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Abstract

Background: Three-dimensional (3D) reconstruction in electron tomography (ET) has emerged as a leading
technique to elucidate the molecular structures of complex biological specimens. Blob-based iterative methods are
advantageous reconstruction methods for 3D reconstruction in ET, but demand huge computational costs. Multiple
graphic processing units (multi-GPUs) offer an affordable platform to meet these demands. However, a
synchronous communication scheme between multi-GPUs leads to idle GPU time, and a weighted matrix involved
in iterative methods cannot be loaded into GPUs especially for large images due to the limited available memory
of GPUs.

Results: In this paper we propose a multilevel parallel strategy combined with an asynchronous communication
scheme and a blob-ELLR data structure to efficiently perform blob-based iterative reconstructions on multi-GPUs.
The asynchronous communication scheme is used to minimize the idle GPU time so as to asynchronously overlap
communications with computations. The blob-ELLR data structure only needs nearly 1/16 of the storage space in

ET on multi-GPUs.

comparison with ELLPACK-R (ELLR) data structure and yields significant acceleration.

Conclusions: Experimental results indicate that the multilevel parallel scheme combined with the asynchronous
communication scheme and the blob-ELLR data structure allows efficient implementations of 3D reconstruction in

Background

Electron tomography (ET) combines electron microscopy
(EM) and tomographic imaging to elucidate three-dimen-
sional (3D) descriptions of complex biological structures
at molecular resolution [1]. In ET, a series of projection
images are taken with an electron microscope from a
unique biological sample at different orientations around
a single tilt axis [2]. From those projection images, the
3D structure of the sample can be obtained by means of
tomographic reconstruction algorithms [3]. Weighted
backprojection (WBP) is a standard reconstruction
method in the field of 3D reconstruction in ET, due to its
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algorithmic simplicity and computational efficiency [4].
The major disadvantage of WBP, however, is that the
results may be strongly affected by limited-angle data and
noisy conditions [5]. Iterative methods, such as Simulta-
neous Iterative Reconstruction Technique (SIRT), are
one of the main alternatives to WBP in 3D reconstruc-
tion in ET, owing to their good performance in handling
incomplete, noisy data [6,7]. Furthermore, blob-based
iterative methods show a better performance than voxel-
based ones in the incomplete and noisy conditions [5].
However, they have not been extensively used due to
their high computational cost [8]. Furthermore, the need
for high resolution makes ET of complex biological spe-
cimens use large projection images, which also yields
large reconstructed files and requires an extensive use of
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computational resources and considerable processing
time [8,9].

3D reconstruction in ET demands huge computational
costs and resources that derive from the computational
complexity of the reconstruction algorithms and the size
and number of the projection images involved. Tradi-
tionally, high-performance computing [8] has been used
to address such computational requirements by means
of parallel computing on supercomputers [9], large com-
puter clusters [10] and multicore computers [11].
Recently, graphics processing units (GPUs) offer an
attractive alternative platform to cope with the demands
in ET in terms of the high peak performance, cost effec-
tiveness, and the availability of user-friendly program-
ming environments, e.g. NVIDIA CUDA [12,13]. Several
advanced GPU acceleration frameworks have been pro-
posed to allow 3D-ET reconstruction to be performed
on the order of minutes [14,15]. However, these parallel
reconstructions on GPUs only adopt traditional voxel
basis functions which are less robust than blob basis
functions under noisy situations. Some previous work
focuses on the blob-based iterative reconstruction on a
single GPU, which is still time-consuming [16,17]. Single
GPU cannot meet the requirements of the computa-
tional resources and the memory storage of 3D-ET
reconstructions with the size of the projection images
increasing constantly (typically 2 k x 2 k or even 4 k x
4 k). The architectural notion of a CPU serviced by
multi-GPUs is an efficient solution for parallel 3D-ET
reconstruction due to increasing the power of computa-
tions and the storage of memory.

Achieving efficient blob-based iterative reconstructions
on multi-GPUs is challenging: because of the overlapping
nature of blobs, the use of blobs as basis functions needs
the communication between multiple GPUs during the
process of iterative reconstructions. CUDA provides a
synchronous communication scheme to handle the com-
munication between GPUs [18]. But the downside of the
synchronous communication is that each GPU must stop
and sit idle while data is exchanged. The idle sit of GPU
is a waste of resources which has a negative impact on
the performance of reconstructions on multi-GPUs.
Furthermore, as data collection strategies and electron
detectors improve, a sparse weight matrix involved in
blob-based iterative reconstruction methods needs large
memory storage. Due to the limited available memory, it
is infeasible to store such a large sparse matrix for most
GPUs. Computing the weight matrix on the fly is more
efficient than storing the matrix in the previous GPU-
based ET implementations [14]. But it could bring the
redundant computations since the weighted matrix has
to be computed twice at least in each iteration.

