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Abstract

Background: Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural,
medical and industrial environments. The high volume of publications in the microbiology domain provides a rich
source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed
in natural language and is rarely available in a structured format, such as a database. This information is of great
importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy).
The automatic extraction of this information from texts will provide a great benefit to the field.

Methods: We present a new method for extracting relationships between bacteria and their locations using the
Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and
domain lexical resources. For the detection of environment locations, we propose a new approach that combines
lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical

dealing with bacteria anaphors.

increased the F-score by 4.1 points.

resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for

Results: We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation
results show that it achieves the best performance of participating systems. New developments since then have

Conclusions: We have shown that the combination of semantic analysis and domain-adapted resources is both
effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the
method to deal with a larger set of location types and a large-scale scientific article corpus to enable
microbiologists to integrate and use the extracted knowledge in combination with experimental data.

Background

Scientific documents on bacteria biotopes describe the
locations from which bacteria have been isolated. The
amount of knowledge about bacteria and their isolation
sites is rapidly growing due to the advancement of spe-
cies identification technologies. A better understanding
of the interaction of bacteria with their environment,
phenotype, metabolism and genetics could be achieved
by studying their correlations with their biotope proper-
ties. The availability of an increasing amount of biologi-
cal data makes such large-scale studies possible [1]. A
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formal representation of the taxa associated with their
locations is a first critical step. Descriptions of bacteria
isolation sites that are available in public biology data-
bases and biological resource centers are incomplete
and rarely normalized [2]. Scientific papers and genome
sequencing project web pages are an invaluable source
of such information.

The BioNLP 2011 Bacteria Biotope shared task (BB)
has defined bacteria location identification as an event
extraction task. The participants are required to pre-
cisely identify bacteria and their locations in the form of
text bound annotations of scientific documents. There
are eight location types to be predicted: Host, Host-part,
Geographical, Food, Medical, Soil, Water and
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Environment. Each of these eight location types must be
related to a bacterium by a localization relation. Host
and Host-part locations must be related by a Part-of
relation as well.

The participants were provided with annotated train-
ing and development datasets. The experimental results
of the participating methods, including precision, recall
and F-score, as defined in [3], were measured using an
independent test set. This evaluation not only measures
the overall quality of the event extraction but also the
recall and precision of the location arguments per type.
Three teams participated in the BB task. The official
results were computed in March 2011 by the organizers
and published at the BioNLP workshop [4]. We realized
new developments that significantly improve the results
on the test set. Their evaluation was computed using
the online BioNLP evaluation system and are reported
here. Figure 1 provides an example of a development
corpus sentence and the target biotope information. The
wide range and diversity of the bacteria location vocabu-
lary is one of the particularities of the BB task compared
with other challenges on location recognition, such as
protein subcellular locations in biology [5] or geographi-
cal locations in the ACE corpus [6]. There are also con-
siderable variations in location form and structure.
Thus, predictions of bacteria locations in natural lan-
guage texts cannot be handled by straightforward lexi-
con mapping. To overcome the incompleteness of
lexical resources and the corpus variability, we propose
a more flexible mapping recognition method based on a
symbolic syntactic and semantic analysis of both lexicon
and corpus terms. This mapping filters out non-location
terms and derives the type of corpus location terms
along the BB task typology. We applied this method for
the extraction of location names that are not denoted by
rigid designators [7], i.e., environment (water, soil, medi-
cal), host parts and food. For the prediction of bacteria
and locations that are denoted by rigid designators, i.e.,
hosts and geographical entities, we designed a lexicon-
based method. We used available dictionaries along with
a limited number of domain-specific morphological var-
iation rules. Another challenge was the high frequency
of bacteria anaphors and ambiguous antecedent candi-
dates in the corpus. Our Alvis system implements an
anaphora resolution algorithm that considers the

The flea draws viable Y. pestis organisms into its intestinal tract.

Host =flea  Bacteria =Y. pestis Host-part = intestinal tract

Localization event (flea, Y. pestis) Part-of event (flea, intestinal tract)

Figure 1 Biotope example. An example of a Bacteria Biotope
event extraction task (BTID-50185).
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anaphoric distance and the position of the antecedent in
the sentence (Anaphora Resolution section). Finally,
Alvis predicts the relations between the bacteria and the
locations using argument co-occurrence and trigger
words (Relation Extraction section).

