
PROCEEDINGS Open Access

Combining joint models for biomedical event
extraction
David McClosky1*, Sebastian Riedel2*, Mihai Surdeanu1, Andrew McCallum2, Christopher D Manning1

From BioNLP Shared Task 2011
Portland, OR, USA. 23-24 June 2011

Abstract

Background: We explore techniques for performing model combination between the UMass and Stanford
biomedical event extraction systems. Both sub-components address event extraction as a structured prediction
problem, and use dual decomposition (UMass) and parsing algorithms (Stanford) to find the best scoring event
structure. Our primary focus is on stacking where the predictions from the Stanford system are used as features in
the UMass system. For comparison, we look at simpler model combination techniques such as intersection and
union which require only the outputs from each system and combine them directly.

Results: First, we find that stacking substantially improves performance while intersection and union provide no
significant benefits. Second, we investigate the graph properties of event structures and their impact on the
combination of our systems. Finally, we trace the origins of events proposed by the stacked model to determine
the role each system plays in different components of the output. We learn that, while stacking can propose novel
event structures not seen in either base model, these events have extremely low precision. Removing these novel
events improves our already state-of-the-art F1 to 56.6% on the test set of Genia (Task 1). Overall, the combined
system formed via stacking ("FAUST”) performed well in the BioNLP 2011 shared task. The FAUST system obtained
1st place in three out of four tasks: 1st place in Genia Task 1 (56.0% F1) and Task 2 (53.9%), 2nd place in the
Epigenetics and Post-translational Modifications track (35.0%), and 1st place in the Infectious Diseases track (55.6%).

Conclusion: We present a state-of-the-art event extraction system that relies on the strengths of structured
prediction and model combination through stacking. Akin to results on other tasks, stacking outperforms
intersection and union and leads to very strong results. The utility of model combination hinges on
complementary views of the data, and we show that our sub-systems capture different graph properties of event
structures. Finally, by removing low precision novel events, we show that performance from stacking can be
further improved.

Background
To date, most approaches to the BioNLP event extrac-
tion task [1,2] use a single model to produce their out-
put. However, model combination techniques such as
voting, stacking, and reranking have been shown to con-
sistently produce higher performing systems by taking
advantage of multiple views of the same data [3-6].

System combination essentially allows systems to regu-
larize each other, smoothing over the artifacts of each
(c.f. [7,8]). To the best of our knowledge, the only pre-
vious example of model combination for the BioNLP
shared task was performed by [1]. Using a weighted vot-
ing scheme to combine the outputs from the top six
systems, the task organizers obtained a 4% absolute F1
improvement over the best system used in isolation.
In this paper, we explore several model combination

strategies. We aim to uncover the answers to these
related questions: Which strategies are effective and
why? How do the outputted event structures change

* Correspondence: mcclosky@stanford.edu; riedel@cs.umass.edu
1Department of Computer Science, Stanford University, Stanford, CA, USA
2Department of Computer Science, University of Massachusetts at Amherst,
Amherst, MA, USA
Full list of author information is available at the end of the article

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

© 2012 McClosky et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:mcclosky@stanford.edu
mailto:riedel@cs.umass.edu
http://creativecommons.org/licenses/by/2.0


after performing model combination? Finally, are there
systematic errors which can be corrected to improve
performance further?
We show that using a straightforward model combina-

tion strategy on two competitive systems (base models)
produces a new system with substantially higher accu-
racy. This is achieved with the framework of stacking: a
stacking model uses the output of a stacked model as
additional features. To put the results in perspective, we
also experiment with two simpler model combination
techniques where systems are run independently and
their outputs are combined via union or intersection.
Our base models are the UMass [9] and Stanford [10]