To address the problems discussed above, in this
paper, we make the following contributions: first, we
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present a multilevel parallel strategy for blob-based
iterative reconstructions in ET on multi-GPUs, which
can significantly accelerate 3D reconstructions in ET.
Second, we develop an asynchronous communication
scheme on multi-GPUs to minimize idle GPU time by
asynchronously overlapping communications with
computations. Finally, a data structure named blob-
ELLR adopting three symmetric optimization techni-
ques is developed to significantly reduce the storage
space of the weight matrix. It only needs nearly 1/16 of
the storage space in comparison with ELLPACK-R
(ELLR). Also, the blob-ELLR format can achieve opti-
mal coalesced access to global memory, which is suita-
ble for 3D-ET reconstructions on multi-GPUs.
Furthermore, we implement all the above techniques
on the two different platforms: a NVIDIA GeForce
GTX295 and two NVIDIA Tesla C2050s respectively.
Experimental results show that the parallel strategy
greatly reduces memory requirements and exhibits a
significant acceleration.

Related background

In ET, the projection images are acquired from a speci-
men through the so-called single-axis tilt geometry. The
specimen is tilted over a range, typically from -60° (or
-70°) to +60° (or +70°) due to physical limitations of
microscopes, with small tilt increments (1° or 2°). An
image of the same object area is recorded at each tilt
angle and then the 3D reconstruction of the specimen
can be obtained from a set of projection images by
means of blob-based iterative methods. In this section,
we give a brief overview of blob-based iterative recon-
struction methods, describe an iterative method called
SIRT, and present a GPU computational model.

Blob-based iterative reconstruction methods

Iterative methods are based on the series expansion
approach [19] in which 3D volume f'is represented as a
linear combination of a limited set of known and fixed
basis functions b;, with appropriate coefficients x; i.e.

N
f(r¢1.¢02) = X;ijj(rf é1, $2), 1)
pm

where (1, @1, @,) is a spherical coordinate, and N is the
total number of the unknown variables x;. In 3D recon-
struction, the basis functions used to represent the object
greatly influences the reconstructed results. During the
1990s, spherically symmetric volume elements (called
blobs) have been thoroughly investigated, and turned to
be more suitable for representing natural structures than
the traditional voxels due to their overlapping nature
[20]. Blobs are smooth functions with a maximum value
at its center which gradually decays to zero at its extreme
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limits, adopting generalized Kaiser-Bessel (KB) window

functions:
(V1= 61 ) 1 (a1 = 60”)

I (@)
0, otherwise

b(r) = ,0<r<a(2)

where I,,,(-) denotes the modified Bessel function of
the first kind of order m, a is the radius of the blob, «
is a non-negative real number controlling the shape of
the blob. The choice of the parameters m, a, and a will
influence the quality of the blob-based reconstructions.
The basis functions that developed in [21] are used for
the choice of the parameters in our algorithm (i.e., a =
2, m=2and o = 3.6).

In 3D-ET, the model of the image formation process
is expressed by the following linear system:

N
pi%§wijxj/ 1<i<M (3)
iz

where p; denotes the ith measured image of fand M =
B*S is the dimension of p, with B being the number of
projection angles and S the number of projection values
per view. w;; is a weighting factor representing the con-
tribution of the jth basis function to the ith projection.
Under such a model, the element w;; can be calculated
according to the projected procedure as follows:

wij = 1 — (1fij — int (rfy)), @
rfij = projected(x;, 6;),

where rf;; is the projected value of the pixel x; at an
angle 0, W is defined as a sparse matrix with M rows
and N columns where w;; is the element of W. In gen-
eral, the storage demand of the weighted matrix W
rapidly increases as the size and the number of projec-
tion images increase. For example, when the size of
images is 2 k x 2 k, the storage demand of the weighted
matrix approaches to 3.5 GB. It is hard to store such a
large matrix in the most GPUs due to the limited mem-
ory of GPUs.

Under those assumptions, the image reconstruction
problem can be modelled as the inverse problem of esti-
mating the x/s from the p;’s by solving the system of lin-
ear equations given by Eq. (3). This problem is usually
resolved by means of iterative methods.