Methods

The processing steps designed for the BB event extrac-
tion task were developed using adapted Alvis pipeline
modules. The Alvis pipeline is a generic NLP platform
that can perform a wide variety of linguistic analyses [8].
The modules used for this task include tokenization,
POS-tagging, named-entity recognition and term analy-
sis. The Alvis pipeline was extended to include custom
modules for anaphora resolution and the semantic
annotation of location concepts and relations for event
extraction. Figure 2 shows the outline of the workflow
for the BB event extraction described below. Alvis sepa-
rately handles the recognition of bacteria, host and geo-
graphical locations (Lexicon-based method section) and
the recognition of environmental, medical and host-part
locations (Symbolic syntactic-semantic method section).

Lexicon-based method

A lexicon-based approach appeared more appropriate to
predict bacteria, host and geographical entity names
because these are predominantly proper names. Addi-
tionally, these locations are more subject to morphologi-
cal variations, whereas other location names display
syntactic variability.

Bacteria

In the training corpus, we observed that not only bac-
teria species names but also higher level taxa (families)
and lower level taxa (strains) were annotated as event
arguments. For bacteria recognition, we used the pro-
karyote tree of the NCBI taxonomy [9] as the main
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Figure 2 BB event extraction workflow. Outline of the BB event
extraction workflow.
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resource because it includes both scientific and common
names, and it is kept up to date. We applied rewriting
rules to extend it with standard abbreviations of scienti-
fic names (e.g., Bacillus subtilis = B. subtilis). It was also
manually enriched by 213 bacterium taxa from the
training corpus, in particular, non-standard abbrevia-
tions (e.g., Chl. = Chlorobium, ssp. = subsp, GSB for
green sulphur bacteria) and plurals (e.g., Vibrios as the
plural for Vibrio). The original NCBI taxonomy contains
270,190 bacteria names while the extended version con-
tains 407,147.

Determining the correct boundaries of the bacteria
names was a major issue because the strain names
found in the corpus do not always follow conventional
nomenclature rules [10]. Five specific rules were devel-
oped to account for irregular forms that could not be
found by exact match. (1) Variation in nomenclature
naming, such as the inclusion of the word strain or
the abbreviations sp. or spp. (e.g., Bordetella petrii
strain DSM12804; Borrelia spp.). The rule looks for
both standard and non-standard nomenclature names
for bacteria. (2) Variations in word order (e.g., LB400
of Burkholderia xenovorans instead of Burkholderia
xenovorans LB400). This rule looks for text segments
that contain all tokens of a given strain name in any
order and that may contain function words, such as of,
as in LB400 of Burkholderia xenovorans. (3) Parenth-
eses (e.g., Tropheryma whipplei (the Twist strain)
instead of Tropheryma whipplei strain Twist). This
rule handles bacteria names with the strain name in
parenthesis, which may contain other function words.
(4) Partial strain names (strain DSMZ 245 standing for
Chlorobium limicola strain DSMZ 245 T). (5) Bacteria
names that contain modifiers such as antimicrobial-
resistant C. coli or L. pneumophila serogroup 1. Such
modifiers are not found in the NCBI lexicon. In the
training and development sets, 107 instances of bac-
teria were extracted using the above rules. These five
rules improve bacteria recall by 1.7 points (from 82.6%
to 84.3%). Furthermore, they considerably improve the
overall system recall by 13.7 points (from 38.4% to
52.1%).

The main source of error in bacteria name prediction
is the ambiguity caused by the use of genus and strain
name abbreviations within the same text. This error fre-
quently occurs when the species scientific name is
abbreviated using only the first word, which is also the
genus name. For example, Bartonella henselae species is
abbreviated as Bartonella. Unfortunately, the Bartonella
genus is also mentioned in the same text and thus yields
an ambiguity between the species anaphor and the
genus name. This issue is further addressed in the Ana-
phora Resolution section.
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Host locations

The same strategy was used for host name recognition.
We considered eukaryote species as bacteria hosts,
neglecting bacteria as possible candidate hosts. The
eukaryote subtree of the NCBI taxonomy was the main
source of host names (811,392), which was complemen-
ted with standard abbreviations (2,110,434). Our system
uses a list of 125 common English words to remove
ambiguous taxon names, such as Indicator (honeyguides)
and Dialysis (xylophages insect), because such terms are
more frequent as common words than as taxon names.
Removing these common words significantly increased
the host precision by 16.6 points (from 38.8% to 55.4%).
This list was enriched using 412 non-taxonomic host
groups (e.g., herbivores), progeny names (e.g., calf) and
human categories (e.g., patient). The resulting host
name list contains 2,078,092 scientific names and 32,186
common names.