event extractors. We initially considered combining
these models using voting and reranking strategies.
However, it seemed that given the performance gap
between the two models, the best option was to include
the predictions from the Stanford system into the
UMass system (e.g., as in [7]). This has the advantage
that one model (UMass) determines how to integrate
the outputs of the other model (Stanford) into its own
structure. In the case of reranking or voting, the com-
bined model is required to output a structure con-
structed from the structures produced by the input
models. In other words, each portion of the resulting
structure originates from at least one of the base mod-
els. With stacking, one model determines how to inte-
grate the outputs of the other model and the resulting
structure can contain novel constructions. However, as
it turns out, these novel constructions have low preci-
sion in our case. This can be understood using the same
intuition that underlies the voting or union strategies -
if a structure has been produced by multiple indepen-
dent models, it is more likely to be correct. Novel events
resulting from stacking have essentially been produced
by neither base model and thus tend to be inaccurate.
We show that by removing these novel events from our
output, our state-of-the-art results can be improved
further.

The BioNLP shared task
The BioNLP shared task involves extracting a set of bio-
molecular events from natural language text in a given
document (typically an abstract from a biomedical jour-
nal). By biomolecular events, we mean a change of state
of one or more biomolecules. More concretely, let us
consider part (a) of Figure 1. We see a snippet of text
from a biomedical abstract and the three events that can
be extracted from it. We will use these to characterize
the types of events we ought to extract, as defined by
the BioNLP 2009 and 2011 shared tasks. Note that for
the shared task, entity mentions (e.g., proteins) are given
by the task organizers and hence do not need to be
extracted.
The event E1 in the figure refers to a Phosphorylation

of the TRAF2 protein. It is an instance of a set of simple
events that describe changes to a single gene or gene
product. Other members of this set are: Gene expression,
Transcription, Localization, and Catabolism. Each of
these events has to have exactly one THEME, the pro-
tein whose state change is described. A labeled edge in
Figure 1a shows that TRAF2 is the THEME of E1.
Event E3 is a Binding of TRAF2 and CD40. Binding

events are special in that they may have more than one
THEME, as there can be several biomolecules associated
in a binding structure. This is in fact the case for E3.
In the top-center of Figure 1a we see the Regulation

event E2. Such events describe regulatory or causal rela-
tions between events. Other instances of this type of
events are: Positive Regulation and Negative Regulation.
Regulations must have exactly one THEME; this
THEME can be a protein or, as in our case, another
event. Regulations may also have zero or one CAUSE
arguments that denote events or proteins which trigger
the Regulation.
In the BioNLP shared task, we are also asked to find

anchor (sometimes called trigger or clue) tokens for
each event. These tokens ground the event in text and
allow users to quickly validate extracted events. For

Figure 1 Example of BioNLP events. (a) The sentence, “... the phosphorylation of TRAF2 inhibits binding to the CD40 cytoplasmic domain ...,”
with target event structure to extract; (b) projection to a set of labeled graphs over tokens for the UMass model. The example includes three
events, Phosphorylation (anchored by the text “phosphorylation”), Regulation (anchored by “inhibits”), and Binding (anchored by “binding”). Each
event takes entities (proteins such as “TRAF2” or “CD40”) or other events as arguments (THEME and CAUSE). In part (a), events are represented as
rounded rectangles, relations as labeled arrows, and event anchors as dashed lines. In part (b), event types are written below their event anchors
and relations are shown as labeled arrows or dashed lines (in the case of the “same binding” relationship).

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 2 of 12



example, the anchor for event E2 (a Regulation event) is
“inhibit,” as indicated by a dashed line.
Instead of directly working with the event representa-

tion in Figure 1a, both the UMass and Stanford systems
extract labeled graphs in the form shown in Figure 1b.
The vertices of this graph are the anchor and protein
tokens. A labeled edge from an anchor e to a protein
token p with role label r indicates that there is an event
with anchor e for which the protein p plays the role r.
An edge with role r from anchor e to anchor e’ means
that there is an event at e’ that plays the role r for an
event at e. This representation is used by the UMass
system to define extraction as a compact optimization
problem. A related representation is used by the Stan-
ford system to tackle extraction as dependency parsing
(see the Stacked Model section for details). If a graph
can be drawn on a plane without crossing edges, we say
that the graph is projective (sometimes referred to as a
planar graph). Figure 2 shows examples of projective
graphs while Figure 1 contains an example of a non-
projective graph. We define the non-projectivity of a
graph as the number of crossing edges in it. For more
details about mapping back and forth between events
and labeled graphs, we point the reader to [9,11,12].
The BioNLP 2009 shared task [1] consists of a single

