
v∈V |Nv|; Then, the complexity of calculating all

the edge clustering coefficients is O(k2m). Since the time
complexity of the hierarchical merging process is O(m),
the total time complexity of the GSM-FC algorithm is O
(k2m). In general, k is much smaller than the number of
vertices n and can be considered as a constant because
it is well known that the protein interaction network is
scale-free, in which most proteins only participate in a
small number of interactions [31].

Experimental setup and result analysis
Data set and the criterion of performance evaluation
In order to evaluate effectiveness of the new system, our
algorithm is applied to the full DIP (the Database of
Interacting Proteins) [24] yeast dataset, which consists

Table 1

Algorithm GSM-CA

Input: a graph G = (V , E), parameters cnin ;
Output: identified modules;
(1) Compute the edge weight

For each edge e(u,v) ÎE do
compute wuv;

End For
(2) Form core

Select the edge e(u,v) with highest weight in G;
If wuv < 1 then exit;
End If
Initial core C ={u,v};
While neighbour i whose neighbor j linked by i’s highest weight

edge
is in C and cnij ≥ cnin do

C. add (i);
End While

(3) Select attachments for core
For each neighbor u of the core C do
If u’s neighbor v linked by u’s highest weight edge is in C

and
|Vuv|
|Nuv| > 0.5 then

u is selected as attachment of C
End If

End For each
(4) Output results and update the highest edge weight

Output C and delete C from G, update each vertex’s highest edge
weight in the remaining G
(5) Repeat from step 2 to step 4, until reaching the termination
condition of step 2.

Table 2

Algorithm GSM-FC

Input: a graph G = (V , E);
Output: identified modules;
(1)For each edge e(u,v) ÎE do

compute wuv ; add e(u,v) to queue Sq
End for

(2)While Sq ≠ ∅ do;
e(u, v) ¬ Sq;
If L(u) ≠ L(v) then //L is cluster label

i = L(u); j =L (v);
If wuv ==hwu || wuv == hwv then
V (Ci) = V (Ci) ∪ V(Cj); //C represents the cluster

End if
End if

End while
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of 17201 interactions among 4930 proteins [21]. It is
more complex and difficult to identify the modules
using the full dataset than using the core dataset. The
performance of our method is compared with several
competing algorithms including MCODE, CFinder,
DPClus, and COACH. The parameter selection for these
algorithms is based on authors’ recommendation. Sev-
eral metrics including f-measures and p-value are used
for rigorous performance evaluation.
The experimental results are based on a reference

dataset of known yeast protein complexes retrieved
from the MIPS [22]. While it is probably one of the
most comprehensive public datasets of yeast complexes
available up to date, it is by no means a complete data-
set–there are still many yeast complexes that need to be
discovered. After filtering the predicted protein com-
plexes and complexes composed of a single protein
from the dataset, a final set of 214 yeast complexes are
used as our evaluation benchmark.
The overlapping score [17] between a predicted com-

plex and a real complex in the benchmark, OS(p, b) =
i2/(p*b), is used to determine whether these complexes
match with each other, where i is the size of the inter-
section set of a predicted complex with a known com-
plex, p is the size of the predicted complex and b is the
size of the known complex. If OS(p, b) ≥ ω, they are
considered to be matching (ω is set as 0.20 which is
adopted in the MCODE paper [17]). We assume that P
is the sets of complexes predicted by a computational
method and B is the sets of target complexes in the
benchmark respectively. The set of True Positives (TP)
is defined as TP = {p|p Î P, ∃b Î B, OS(p, b) ≥ ω},
while the set of False Negatives (FN) is defined as FN =
{b|p Î P, b Î B, ∀ p(OS(p, b) < ω)}. The set of False
Positives (FP) is FP = P - TP , while the set of known
benchmark complexes matched by predicted complexes
(TB) is TB = B - FN. The sensitivity and specificity [17]
are defined as:

sensitivity = |TP|/(|TP| + |FN|) (3)

specificity = |TP|/(|TP| + |FP|) (4)

S-measure, as the harmonic mean of sensitivity and
specificity, can be used to evaluate the overall perfor-
mance of the different techniques.

s − measure = 2∗sensitivity∗specificity/(sensitivity + specificity) (5)

P-values are used to evaluate the biological signifi-
cance of our predicted complexes. P-values represent
the probability of co-occurrence of proteins with com-
mon functions. Low p-value of a predicted complex gen-
erally indicates that the collective occurrence of these
proteins in the module does not happen merely by

chance and thus the module has high statistical signifi-
cance. In our experiments, the p-values of complexes
are calculated by the tool called SGD’s Go::TermFinder
[23]. SDG’s Go: TermFinder uses all the three types of
ontology including Biological Process (BP), Molecular
Function (MF) and Cellular Component (CC). The cut-
off of the p-value is set as 0.01. The average -log(p-
value) of all modules is calculated by mapping each
module to the annotation with the lowest p-value.
Let the total number of proteins be N with a total of