Geographical locations

At first, we considered using the very rich resource
GEOnet Names Server (GNS) [11] for geographical
name recognition. However, it contains too many
ambiguous names to be directly usable for short-term
development, as required by the challenge. For the chal-
lenge, we used the short list of Agrovoc geographical
names [12]. The official recall was 29%, the worst
among participant systems. The current version of the
Alvis geographical name recognition component uses
the country list of DBpedia [13], which has 1,201 entries
and includes country and US state names. An additional
contextual pattern increases the recall of the geographi-
cal name recognition, which considers the proper names
preceding country or U.S. state names as geographical
locations as well, for example, Mono Lake, California.
The new developments slightly improved the overall
recall by 2.4 points. However, there is still room for
improvement, which can be achieved using more sophis-
ticated patterns and larger resources.

Symbolic syntactic-semantic method

The other location entities of types Soil, Water, Medical,
Environment and Host-Part cannot be handled by lexi-
con-based methods only. Available lexicons are neces-
sary resources, but they cannot account for the
vocabulary variety given that a location can be any phy-
sical matter. Moreover, as observed in the corpus, these
location terms are noun phrases with adjectival and
noun modifiers, verbal and prepositional complements
subject to deep syntactic and semantic variations. We
propose a robust location entity extraction method that
overcomes both the high degree of variation and the
incompleteness of the lexicons. The first step extracts
all candidate terms from the corpus. The second step
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assigns a location type to the candidate terms and elimi-
nates the irrelevant ones. This step exploits the mor-
pho-syntactic structure of the terms and the location
types derived from the location lexicon.
Term extraction
For term extraction, we used Alvis with BioYaTeA [8],
an extended version of YaTeA [14] that has been
adapted to the biology domain. We analyzed the train-
ing dataset to set BioYaTeA parameters and adapt it to
the task. BioYaTeA parameters are a set of modifiable
constraints that include boundaries, morpho-syntactic
patterns and domain specific post-filters. We restricted
the morpho-syntactic patterns to noun phrases with
adjectival modifiers (e.g., microbial mat). Prepositional
complements in the training dataset location terms are
rather rare (e.g., breaks in the skin), except of preposi-
tional complements (e.g., nodules of plants). The bound-
aries were set to include only the of preposition and
exclude other prepositions, such as with or at, which
may vield syntactic attachment errors (e.g., contaminat-
ing an open wound with sea water). We thus preferred
the risk of incomplete terms to incorrect prepositional
attachments. BioYaTeA produces a set of candidate
terms with their syntactic structure in the form of head-
modifier relations (e.g., geothermal<=M>
environment<=H>).
Type assignment
The type assignment allocates types to BioYaTeA terms,
with respect to the location lexicon, where each entry
has a location type among Soil, Water, Medical, Food,
Environment and Host-Part. Head identification is a
crucial point for our type assignment method. We
observed that, in most cases, the head of the candidate
location compound conveys the location type informa-
tion. However, some terms have ambiguous heads with
respect to the location types (i.e., canal as Host-Part or
Water) or uninformative heads, i.e., those that convey
little or no type information, such as area or sample.
The type assignment algorithm considers five different
cases. (1) The trivial case, the algorithm finds an exact
match with a lexicon term, which generates the type of
the candidate term (Table 1, example 1). (2) The candi-
date term is assigned the same type as the lexicon terms
that have the same head (Table 1, example 2). (3) If the
candidate term has the same head as lexicon terms of

Table 1 Examples of type assignment.
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different types, then the correct type is selected by a set
of disambiguation rules (Table 1, example 3). The most
frequent ambiguity is the confusion Host, Environment
and Food types. This reflects the different status of ani-
mals and plants with respect to bacterial contamination.
Disambiguation rules take into account the context and
the modifiers of the candidate term. For instance, if a
term of type Host is preceded by a death-related adjec-
tive, then its type is renamed as Environment (Table 2,
example 1). (4) The head of the candidate term belongs
to a list of uninformative heads. The method searches
for the largest subterm, ie., the largest term constituent,
with a relevant head (Table 1, example 4). If no such
head is found, the term is not tagged as a location. (5)
In the case, where none of the matching rules apply, the
candidate term is not tagged as a location term (Table
1, example 5).

Adjustment of term boundaries

The BB task guidelines specify that the location span
should exclude information that is irrelevant to bacteria
living conditions, such as infected in infected tick. The
method adjusts the location boundaries by removing
irrelevant modifiers from the extracted terms. We
manually built a list of these modifiers by examining the
training set, the habitat and isolation site fields of the
GOLD database [15].