domain, Genia (GE) while the BioNLP 2011 shared task
[2] expands the Genia domain and adds two additional
domains, Epigenetics and Post-translational Modifica-
tions (EPI) and Infectious Diseases (ID) ([13-15], respec-
tively). Our experiments in this paper are over the 2011
shared task corpora.

Model combination approaches
Our primary approach consists of a stacking model that
uses the predictions of a stacked model as features. In
the following sections, we briefly present both the stack-
ing and the stacked model and some possible ways of
integrating the stacked information. We also describe
two simpler model combination techniques (intersection
and union) for comparison.

Stacking model
As our stacking model, we employ the UMass extractor
[16]. It is based on a discriminatively trained model that

jointly predicts anchor labels, event arguments and pro-
tein pairs in bindings. We will briefly describe this
model but first introduce three types of binary variables
that will represent events in a given sentence. Variables
ei,t are active if and only if the token at position i has
the label t. Variables ai,j,r are active if and only if there
is an event with anchor i that has an argument with
role r grounded at token j.
In the case of an entity mention, this means that the

mention’s head is j. In the case of an event, j is the posi-
tion of its anchor. Finally, variables bp,q indicate whether
or not two entity mentions at p and q appear as argu-
ments in the same Binding event.
Two parts form our model: a scoring function, and a

set of constraints. The scoring function over the anchor
variables e, argument variables a and Binding pair vari-
ables b is

s(e,a,b)def
∑
ei,t=1

sT(i, t) +
∑
ai,j,r=1

sR(i, j, r)+
∑
bp,q=1

sB(p, q)

with local scoring functions sT(i, t)def〈wT, fT(i, t)〉,
sR(i, j, r)def〈wR, fR(i, j, r)〉 and sB(p, q)def〈wB, fB(p, q)〉.
Our model scores all parts of the structure in isola-

tion. It is a joint model due to the nature of the con-
straints we enforce: First, we require that each active
event anchor must have at least one THEME argument;
second, only Regulation events (or Catalysis events for
the EPI track) are allowed to have CAUSE arguments;
third, any anchor that is itself an argument of another
event has to be labeled active, too; finally, if we decide
that two entities p and q are part of the same Binding
(as indicated by bp,q = 1), there needs to be a Binding
event at some anchor i that has p and q as arguments.
We will denote the set of structures (e, a, b) that satisfy
these constraints as Y .
Stacking with this model is simple: we only need to

augment the local feature functions fT (i, t), fR (i, j, r) and
fB (p, q) to include predictions from the systems to be
stacked. For example, for every system S to be stacked
and every pair of event types (t’, tS) we add the features

fS,t′ ,tS(i, t) =
{
1 hS(i) = tS ∧ t′ = t
0 otherwise

Figure 2 Example of Stanford representation. Event structures for the text fragment “... tax, acts as a costimulatory signal for GM-CSF and IL-2
gene transcription ...” (left) and the reduced form used internally in the Stanford model (right). In the reduced form, words that don’t take part in
any events (e.g., “for” and “and”) are removed and multiword anchors are replaced with their syntactic heads (e.g., “acts as a costimulatory signal”
becomes “acts”).