M proteins sharing a particular annotation. The p-value
of observing m or more proteins that share the same
annotation in a cluster of n proteins, using the Hyper-
geometric Distribution is defined as (6):

p − value =
n∑

i=m

(
M
i

)(
N − M
n − i

)
(
N
n

) (6)

The average f-measure is used to evaluate the overall
significance of each algorithm. f-measure of an identified
module is defined as a harmonic mean of its recall and
precision [25].

f − measure =
2∗recall∗precision
recall + precision

(7)

recall =
|M ∩ Fi|

|Fi| (8)

precision =
|M ∩ Fi|

|M| (9)

Where Fi is a functional category mapped to module
M. The proteins in functional category Fi are considered
as true predictions, the proteins in module M are con-
sidered as positive predictions, and the common pro-
teins of Fi and M are considered as true positive
predictions. Recall is the fraction of the true-positive
predictions out of all the true predictions, and precision
is the fraction of the true positive predictions out of all
the positive predictions [25]. The average f-measure
value of all modules is calculated by mapping each mod-
ule to the function with the highest f-measure value.

Experimental results for GSM-CA method
Table 3 compares results obtained by several popular
methods with MIPS benchmark complexes. Table 3
indicates that the number of correctly predicted com-
plexes using MCODE, CFinder, DPClus and GSM-CA is
less than the number of benchmark complexes matched
by predicted complexes. But COACH is opposite.
Because COACH detects the clusters from each node,
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the overlapping rate is high. Although the redundancy-
filtering procedure is used, some predicted complexes
are still similar and match the same benchmark com-
plex. Table 3 indicates that the s-measure of COACH
(0.307) is highest among the methods of MCODE, CFin-
der and DPClus. The s-measure of GSM-CA (0.380) is
significantly higher than that of COACH. In addition,
the overall performance of COACH is much better than
CoreMethod[21] which is another approach based on
core-attachment structure.
Comparison of the results before and after adding

attachments is shown in Table 4. The comparison
shows that after adding attachments, the average size of
modules grows from average size of 5.29 into 7.37.
Moreover, the f-measure of BP and -log(p-value) have
improved noticeably after adding attachments. All of
these indicate that protein complexes indeed contain
Core/attachment structures. Comparisons of biological
significance of modules predicted by several algorithms
are shown in Table 5. MCODE is not considered since
it just generates a small number of modules. Table 5
indicates that the proportion of significant modules pre-
dicted by GSM-CA is highest and -log(p-value) of
GSM-CA is also higher than the other algorithms.
Moreover, in all of the other methods, the average f-
measure of DPClus is highest (0.335), however, the aver-
age f-measure of GSM-CA is 0.362, which is higher than
that of DPClus. The detailed comparison of f-measure
based on all the three types of Gene Ontology (GO)
Terms including Biological Process, Molecular Function,
and Cellular Component is shown in Figure 1. Figure 1
indicates that the average f-measure of Cellular Compo-
nent GSM-CA is also highest (0.453) in all of the
methods.
Table 6 lists the top 10 most significant modules iden-

tified by the GSM-CA method. They are sorted in the
increasing order based on the p-value.

Figure 2 visualizes the structure of the modules identi-
fied by the GSM-CA method. The yellow nodes form
the core and the red nodes represent the attachments.
The GSM-CA method used the parameter cnin , and

the effects of changing the parameter cnin for cluster
generation are shown in Figure 3. When cnin changes
from 0.1 to 0.9, the size of the biggest cluster and the
average size of clusters decrease but the number of clus-
ter increases. The sizes of the biggest overlapping clus-
ters are same as that of the non-overlapping clusters, so
Figure 3(a) just draws one line. In Figure 3(b), the total
number of the overlapping clusters is more than that of
the non-overlapping clusters. In Figure 3(c), the average
size of the overlapping clusters is bigger than that of the
non-overlapping clusters. The effect of cnin on f-mea-
sure is shown in Figure 3(d). Figure 3 indicates that the
f-measure is relatively lower when cnin >0.5. Because
when cnin is close to 1, the core of cluster is almost cli-
que. It may be too strict to match well with the known
annotations. The f-measure is basically stable when cnin
<= 0.5. So cnin is set as 0.5.

Experimental results for the GSM-FC method
Table 7 compares the running time of the GSM-FC
method with that of other functional module identifica-
tion algorithms. These algorithms are applied to the full
DIP yeast dataset, which consists of 17201 interactions
among 4930 proteins. Table 7 shows that the running
time for the GSM-FC method is shortest since it just
visits all edges once. Since COACH detects cores from
each vertex in the network once, the running time for
COACH is also small, but it is greater than the running
time of GSM-FC. CFinder uses an efficient method
called CPM to detect maximum cliques, so it is not
time-consuming. DPClus needs many sorting and com-
puting, so it is computationally costly.
Table 5 compares the biological significance of mod-

ules predicted by several algorithms. The improved aver-
age f-measure and -log(p-value) demonstrate that the
modules identified by the GSM-FC method have higher
statistical significance than other methods. The GSM-
FC method generates fewer numbers of clusters with
the bigger average cluster size compared to the GSM-
CA method. Both Table 5 and Table 7 show that the
GSM-FC method can reduce the computational time
noticeably while keeping high prediction accuracy com-
pared to GSM-CA. Furthermore, the GSM-FC method
which doesn’t require any input parameters can be
applied to even larger protein interaction networks.