The guidelines also specify that location spans do not
overlap. However, it is possible that the location terms
predicted by Alvis are nested because BioYaTeA extracts
not only the complete terms, but also their subterms (i.
e., constituents). To choose the right subterm, the
method selects the maximum disjoint terms among the
extracted location terms. For instance, the term human
gastrointestinal tract has four location subterms: gastro-
intestinal tract, human, gastrointestinal and tract. The
maximum disjoint location terms are gastrointestinal
tract and human. The others are discarded because they
are overlapping.

Resources for type assignment

The location lexicon is processed before location predic-
tion to compute its term heads and types. The term
head is computed by BioYaTeA. The assignment strat-
egy of types to lexicon entries depends on the structure
of the lexicon, more precisely whether it is flat or hier-
archical. We experimented with three different

Corpus term Matching rule Head Assigned Type
Ex. 1 aquatic sediment Exact term sediment Environment
Ex. 2 sludge of a zinc decantation tank Term head sludge Environment
Ex. 3 tooth canal Term head and disambiguation canal Host-Part (not Water)
Ex. 4 marine environment Subterm head marine (environment is an uninformative head) Water
Ex. 5 wound infections None infection None
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Table 2 Examples of disambiguation and location boundary adjustment rules.

Rule role Rule example

Location term

Ex. 1 Type disambiguation
Ex. 2
Ex. 3

Boundary extension
Boundary reduction

IF dead, decaying in term THEN type =Env
IF nationality before term (Env) THEN include nationality
IF irrelevant modifier in term THEN delete modifier

dead animal (Host) becomes dead animal (Env)
oil field (Env) becomes German oil field (Env)
infected rodent (Host) becomes rodent (Host)

resources: the flat list of all tagged location terms of the
training and development sets (.a2 files) referred to a
DTa2, the Microorganism Biotope Termino-Ontology
(MBTO) and the EnvO habitat ontology [2]. MBTO
focuses on bacteria biotopes and phenotypes with a
strong emphasis on the physico-chemical properties of
the habitats. MBTO had previously been developed at
the Institut National de la Recherche Agronomique
(INRA). EnvO includes eukaryote habitats and is less
focused on bacteria habitat descriptions.

DTa2 location terms of the task corpus are already
annotated with types. To associate MBTO and EnvO
concepts with the BB task types, we took advantage of
the hierarchical structure of the ontologies. We manu-
ally associated the high level nodes of the location hier-
archies to the eight location types. The types of the
lower level concepts were then inferred. For instance,
the concept aquatic environment is tagged as Water in
the ontology, and all of its descendants, including lake,
sea and ocean, are consequently of the same type. Local
exceptions were manually handled. Once the ontologies
have been processed, they can be used by the corpus
type assignment algorithm.

Experiments with the typing method

Here, we report the experimental results of the typing
method on the BioNLP BB test set. BioYaTeA extracted
1,873 candidate terms from the test set. Table 3 details
the number of candidate terms typed as location terms
using the three different resources. Depending on the
lexicon, the method assigned location types to 9 to 16%
of the test terms. MBTO yields more location predic-
tions. However, it is also the resource with the most
ambiguous heads. For all three resources, symbolic syn-
tactic-semantic matching notably increases the number

Table 3 Number of terms in the test corpus per type
assignment method and per resource.

MBTO EnvO DTa2
% of corpus terms 16% 9% 10%
Exact match 147 46 72
Main head of term 133 114 103
Subterm head 5 4 3
Ambiguous head 26 21 17
Total head matching 164 139 123

(52%) (91%) (63%)
Total 311 185 195

of predicted locations compared with exact match. This
difference is especially marked for EnvO, for which it
predicts 91% of all of the predicted locations. The eva-
luation of the prediction quality is detailed in the
Results section.

Related work

There are a broad range of methods that aim to gener-
ate semantic annotations of entities using types and
ontologies. Among them, our type assignment method
belongs to the class of non-statistical terminological
methods that rely on partial parsing and the semantic
analysis of terms [16]. It is strongly related to the head-
similarity analysis, as previously described [17]. The way
our method associates corpus terms to lexicon entries is
similar to MetaMap [18]. MetaMap tags biomedical cor-
pora with the UMLS Metathesaurus using syntactic ana-
lysis, which takes into account lexical heads of terms for
matching lexicon-corpus terms. However, as opposed to
MetaMap, the aim of our lexicon-corpus term matching
is not to identify the semantically closer terms but to
use the matching result to infer the relevant type of the
corpus terms at a coarse grain level. Therefore, a
resource less extensive than UMLS is required, which is
indicated by the favorable results obtained using DTa2
(Results section). This matching does not have to be as
precise, and consequently, the computation of term var-
iation, as performed by MetaMap, is not necessary.