Simultaneous iterative reconstruction technique (SIRT)

SIRT is a kind of all simultaneous iterative methods to
solve the linear system which appears in image recon-
struction. All simultaneous iterative methods (such as
SIRT [22], component averaging methods (CAV) [23])
utilize the projection in the all directions to refine the
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current reconstruction in each iteration so that they are
well suited for parallel computing on GPUs. In our
work, we adopt SIRT to perform parallel reconstruction
on multi-GPUs.

Typically, SIRT begins with an initial X” and repeats
the iterative processes [24]. Initially, SIRT starts with an
arbitrary approximation which may deviate from the
true value far away. So the number of iterations until
convergence may be large. In order to accelerate conver-
gence, SIRT further adopts a back projection technique
(BPT), a simple WBP, to estimate the first approxima-
tion X [25]. In iterations, the residuals, i.e. the differ-
ences between the actual projections P and the
computed projections of the current approximation X™®
(k is the iterative number), are computed and then Xx®
is updated by the backprojection of these discrepancies.
Thus, the algorithm produces a sequence of N-dimen-
sional column vectors X®. The SIRT algorithm is typi-
cally written by the following expression:

M
2o Wiihi j
v ,
D ic1 Wij

11 = ) 4

5O = =1,2,...,N

. (5)
1 o wii(pi — o winxn ™)

M N
2io Wi 5 2 het1 Wik

SIRT produces fairly smooth reconstruction results
but requires for convergence a large number of itera-
tions since SIRT adopts a global strategy: an approxima-
tion is updated simultaneously by all the projection
images [24]. SIRT updates each x; only once per itera-
tion, which means its updating strategy is pixel-by-pixel.

GPU computation model
Our algorithm is based on NVIDIA GPU architecture
and compute unified device architecture (CUDA) pro-
gramming model. GPU is a massively multi-threaded
data-parallel architecture. NVIDIA GPUs contain a scal-
able array of streaming multiprocessors (SMs) each of
which contains scalar processors (SPs). On the old Tesla
architecture of GPUs, there are 8 SPs per SM while a
SM contains 32 SPs in the new Fermi architecture
GPUs. All the SPs in the same SM execute the same
instructions synchronously in a Single Instruction Multi-
ple Thread (SIMT) fashion [18]. During execution, 32
threads from a continuous section are grouped into a
warp, which is the scheduling unit on each SM.
NVIDIA provides the programming model and soft-
ware environment of CUDA. CUDA is an extension to
the C programming language. A CUDA program con-
sists of a host program that runs on CPU and a kernel
program that executes on GPU itself. The host program
typically sets up data and transfers it to and from the
GPU, while the kernel program processes that data.
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Kernel, as a program on GPUs, consists of thousands of
threads. Threads have a three-level hierarchy: grid,
block, thread. A grid is a set of blocks that execute a
kernel, and each block consists of hundreds of threads.
All threads within a block can share the same on-chip
memory and can be synchronized at a barrier. Each
block can only be assigned to and executed on one SM.

CUDA provides a synchronous communication scheme
(i.e. cudaThreadSynchronize()) to handle the communi-
cation between GPUs. With the synchronous scheme, all
of threads on GPUs must be blocked until the data com-
munication has been completed. CUDA devices use sev-
eral memory spaces including global, local, shared,
texture, constant memory and registers. Of these differ-
ent memory spaces, global memory is the most plentiful.
Global memory loads and stores by a half warp (16
threads) are coalesced in as few as one transaction (or
two transactions in the case of 128-bit words) when cer-
tain access requirements are met. Coalesced memory
accesses deliver a much higher efficient bandwidth than
non-coalesced accesses, thus greatly affecting the perfor-
mance of bandwidth-bound programs.

Methods

Multilevel parallel strategy for blob-based iterative
reconstruction

The processing time of 3D reconstruction with blob-
based iterative methods is a major challenge in ET due
to large reconstructed data volume. So parallel comput-
ing on multi-GPUs is becoming paramount to cope with
the computational requirement. We present a multilevel
parallel strategy for blob-based iterative reconstruction
and implement it on the OpenMP-CUDA architecture.
Coarse-grained parallel scheme using OpenMP