Conclusions
Identification of functional modules is crucial to the
understanding of the structural and functional proper-
ties of protein interaction networks. The increasing

Table 3 Results of various algorithms compared with
MIPS complexes using DIP data

Algorithms MCODE CFinder DPClus COACH GSM-CA

#predicted 59 245 1143 745 353

complexes

|TP| 18 52 133 155 105

|TB| 19 61 144 106 119

s-measure 0.132 0.231 0.198 0.307 0.380

Table 4 Comparison of the results before and after
adding attachments

Average Size f-measure of BP -log(p-value)

Before 5.29 0.356 7.2

After 7.37 0.362 8.6
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amount of protein interaction data has enabled us to
detect protein functional modules. In this paper, a
Greedy Search Method based on Core-Attachment
structure called GSM-CA is proposed to mine func-
tional modules from the protein interaction networks.
Because core and peripheral proteins may have different

roles and properties due to their different topological
characteristics, the GSM-CA method defines edge
weight and two criterion for determining core nodes
and attachment nodes. It first generates the core of a
module, and then forms the module by including attach-
ments into the core. The GSM-CA method is applied to

Table 5 Statistical significance of functional modules predicted by various methods

Algorithms No. of Modules
size>=3

No. of Significant
Modules

Average
Size

Maximum f-measure of
BP

-log(p-
value)

Parameters

MCODE 59 54 83.8 549 0.296 10.87 fluff = 0.1; VWP =
0.2

CFinder 245 157 10.2 1409 0.246 4.49 K = 3

DPClus 217 187 5.23 25 0.335 6.78 Density = 0.7;
CPin=0.5

COACH 746 608 8.54 44 0.272 6.96 Null

GSM-CA 187 168 7.37 79 0.362 8.6 CNin=0.5

GSM-FC 113 106 9.65 118 0.359 10.46 Null

Figure 1 Comparison of f-measure based on three types of GO of GSM-CA and other algorithms.

Table 6 List of top ten scoring modules identified by GSM-CA and their most enriched GO terms for Biological Process

ID Size of
module

Number of proteins enriched the same
GO Term

Size of GO
Term

Name of GO Term p-
value

1 35 33 221 rRNA processing 1.70e-
41

2 42 38 323 ribosome biogenesis 1.61e-
39

3 13 13 15 tRNA transcription 1.92e-
35

4 19 14 19 mRNA polyadenylation 1.96e-
31

5 11 11 12 cyclin catabolic process 8.92e-
31

6 14 12 14 polyadenylation-dependent snoRNA 3’-end processing 1.91e-
30

7 19 18 93 mitochondrial translation 8.08e-
30

8 16 14 29 energy coupled proton transport, down electrochemical
gradient

1.33e-
29

9 22 14 20 RNA polymerase II transcriptional preinitiation complex
assembly

2.70e-
29

10 19 18 101 nuclear mRNA splicing, via spliceosome 8.91e-
29
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Figure 2 An example of modules identified by the GSM-CA method.

Figure 3 The effects of cnin on clustering. (a) The size of the biggest cluster (b) The total number of the clusters whose size is greater than 2
(c) The average size of the clusters whose size is greater than 2 (d) The average f-measure.
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the typical PPI networks of S. cerevisiae. The MIPS
benchmark and the GO annotation are used to validate
the identified modules and compare the performances
of our algorithm with several other algorithms including
MCODE, CFinder, DPClus, and COACH. The evalua-
tion and analysis show that most of the functional mod-
ules predicted by our algorithm have high functional
similarity and match well with the benchmark. The
quantitative comparisons reveal that our algorithm out-
performs the other competing algorithms. Many module
detection approaches utilize the traditional hierarchical
clustering methods, which are computationally costly
because the tree structure produced by the hierarchical
clustering methods can not provide adequate informa-
tion to identify whether a network belongs to a module
structure or not. To overcome these problems, the
Greedy Search Method based on Fast Clustering (GSM-
FC) is proposed. The GSM-FC method takes advantages
of the greedy search procedure to separate the network
into the suitable set of modules. The experimental
results show that the GSM-FC method can reduce the
computational time significantly while keeping high pre-
diction accuracy compared to GSM-CA. For the future
work, the algorithm need be applied to the weighted
graph. How to incorporate diverse biological informa-
tion into the explorative analysis of protein complexes
in PPI networks is another interesting question for
further research.
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