Relation extraction

The extraction of relations from text has led to a large
amount of work involving an increasing amount of lin-
guistic analysis, including syntactic analysis, such as
dependency parsing [19] and discriminant classification
machine learning methods, e.g., ILP [20], SVM [21-23],
KNN with weak supervision [24] or maximum entropy
[25].

For the prediction of localization and Part-of events,
we used a straightforward and efficient strategy based
on the co-occurrence of arguments and trigger words
within a sentence, as previously described [26]. The sys-
tem predicts a localization event between a bacterium
and a location when a bacteria name (or a bacteria ana-
phor), a location and a trigger word occur together in
the same sentence. Similarly, the system predicts a Part-
of event between the host and the host part when a
host name, a host part term, a bacterium’s name (or a
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bacteria anaphora) and a trigger word occur together in
the same sentence. Requiring the occurrence of a bac-
terium and a trigger for predicting a Part-of event may
appear superfluous. However, removing the bacterium’s
name and trigger word co-occurrence constraint nega-
tively affects the precision of the Part-of event extraction
without improving the recall. The trigger words denote
the bacteria residence (e.g., inhabit, lives, niche, environ-
ment), its dissemination and contamination means (e.g.,
colonize, ingest), its pathogenic effects (e.g., chronic, dis-
ease, pathogen) and bacteria sampling (e.g., discover, iso-
late). The trigger word list was designed by
automatically ranking words in the training corpus sen-
tences that contain both a bacteria name and a location
term. The ranking criterion used was the information
gain with respect to whether the sentence actually con-
tained an event. The ranked list was manually adjusted
by removing words that do not designate a location rela-
tion and adding 35 domain knowledge words (e.g., out-
break, flora, epidemic). In total, 55 trigger words were
collected. The list contains word stems to account for
morphological variations and variations in part of
speech categories among the triggers. To measure the
potential negative effect of trigger words on the recall of
the localization event extraction, we tested the algorithm
without their use (Results section).

Anaphora resolution

Anaphors are encountered frequently in the BB task
corpus, especially for bacteria and to a much smaller
extent for hosts. Our effort focused on bacteria ana-
phora resolution. The location relation extraction
method, as described above, assumes that the relation
arguments (location and bacterium, or anaphor of the
bacterium) occur in the same sentence. From a total of
2,296 sentences in the training corpus, only 363 sen-
tences contained both a location and an explicit bacter-
ium, while 574 mention only a location. Thus, anaphora
resolution is critical for location event extraction.

The style of some of the documents is rather relaxed,
and the antecedent may be ambiguous even for a
human reader. A manual examination of the training
corpus indicated that the most frequent bacterial ana-
phors are not pronouns, but hyperonym definite expres-
sions, either higher level taxa often preceded by a
demonstrative determinant (This bacteria, This Clostri-
dium) or sortal anaphors (genus, organism, species,
strain). Both types of anaphors are commonly found in
biology texts [27]. For anaphora detection and resolu-
tion, a pattern-based approach was preferred to machine
learning because the constraints for relating anaphors to
antecedent candidates of the same taxonomy level were
mainly semantic and domain-dependent. Additionally,
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the annotation of anaphors was not provided in the
training corpus.

In general, the resolution of anaphors has three steps:
(1) the identification of the anaphoric expression, (2) the
search for the set of possible antecedents and (3) the
selection of the antecedent from the set [28]. In our
case, the set of possible antecedents is computed before-
hand because only bacteria anaphors are handled and
the bacteria mentions are detected prior to anaphora
resolution. Thus, the Alvis anaphora resolution is only
required to perform the first and final steps.

We handled three types of anaphors in the corpus:
standard anaphors that have a unique bacteria name as
an antecedent (example 1), bi-anaphors that have two
bacterial names as antecedents (example 2) and a higher
taxon name being used as an anaphoric expression to
refer to a lower taxon, which we named name taxon
anaphors (example 3).

Example 1: Anaphor with a unique antecedent (BTID-60106)
C. coli is pathogenic in animals and humans. People
usually get infected by eating poultry that contained the
bacteria, eating raw food, drinking raw milk, and drink-
ing bottle water [...].

Example 2: Anaphor with two antecedents (BTID-60106)

C. coli is usually found hand in hand with its bacteria
relative, C. jejuni. These two organisms are recognized
as the two most leading causes of acute inflammation of
intestine in the United States and other nations.

Example 3: Name taxon anaphor (BTID-10090)

Ticks become infected with Borrelia duttonii while feed-
ing on an infected rodent. Borrelia then multiplies
rapidly, causing a generalized infection throughout the
tick.