In the first level of the multilevel parallel scheme, a
coarse-grained parallelization is straightforward in line
with the properties of ET reconstruction. The single-tilt
axis geometry allows data decomposition into slabs of
slices orthogonal to the tilt axis. For this decomposition,
the number of slabs equals to the number of GPUs, and
each GPU reconstructs its own slab. Consequently, the
3D reconstruction problem can be decomposed into a set
of 3D slabs reconstruction sub-problems. However, the
slabs are interdependent due to the overlapping nature of
blobs. Therefore, each GPU has to receive a slab which is
composed of its corresponding own slices and additional
redundant slices reconstructed in neighbour slabs. The
number of redundant slices depends on the blob exten-
sion. In a slab, the own slices are reconstructed by the
corresponding GPU and require information provided by
the redundant slices from the neighbour GPUs. During
the process of 3D-ET reconstruction, each GPU has to
communicate with other GPUs for the additional redun-
dant slices.
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We have implemented the 3D-ET reconstruction based
on the architecture in which a CPU controls several GPUs
and the GPUs share the memory. We adopt two GPUs in
the different platforms to implement the blob-based
reconstruction. Thus the first level parallel strategy makes
use of two GPUs to perform the coarse-grained paralleli-
zation of the reconstruction. As shown in Figure 1, the 3D
volume data is halved into two slabs, and each slab con-
tains its own slices and a redundant slice. According to
the shape of the blob adopted (the blob radius is 2 in our
experiments), only one redundant slice is included in each
slab. Each slab is assigned to and reconstructed on each
individual GPU in parallel. A shared-memory parallel pro-
gramming scheme (OpenMP) is employed to fork two
threads to control the separated GPU. Each slab is recon-
structed on each individual GPU by each parallel thread.
Consequently, the partial results attained by GPUs are
combined to complete the final result of the 3D recon-
struction. Certainly, the parallel strategy can be applied on
GPU clusters (e.g. Tesla-based cluster). In a GPU cluster,
the number of slabs equals the number of GPUs for the
decomposition described above.

Fine-grained parallel scheme using CUDA

In the second level of the multilevel parallel scheme, 3D
reconstruction of one slab, as a fine-grained paralleliza-
tion, is implemented on each GPU using CUDA. In the
3D reconstruction of a slab, the generic iterative process
is described as follows:

« Initialization: compute the matrix W and make a
initial value for X by BPT;

+ Reprojection: estimate the computed projection data
P’ based on the current approximation X;

+ Backprojection: backproject the discrepancy AP
between the experimental and calculated projections,
and refine the current approximation X by incorporating
the weighted backprojection AX.

Figure 2 shows the pseudo code for the 3D reconstruc-
tion by the aforementioned stages easily indentified in
Eq. (5). We adopt the kernel called decidemap to com-
pute the weighted matrix W and the kernel called BPT to
estimate the initial value X in the initialization process.
The interdependence among neighbour slabs due to the
blob extension implies that, after computing either the
reprojection or backprojection for a given slab, there
must be a proper exchange of information between
neighbour GPUs.

Asynchronous communication scheme

As described above in the multilevel parallel scheme, there
must be two communications between neighbour GPUs
during one iterative reconstruction process. One is to
exchange the computed projections of the redundant
slices after the reprojection process. The other is to
exchange the reconstructed pixels of the redundant slices
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Figure 1 Coarse-grained parallel scheme using blob. 3D volume is decomposed into slabs of slices. The number of slabs equals the number
of GPUs. Each GPU receives a slab. Each slab includes a set of own slices (in white) and an additional redundant slice (in gray) according to the

slab 1

own slices

after the backprojection process. CUDA provides a syn-
chronous communication scheme (i.e. cudaThreadSyn-
chronize()) to handle the communication between GPUs.
With the synchronous communication scheme, GPUs
must sit idle while data is exchange, which has a negative
impact on the performance of the reconstruction in ET.

In the 3D-ET reconstruction on clusters or supercom-
puters, the use of blobs as basis functions involves signifi-
cant additional difficulties in the parallelization and
makes substantial communications among the processors
needed. In any parallelization project where communica-
tion between nodes is involved, latency hiding becomes
an issue [9]. An effective strategy stands for overlapping
communication and computation so as to keep the pro-
cessor busy while waiting the communications to be

completed [5]. In this work, a latency hiding strategy has
been devised which has proven to be very efficient to
deal with the communications [9]. To minimize the idle
time on the GPUs, we also present a latency hiding strat-
egy using an asynchronous communication scheme in
which different streams are used to perform GPU execu-
tion and CPU-GPU memory access asynchronously. The
communication scheme splits GPU execution and mem-
ory copies into separate streams. Execution in one stream
can be performed at the same time as a memory copy
from another. As shown in Figure 3, in one slab recon-
struction, Reprojection of the redundant slices, memory
copies and Backprojection of the redundant slices are
performed in one stream. The executions (i.e. Reprojec-
tion and Backprojection) of the own slices are performed