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 3 of 12



to fT (i, t). Here hS (i) is the event label given to token
i according to S. These features allow different weights
to be given to each possible combination of type t’ that
we want to assign, and type tS that S predicts.
Inference in this model amounts to maximizing s (e, a,

b) over Y . Our approach to solving this problem is dual
decomposition [17,18]. This technique exploits the fact
that while inference in the full problem may be intract-
able, it usually contains tractable subproblems for which
efficient optimization algorithms exist. In dual decompo-
sition, these algorithms are combined in a message pas-
sing scheme that often finds the global optimum of the
full model. When a global optimum is found, dual
decomposition also provides guarantees that prove the
optimality of this solution.
For our event extraction model we divide the argmax

problem into three subproblems: (1) finding the best
anchor label and set of outgoing edges for each candi-
date anchor; (2) finding the best anchor label and set of
incoming edges for each candidate anchor; and (3) find-
ing the best pairs of entities to appear in the same Bind-
ing. For all of these problems, efficient algorithms can
be derived [9].
For learning the parameters w of this model, we

employ the online-learner MIRA [19]. MIRA iterates
over the training data and compares the gold solution
with the current best solution according to w. If both
solutions disagree, w is adapted such that the gold solu-
tion would win with sufficient margin if the problem
was to be solved again. We refer the reader to [16] for
further details on both inference and learning.

Stacked model
For the stacked model, we use a system based on an
event parsing framework [10,20] referred to as the Stan-
ford model in this paper. A high level description of the
system relevant to the experiments in this paper follows.
To train the Stanford model, first event structures are
projected to dependency trees in a process similar to
that in Figure 1b. These dependency trees are tree-
rooted dependency graphs where nodes are event
anchors or entities and the labeled, directed edges are
relations, e.g., THEME and CAUSE. This projection
eliminates some of the more complex aspects of event
structures which cannot be captured easily in depen-
dency trees, primarily events or entities with multiple
parents. Words that do not take part in any events are
removed in the dependency trees and multiword
anchors of events are replaced with their syntactic
heads. An example of this conversion can be seen in
Figure 2.
After conversion, the dependency trees are parsed

using an extension of MSTParser [21,22] which includes
event parsing-specific features. To parse, MSTParser

creates a complete graph with entities and event anchors
as nodes. For each edge in the complete graph,
MSTParser assigns a score using the features along that
edge and the feature weights learned from training. At
this point, the highest scoring parse (a subgraph of the
complete graph which forms a tree) can be decoded
using several possible algorithms. For example, the algo-
rithm that gives MSTParser its name is the maximum-
spanning tree algorithm which searches for a tree that
spans all nodes in the graph and obtains the highest
sum of edge scores. Once parsed, the resulting depen-
dency tree is converted back to event structures. Train-
ing MSTParser involves learning feature weights which
separate correct edges from incorrect edges during
parsing.
Of particular interest to this paper are the four possi-

ble decoders in MSTParser since they result in four dif-
ferent models. These decoders come from combinations
of feature order (first or second) and whether the result-
ing dependency graph is required to be projective. First-
order features are features taken from a single edge
(including the nodes at each end of the edge) while sec-
ond-order features include features over two adjacent
siblings along with their parent. Non-projective decoders
would seem to be useful for this task. In Genia, 20.8% of
the documents contain at least one non-projective arc
(7.9% of the sentences and 2.9% of the overall depen-
dencies [10]). This portion of the data can only be cap-
tured by non-projective decoders.
For brevity, the second-order non-projective decoder

is abbreviated as ‘2N’, first-order projective decoder as
‘1P,’ etc. When referring to Stanford models, we always
specify its decoder. Each decoder presents a slightly dif-
ferent view of the data and thus has different model
combination properties. Projectivity constraints are not
captured in the UMass model so these decoders incor-
porate novel information. Drawing on techniques from
statistical constituency parsing [23,24], we employ a
reranking framework to further improve performance
and capture global features of event structures. The
existing features are restricted to functions of a single
edge in the first-order model and two adjacent siblings
in the second-order model. However, some phenomena
of event structures span larger structures (e.g., event
anchors and all their immediate children or the number
of THEME relations attached to a specific event). To
switch to a reranking framework, we extend the deco-
ders to n-best decoders which return the n highest scor-
ing parses for each sentence (an n-best list) rather than
just the single highest scoring parse. Note that our non-
projective decoders have only approximate n-best deco-
ders (exact inference for the 2N decoder is NP-complete
[25]) resulting in suboptimal reranker models in some
cases. The reranker rescores each parse in the n-best list