Example 4: Localization sentence without anaphor (BTID-
60051)

In the 1600s anthrax was known as the “Black bane”
and killed over 60,000 cows. The first step automatically
identifies potential anaphors in the corpus given a list of
pronouns, sortal anaphors and taxa [29,30].

The final step selects the most likely bacteria antece-
dent from the set of possible candidates to relate it to
the anaphor. Much of the work performed on ana-
phora resolution describes the different morphological
features of the anaphor/antecedent pair to match them
[30]. These features include gender and number, which
are useful in narrowing down the antecedent set. In
our case, these features would not be useful because
we are only treating bacteria anaphors and the word
bacteria is often used to refer to both a single bacter-
ium and the species. Therefore, we focus on two other
features: the distance between the anaphor and its
antecedent and the salience of the antecedent candi-
date in the sentence.
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The antecedent is usually found close to the anaphor
to maintain the coherence of the discourse. Therefore,
our method ranks the antecedent candidates according
to the anaphoric distance counted in the number of sen-
tences. The closer the antecedent is to the anaphor, the
more likely it is to be selected. If more than one bacter-
ium is found in a given sentence, their position is a dis-
criminant. Centering theory states that in a sentence the
most prominent entities and, therefore, the most prob-
able antecedent candidates are in the order: subject >
object > other position [31]. In English, due to the SVO
order of the language, the subject is most often found at
the beginning of the sentence, followed by the object
and then the others. Therefore, the method retains the
leftmost bacterium in the sentence when searching for
the best antecedent candidate. For anaphors that require
two antecedents, we use these same criteria but search
for two bacteria in each sentence or paragraph instead
of one. For taxon anaphora, we search for the presence
of a lower taxon in the document found before the ana-
phor that is compatible according to the species
taxonomy.

The counts of anaphors detected by the method per
corpus and per kind of antecedent are given in Table 4.
It is worthwhile to note that taxon anaphors account for
12% of the total.

The anaphora resolution algorithm allowed us to
retrieve more sentences that contain both a bacterium
and a location. Of the 574 sentences that contain only a
location, 436 (76%) were found to also contain an ana-
phor related to at least one bacterium. The remaining
138 sentences are cases where there is no bacteria ana-
phor or the bacterium mention is implicit. The bacter-
ium is frequently referred to through its action. For
instance, in example 4 above, the anthrax bacterium
name could be derived from the name of the disease
that it causes.

Results

Tables 5 and 6 summarize the scores that the Alvis sys-
tem achieved on the Bacteria Biotope task. They give
the scores obtained by the best configuration of the
Alvis system and the improvement compared to the offi-
cial scores (in parenthesis) achieved during the challenge
in March 2011. The Alvis system ranked first among

Table 4 Number of anaphors found in each corpus per
anaphor type.

Corpus Single ante Bi ante Taxon ante
Train 933 4 129
Dev 204 3 22
Test 240 0 18
Total 1377 7 169
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Table 5 Alvis system scores for event extraction on the
BB task.

Event recall Event precision F-score
Part-of event 45 (23) +22 66 (79) -13 53 (36) +17
Total 52 (45) +7 46 (45) +1 49 (45) +4

The Part-of event and the total system scores are presented, as provided by
the task organizers. The current system scores are found on the left while
previous (BioNLP 2011 challenge) scores on the BB task are in parenthesis.
The difference (+/-) between both is on the right.

three participants. The new scores were computed using
the online evaluation system of the BioNLP website.
Table 5 shows the precision, recall and F-score of the
event extraction. Table 6 details the recall of entity pre-
diction per type.

The overall event extraction score improves by 4
points (Table 5). This improvement is mainly due to an
increase in recall while the precision, more or less, stays
the same. However, for the Part-of relation, the recall
significantly increases (23% to 45%) while the precision
decreases (79% to 66%), resulting in a significantly
higher F-score. The localization event recall (Table 6,
row 2) is on average 20% lower for all types than the
location entity recall (Table 6, row 1), which indicates
that the events are equally difficult to predict indepen-
dently of the argument types. The prediction of hosts
and bacteria entities achieved a very good recall of 84
and 82 (row 1), respectively, indicating the relevance of
the NCBI resource and additional patterns. Geographical
locations were poorly recognized (29%), but the new
combination of an appropriate DBpedia dictionary and
the contextual patterns greatly improved the recall by
41 points, probably slightly decreasing the entity preci-
sion, as shown by the poor event precision of geographi-
cal entities (36%). Environment arguments remain
harder to predict due to their high naming variability
(61%).

The localization event precision (Table 6, row 3) is
more difficult to analyze than the recall because the

Table 6 Alvis system scores for entity recall, recall,
precision and F-score on the BB task by location type.