Decidemap<<< >>> ;
BPT<<<>>> for every initial pixel;
for kin K iterations

Reprojection<<<>>> for each computed projection;
communication for computed projections of redundant slices;
Backprojection<<<>>> for every reconstructed pixel ;
communication for reconstructed pixels of redundant slices;

Figure 2 Pseudo code for a slab reconstruction based on SIRT.
A
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Decidemap<<< >>> ;
BPT<<<>>> for every initial pixel;
for kin K iterations

Reprojection<<<>>> for computed projections of redundant slices (Stream 1);
Reprojection<<<>>> for computed projections of own slices (Stream 2);

copy computed projections of redundant slices from own GPU to host (Stream 1);
copy computed projections of redundant slices from host to neighbor GPU (Stream 1);
Backprojection<<<>>> for reconstructed pixel of redundant slices (Stream 1);
Backprojection<<<>>> for Reconstructed pixel of own slices (Stream 2);

copy reconstructed pixel of redundant slices from own GPU to host (Stream 1);

copy reconstructed pixel of redundant slices from host to neighbor GPU (Stream 1);

Figure 3 Pseudo code for a slab reconstruction with the asynchronous communication scheme.

in the other stream. This can be extremely useful for
reducing the idle time of GPUs.

Blob-ELLR format with symmetric optimization techniques
In the parallel blob-based iterative reconstruction,
another problem is the lack of memory on GPUs for the
sparse weighted matrix. Recently, several data structures
have been developed to store sparse matrices. Com-
pressed row storage (CRS) is the most extended format
to store the sparse matrix on CPUs [26]. ELLPACK can
be considered as an approach to outperform CRS [27].
Vazquez et al. proposed and evaluated a variant of the
ELLPACK format called ELLPACK-R (ELLR) [28]. ELLR
has been proved to outperform the most efficient for-
mats for storing the sparse matrix data structure on
GPUs [29]. ELLR consists of two arrays, Af/ and I[] of
dimension N x MaxEntriesbyRows, and an additional
N-dimensional integer array called r//] is included in
order to store the actual number of nonzeroes in each
row [13,28]. With the size and number of projection
images increasing, the memory demand of the sparse
weighted matrix rapidly increases. The weighted matrix

involved is too large to load into most of GPUs due to
the limited available memory, even with the ELLR data
structure.

Recently, Vazquez et al. proposed a matrix approach and
exploited several geometry related symmetry relationships
to reduce the weighted matrix involved in WBP recon-
struction method [13]. In our work, we present a data
structure named blob-ELLR and also exploit several geo-
metric related symmetry relationships to reduce the
weighted matrix involved in iterative reconstruction meth-
ods. The blob-ELLR data structure decreases the memory
requirement and then accelerates the speed of ET recon-
struction on GPUs. Compared with a matrix approach to
WBP using the original ELLR [13], our matrix blob-ELLR
is adopted to store the weighted matrix W instead of the
transpose of the one involved in the original ELLR. As
shown in Figure 4, the maximum number of the rays
related to each pixel is four on account of the radius of the
blob (i.e., a = 2). To store the weighted matrix W, the
blob-ELLR includes two 2D arrays: one float A/ to save
the entries, and the other integer I/] to save the columns
of every entry (see Figure 4 middle). Both arrays are of

-

LO L1 L2

N ceil(N/2)

B2

4B

\

Figure 4 Blob-ELLR format. In the blob (the radius a = 2), a projected pixel X; contributes to four neighbour projection rays (L1, L2, L3 and L4)
using only one view (left). The nonzeroes of W are stored in a 2D array A of dimension (4B) x N in blob-ELLR without symmetric techniques
(middle). The symmetric optimization techniques are exploited to reduce the storage space of A to almost 1/16 of original size (right).
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dimension (4B) x N, where N is the number of columns of
W and 4B is the maximum number of nonzeroes in the
columns (B is the number of the projection angles).
Because the percentage of zeros is low in the blob-ELLR,
it is not necessary to store the actual number of nonzeroes
in each column. Thus the additional integer array rif] is
not included in the blob-ELLR.

Although the blob-ELLR without symmetric techni-
ques can reduce the storage of the sparse matrix W, the
number of (4B) x N is rather large especially when the
number of N increases rapidly. The optimization takes
advantage of the symmetry relationships as follows:

» Symmetry 1

Assume that the jth column elements of the matrix W
in each view are wg;, wy;, wy; and ws;. The relationship
among the adjacent column elements is:

woj = 1 +wyj;wyj = 1 —wyj; wzj =2 —wy; (6)

So, only w;; is stored in the blob-ELLR, whereas the
other elements are easily computed based on w;; . This
scheme can reduce the storage spaces of A and I to 25%.

» Symmetry 2

Assume that a point (x, y) of a slice is projected to a
point r (r = project(x, y, 0)) in the projection image cor-
responding to the tilt angle 8 and project(x, y, 0) is
shown as follows:

project(x,y,0) = xcosO +ysinf (7)

It is easy to see that the point (-x,-y) of a slice is then
projected to a point rl (rl = -r) in the same tilt angle 6.
The weighted value of the point (-x,-y) can be computed
according to that of the point (x, y). Therefore, it is not
necessary to store the weighted value of almost a half of
the points in the matrix W so that the space require-
ments for A and [ are further reduced by nearly 50%.

« Symmetry 3

In general, the tilt angles used in ET are halved by 0°.
Under the condition, a point (-x, y) with a tilt angle -0
is projected to a point r2 (r2 = -r). Therefore, the pro-
jection coefficients are shared with the projection of the
point (x, y) with the tilt angle 0. This further reduces
the storage spaces of A and I by nearly 50% again.

With the three symmetric optimizations mentioned
above, the size of the storage for two arrays in the blob-
ELLR is almost (B/2) x (N/2) reducing to nearly 1/16 of
original size.

Results and discussions

In order to evaluate the performance of the multilevel par-
allel strategy, the blob-based iterative reconstructions of
the caveolae from the porcine aorta endothelial (PAE) cell
have been performed [30]. Three different experimental
datasets are used (denoted by small-sized, medium-sized,
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large-sized) with 56 images of 512 x 512 pixels, 112
images of 1024 x 1024 pixels, and 119 images of 2048 x
2048 pixels, to reconstruct tomograms of 512 x 512 x 190,
1024 x 1024 x 310 and 2048 x 2048 x 430 respectively. All
the experiments are carried out on both GT200 and Fermi
platforms. The details of the platforms are as follows. The
GT200 machine consist of a 2.66 GHz Intel Xeon X5650,
24 GB RAM, and a NVIDIA GeForce GTX 295 card
including two Tesla GPUs, each containing 30 SMs of 8
SPs (i.e. 240 SPs) at 1.2 GHz, 896 MB of memory. The
Fermi machine is composed of the same CPU based on
Intel Xeon X5650, and two NVIDIA Tesla C2050 cards.
NVIDIA Tesla C2050 adopts the Fermi architecture and
contains 14 SMs of 32 SPs (i.e. 448 SPs) at 1.15 GHz,
3 GB of memory. The two machines are both running on
Redhat EL5 64-bit. For the comparison of the performance
of multi-GPUs with CPU, we have performed the related
serial program on the same CPU, i.e. Intel Xeon X5650,
with a single core. To clearly evaluate the performance of
the asynchronous communication scheme and the blob-
ELLR data structure respectively, we have performed two
sets of experiments. The details of the experiments are
introduced below.

In the first set of experiments, to estimate the perfor-
mance of the asynchronous communication scheme, we
have implemented and compared the blob-based iterative
reconstruction of the three experimental datasets on the
GTX295 and Tesla C2050s respectively. All the recon-
structions adopt two methods separately: multi-GPUs with
the synchronous communication scheme (named GPU
+syn), and multi-GPUs with the asynchronous communi-
cation scheme (named GPU+asyn). In the experiments,
the blob-ELLR developed in our work is used to storage
the weighted matrix in the reconstruction. Figure 5 shows
the speedups of the two communication schemes for dif-
ferent iterative number of reconstructions (i.e. 1, 5, 10, 25)
using all the three datasets on the GTX295 vs. CPU. As
shown in Figure 5, the speedups of GPU+asyn are larger
than those of GPU+syn for the three experimental data-
sets. The asynchronous communication scheme exhibits
excellent acceleration factors, reaching up to 35x, 40x and
45x, in the different datasets, respectively. The general
rule is that the larger dataset and the more iterations per-
formed, the larger speedup will be obtained using the
asynchronous communication scheme.