Bacteria Host Host- Env. Geo. Water Soil
part
Entity 84 (84) 82 76 (72) 61 70 64 88
(82) (53) 29 (83) (86)
Recall
Recall 63 56 (53) 41 31 35 70
(61) 29 (13) (60) (69)
Precision 55 40 (42) 24 36 44 70
(48) (24) (38) (55) (59)
F-score 59 47 (47) 31 34 39 70
(53) @e) (19  (57) (63)

The current system scores are found on the left while previous (BioNLP 2011
challenge) scores are in the parenthesis. Medical is not included because it is
not significant. Food was not found in the test corpus.
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precision of the argument prediction is not measured.
Many sources of error may be involved, such as incor-
rect arguments, incorrect anaphora resolution, relation
to the wrong bacterium among several or the lack of a
relation.

The investigation of the test corpus also shows that in
some cases environmental locations were mentioned in
the documents as potential sources of industrial applica-
tions without actually being bacteria isolation sites. The
Alvis system does not handle such modalities. For
instance, in Some enzymes of Thermus species [...| Other
fields of application [...], waste treatment, pulp and
paper manufacture, and animal feed and human food
(BTID-50167), the Alvis system erroneously relates
Thermus to waste treatment, paper manufacture, animal
feed and human food.

The event prediction results denoted by the F-score
vary with respect to the type of location (row 4). The
best result is obtained for the Soil type (70.3%), followed
by Host (59%) and Host-part (46.8%). The lowest F-
score is obtained for the Environment type (30.5%), fol-
lowed by Geographical (33.5%) and Water (39%), which
also had the worst entity recall. These results indicate
that the recognition of entities varies in difficulty. Most
of the soil terms have the word soil as their head, mak-
ing them easier to type. Conversely, the environments
are the most unpredictable due to their diversity. Com-
pared with the official results, the new results increased
for all of the types, except for Water. This improvement
is explained by the refinement of the syntactic analysis
and head word identification method, which is critical
for location type assignment. The Water exception
deserves further investigation. Considering the low num-
ber of test examples (21), it may be due to the introduc-
tion of a few type errors as a consequence of the MBTO
expansion.

Results by resource

The three lexical resources DTa2, EnvO and MBTO
yield different results, as shown in Tables 7 and 8.
Using only EnvO yields the worst results, with an F-
score drop of approximately 14 points compared to
DTa2 (Table 7). This result is due to the small intersec-
tion of location term sets in EnvO and in the test cor-
pus. Ambiguous terms and heads in EnvO affect the

Table 7 Scores obtained by different resources and the
symbolic syntactic-semantic type assignment method.

Entity recall Recall Precision F-score
DTa2 74.6 476 50 488
MBTO 786 514 46 485
MBTO+DTa2 79.2 521 463 49.1
EnvO 63.9 304 388 34.1
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Table 8 Scores obtained by different resources and the
exact match type assignment method.

Entity recall Recall Precision F-score
DTa2 64.3 37.7 519 437
MBTO 69.3 413 46.5 437
MBTO+DTa2 69.7 4.7 47.1 44.3
EnvO 584 28.7 46 354

performance of the symbolic syntactic-semantic typing
(see Table 3). The union of DTa2 and MBTO achieves
the best F-score (49%) compared with using the two
resources independently. MBTO matches more terms
than DTa2 (3.8 point increase in recall) but introduces
typing ambiguities, as shown by a decrease in precision
(Table 7).

Experimental results per method

Figure 3 displays the cumulative benefit of each com-
ponent of our approach. The baseline method simply
projects publicly available resources, including the
NCBI list for bacteria recognition, the DTa2 terms, the
NCBI eukaryote tree and the DBpedia country list for
the location extraction and typing. The addition of the
anaphora resolution algorithm and bacteria name
entity patterns increase the score by 19 points, indicat-
ing that bacteria argument names are often not explicit
and, therefore, require more sophisticated linguistic
methods for their retrieval. While the improvement in
precision is due to more bacteria being properly
extracted using the bacteria patterns, this module
mainly increases the recall. The symbolic syntactic-
semantic typing strategy improves the score by 7.6
points, indicating that a head-matching method is effi-
cient. This module includes the entity patterns used
for the prediction of Bacteria, Host and Geographical
types. Moreover, the scores obtained using only DTa2
as a resource suggest that the test set is consistent
with the training and development sets. Adding the
trigger word constraint for event prediction increases
the F-score by only 1.7 points. However, this feature
balances out the recall and precision and more pre-
cisely defines a localization event by ensuring that a
sentence contains a word that signals a localization
other than the bacterium and location arguments. The
addition of the MBTO ontology together with DTa2
increases the recall and lowers the precision of event
prediction, resulting in a 0.3-point increase. This mod-
ule confirms that using MBTO results in more locali-
zations being predicted but with a lower accuracy.