Figure 6 compares the speedups of different using the
two communication schemes for all the three datasets on
the Tesla C2050 vs. CPU. In this figure, we also observe
that the speedups of GPU+asyn are larger than those of
GPU-+syn for the three experimental datasets. The asyn-
chronous communication scheme exhibits excellent accel-
eration factors, reaching up to 90x, 95x and 100x for 25
iterations, in the different datasets respectively. The Tesla
C2050s yields further speedups than the GTX295 mainly
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Figure 5 Speedup factors of different iterations on the GTX295.
Speedup factors are showed by both implementations (with
synchronous and asynchronous communication scheme
respectively) over the reconstructions on the CPU. The results of the
three datasets are shown in (a), (b) and (c), respectively.

owing to the improvements of the Fermi architecture. In
general, the asynchronous communication scheme pro-
vides the better performance than the synchronous
scheme for the reason of asynchronous overlapping of
communications and computations.
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Figure 6 Speedup factors of different iterations on the Tesla
C2050. Speedup factors are showed by both implementations (with
synchronous and asynchronous communication scheme
respectively) over the reconstructions on the CPU. The results of the
three datasets are shown in (a), (b) and (c), respectively.

In the second set of experiments, to compare the
blob-ELLR data structure with other methods used for
the weighted matrix, we have implemented the blob-



Wan et al. BMC Bioinformatics 2012, 13(Suppl 10):54
http://www.biomedcentral.com/1471-2105-13-510-54

memory requirments
3500

3GB
3000

2500

I ELLR(GPU)
2000 I bicb-ELLR(GPU)
el
=
1500
1000
896
500
g -.__ — |
512512 1024*1024 20482048
Datasets

of the blob-ELLR data structure reduces the memory demands,
making most of the problems affordable.

Figure 7 Memory requirements of the different
implementations for the datasets. The limit memory in GTX295 is
896 MB and that in Tesla C2050 is 3 GB used in the work. The use

Table 1 Running times (s)
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based iterative reconstructions where the weighted
matrices are computed on the fly (named standard
matrix), pre-computed and stored with ELLR (named
ELLR matrix), pre-computed and stored with blob-ELLR
(named blob-ELLR matrix) respectively. Figure 7 shows
the memory requirement of the sparse data structure
(i.e. ELLR and blob-ELLR on the GPU respectively). In
general, the requirements rapidly grow with the dataset
size increasing, approaching 3.5G in the large-sized
dataset. This amount turns out to be a problem owing
to the limited memory of GPUs. Since the limited mem-
ory is only 896 MB in GTX295, the weighted matrices
using the ELLR format cannot be stored in the memory
of the GPU. Similarly, the upper boundary imposed by
the memory available in Tesla C2050 precludes addres-
sing problem sizes requiring more than 3 GB of mem-
ory. However, in the blob-ELLR matrix structure, three
symmetry relationships can greatly decrease the memory
demands and make them affordable on GPUs.

Table 1 shows the computation times of different
methods on the CPU Intel Xeon X5650, GTX295 and
Tesla C2050s for the three datasets. All the computation

datasets iteration number CPU
standard ELLR blob-ELLR
512 x 512 1 141312 23552 204.12
5 4025.39 685.64 586.37
10 6498.18 111654 968.39
25 16032.87 2788.84 2423.67
1024 x 1024 1 1870848 322560 276323
5 60328.71 10473.51 9126.34
10 9305242 16423.07 14228.64
25 210824.49 37524.64 3278749
2048 x 2048 1 111288.32 1947648 17147.66
5 253034.69 4454349 39536.56
10 429278.31 76382.34 68356.32
25 1006392.84 182980.72 164443.73
datasets iteration number GTX295 Tesla C2050
standard ELLR blob-ELLR standard ELLR blob-ELLR
512 x 512 1 14.63 7.88 576 8.02 6.34 395
5 4236 24.31 1435 2326 1845 11.92
10 66.36 47.89 3032 55.03 39.04 2841
25 15545 110.83 82.31 137.82 93.92 72.01
1024 x 1024 1 162.54 - 79.39 98.73 81.83 57.07
5 523.13 - 28943 32931 265.81 194.29
10 74202 - 479.30 49281 389.32 29462
25 1784.75 - 937.41 1092.71 867.92 687.05
2048 x 2048 1 869.29 - 481.09 50242 - 33764
5 1954.38 - 1226.74 1192.51 - 811.03
10 3476.94 - 214393 207693 - 1423.95
25 798642 - 6105.83 4691.93 - 3374.52
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times of 3D reconstruction are given for different num-
ber of iterations. As shown in Table 1, the running
times of the blob-ELLR matrix method are less than
those of the standard and ELLR matrix method both on
CPU and GPUs. Due to the memory requirements of
the medium-sized and large-sized data more than 896
MB, the ELLR matrix method cannot be used for these
dataset on the GTX295. The ELLR matrix method can-
not also be implemented for the large-sized data due to
the limited 3 GB memory of the Tesla C2050s. But the
problem can be addressed by adopting the blob-ELLR
matrix method. These results demonstrate that the
blob-ELLR matrix method succeeds in reducing the
computation time of 3D-ET reconstruction.

In order to estimate the performance of the matrix
methods (i.e. ELLR matrix and blob-ELLR matrix) on the
different platforms, the speedup factors against the stan-
dard method are showed in Figure 8. For the clear and
brief description, we only show the results of the three
datasets for one iteration. From Figure 8(a), we can see
that the ELLR matrix method exhibits acceleration fac-
tors approaching to 6x, and the blob-ELLR matrix
method obtains higher speedup factors almost 7x on the
CPU. Figure 8(b) and 8(c) show a comparison of the
ELLR matrix and blob-ELLR matrix methods for the
GTX295 and Tesla C2050s. In Figure 8(b), due to the
limited memory, the ELLR matrix method for both the
medium-sized and large-sized data cannot be implemen-
ted on the GTX295. It is clearly seen that the blob-ELLR
matrix method yields better speedups than the ELLR
matrix method on the GTX295. Figure 8(c) shows the
similar better performance of the blob-ELLR matrix
method than that of the ELLR matrix method on the
Tesla C2050s. Figure 9 compares the speedup factors of
different methods on the GPU vs. the standard method
on the CPU for one iteration. The blob-ELLR matrix
method exhibits excellent acceleration factors compared
with the other methods. As shown in Figure 9(a), the
speedups of the standard method on the GTX295 vs. the
CPU are almost 100x for three datasets. In the ELLR
matrix method, the speedup is almost 160x for the first
dataset. And in the case of the blob-ELLR matrix
method, the acceleration factors increase and reach up to
200x for three datasets. The acceleration factors of the
different methods on the Tesla C2050s over the standard
method on the CPU are also presented in Figure 9(b). As
shown in Figure 9(c), we directly calculated the speedups
of Tesla 2050 vs. GTX295 for the different approaches:
standard, ELLR and blob-ELLR in order to compare the
performance of different GPU platforms. Since the com-
puting ability of Tesla C2050 is better than that of
GTX295, the speedups on the Tesla C2050s are larger
than those on the GTX295 for all the three datasets.
Those experiments would confirm the better
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Figure 8 Speedup factors of the different matrix methods
(ELLR and blob-ELLR). The results are speedup factors for one
iteration over the standard method on the CPU (a), the GTX295 (b)
and the Tesla C2050s (c), respectively.

performance of Tesla C2050 with respect to GTX295.
From Figure 9, it is clear that the blob-ELLR matrix
method can reduce the memory requirement of the
weighted matrix and vyield the best performance
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Figure 9 Speedup factors derived from the different methods
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results are speedup factors for one iteration on the GTX295 vs. the
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method on the CPU (b) and Tesla 2050 vs. GTX295 (c), respectively.

Page 11 of 12

compared with the ELLR matrix and the standard meth-
ods on the two different GPU platforms.

Conclusions

ET allows elucidation of the molecular architecture of
complex biological specimens. Blob-based iterative
methods yield better results than other methods, but are
not used extensively in ET because of their huge com-
putational demands. Multi-GPUs have emerged as
powerful platforms to cope with the computational
requirements, but have the difficulties due to the syn-
chronous communication and limited memory of GPUs.
In this work, we present a multilevel parallel strategy
combined with an asynchronous communication scheme
and a blob-ELLR data structure to perform high-perfor-
mance blob-based iterative reconstruction in ET on
multi-GPUs. The asynchronous communication scheme
is used to minimize the idle GPU time. The blob-ELLR
structure only needs nearly 1/16 of the storage space in
comparison with the ELLR storage structure and yields
significant acceleration compared to the standard and
ELLR matrix methods. In this work, adopting the multi-
level parallel strategy with the asynchronous communi-
cation scheme and the blob-ELLR data structure, we
have performed the parallel 3D-ET reconstruction using
SIRT on multi-GPUs. In fact, the parallel strategy pro-
posed can be also easily applied to the other simulta-
neous methods, e.g. CAV. In the future work, we will
further investigate and implement the multilevel parallel
strategy and the asynchronous communication scheme
on a many-GPU cluster.
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