The symbolic syntactic-semantic algorithm allows us
to type previously unobserved terms (an average recall
increase of 8 points compared with exact match; see
Tables 7 and 8). However, the mapping of terms to
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heads is not one-to-one, possibly resulting in a term
having two or more types. This method, in turn, can
introduce some ambiguity, resulting in a lower precision
(average precision decrease of 2.5 points; see Tables 7
and 8). Overall, the typing algorithm grants a significant
4.9 % average increase.

For the baseline, the entity recall is rather high (61.8
%), indicating that using well-adapted and complete
resources allows us to recover a high proportion of
arguments. The symbolic syntactic-semantic typing
method also significantly increases the entity recall,
demonstrating that the approach we use is effective and
relevant for this task. Overall, Figure 3 shows the contri-
bution of each of the strategies presented in this paper.
Each of the four modules presented displays an impor-
tant (recall and/or precision) and significant improve-
ment of the overall score.

Discussion

Future work will focus on the improvement of the pre-
diction of location entities and events using more syn-
tactic information.

Term extraction associated with the symbolic syntac-
tic-semantic typing method appears to be very efficient
for predicting locations, including unobserved entities.
The similarity of the training and test set vocabulary
resulted in a good performance of the argument predic-
tion using the DTa2 annotated terms. However, MBTO
obtained similar results. With the typing method,
MBTO should, therefore, demonstrate higher prediction

capabilities than DTa2 on new corpora for which no
manual annotations are provided.

Regardless of the lexicon richness, the typing strategy
excludes all terms with unknown heads, which may be
critical in cases where the corpus may not be represen-
tative of the available lexicon. In the future, we will
overcome this potential limitation by studying the bene-
fit of using linguistic markers, such as exemplification
structures, for recovering additional location terms. For
example, in the exemplification expression heated
organic materials, such as compost heaps, rotting hay,
manure piles or mushroom growth medium, our method
would correctly type not only heated organic materials
as Environment but also the other location examples of
the enumeration despite their unknown heads.

Alvis predicts localization and Part-of events by co-
occurrence of the arguments with trigger words within
the same sentence. This method has a negative effect on
the precision measure because some pairs are irrelevant,
as in example 5. Two hosts are predicted for the Bau-
mannia bacterium, namely the leathopper and the plant.
However, only the first one is correct.

Example 5 (BTID-10075)

Baumannia cicadellinicola. This newly discovered
organism is an obligate endosymbiont of the leafhopper
insect Homalodisca coagulata (Say), also known as the
Glassy-Winged Sharpshooter, which feeds on the xylem
of plants.

It has been shown that the use of syntactic dependen-
cies to extract biological events, such as protein-protein
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interactions, improves the results of such systems
[32,23,20] because syntactic dependencies indicate
semantic roles. In example 6, syntactic dependencies
would be useful to distinguish the host among the enti-
ties by searching for the one that is directly related to
the bacteria by an agent - action - target relation. The
use of syntactic dependencies could offer a deeper
examination of the syntax and semantics, thereby allow-
ing for a more refined extraction of bacteria localization
and host-host part relations. However, our preliminary
experiments with syntactic parsing and machine learn-
ing indicate that the high variability of syntactic struc-
tures of corpus sentences may be a significant obstacle
for the induction of efficient prediction rules. This idea
has yet to be investigated.

Conclusion

The outcome of this work concerns both the biology
and the information extraction domains. The promising
performance of the Alvis system on the BB task shows
that a combination of semantic analysis and domain-
adapted resources is a good strategy for information
extraction in the biotope domain. We present an argu-
ment prediction method based on term extraction and
linguistic analysis of EnvO and MBTO habitat resources.
The results obtained using MBTO indicate that our
argument prediction method is efficient even without
any training data. Its potential application scope should
be far beyond the BB task and deserves further evalua-
tion on large collections of scientific papers that are rich
in biotope information. We have also shown that the
anaphora resolution algorithm considerably improves
the event extraction by considering not only usual ana-
phoric expressions, such as pronouns, but also hypero-
nyms and cardinality. Definite anaphoric expressions are
not specific to the BB corpus and are frequent in techni-
cal and scientific documents in experimental domains.
The benefit of a combination of the two methods still
has to be evaluated in other information extraction
domains. A further characterization of the corpus and
events for which the method is adapted must also be
performed.
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