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 4 of 12



and returns the highest scoring parse. These scores are
based on features of the global event parsing structure
as well as including metadata about the parse (e.g., the
MSTParser’s parsing score). The reranker can be also
used for model combination when given the output
from multiple n-best lists. In this case, unique parses
are merged and the original number of decoders produ-
cing the parse and the scores from the decoders are
added to the parse’s metadata. While the primary focus
of this paper is on using stacking for model combina-
tion, a small number of experiments study the perfor-
mance of using the reranker for model combination.
Using the Stanford model as a stacked model
The projective Stanford models are helpful in a stacking
framework since they capture projectivity which is not
directly modeled in the UMass model. Of course, this is
also a limitation since actual BioNLP event graphs are
DAGs, but the Stanford models perform well consider-
ing these restrictions. Additionally, this constraint forces
the Stanford model to provide different (and thus more
useful for stacking) results.
To produce stacking output from the Stanford system,

we need its predictions on the training, development
and test sets. For predictions on the test and develop-
ment sets, we used models learned from the complete
training set. Predictions over training data were pro-
duced using cross-validation. Obtaining predictions in
this way helps to avoid scenarios in which the stacking
model learns to rely on high accuracy at training time
that cannot be matched at test time.
We used 19 cross-validation training folds for GE, 12

for EPI, and 17 for ID. To produce predictions over the
test data, we combined the training folds with 6 devel-
opment folds for GE, 4 for EPI, and 1 for ID.
Note that, unlike Stanford’s individual submission in

the BioNLP 2011 shared task [26], the stacked models
in this paper do not use the reranker. This is because it
would have required making a separate reranker model
for each cross-validation fold.
Training the stacking model took about two hours on

a 16 core machine. The stacked model needed about
three hours on a single core machine for each fold.
Since the stacking model and each fold of the stacked
model can be trained in parallel, the overall training
time is about five hours if sufficient cores are available.

Intersection and union
We investigate two baseline techniques for model com-
bination: intersection and union. Both of these are simi-
lar to their standard set theory operations except that
instead of using strict equality for events, we allow
events to be equal if they match according to the
BioNLP approximate recursive scoring metric.

Results
Table 1 gives an overview of our results on the test sets
on each of the four tasks we submitted to. Note that for
the EPI and ID tasks we show the CORE metric next to
the official FULL metric. The former is suitable for our
purposes because it does not measure performance for
negations, speculations and cellular locations–all of
these we did not attempt to predict. Throughout this
article, the notation L ¬ R indicates that predictions
from model R were used as stacking input to model L.
We compare the UMass and Stanford standalone sys-

tems to the UMass¬Stanford model (referred to as
FAUST). This model uses the four Stanford predictions
(1N, 1P, 2N and 2P) as stacking inputs to the UMass
model. For all four tasks we observe substantial
improvements due to stacking. The increase is particu-
larly striking for the EPI track, where stacking improves
F1 over the UMass model by more than 4.0 points on
the CORE metric.
To analyze the impact of stacking further, Table 2

shows a breakdown of our results on the Genia develop-
ment set. Presented are F1 scores for simple events,
Binding events, Regulation events, and overall perfor-
mance. We compare the standalone UMass system, var-
ious standalone Stanford models and stacked versions of
these (UMass¬X). The last line, “UMass¬Stanford (all)
without novel events,” will be covered later in the dis-
cussion section.
Remarkably, while there is a 5 point gap between the

best individual non-reranked Stanford system (1N) and
the standalone UMass systems, integrating the Stanford
1N prediction still leads to an F1 improvement of 1
point. This can be seen when comparing the UMass,
Stanford (1N decoder), and FAUST results. We also
note that stacking the projective Stanford (1P) and Stan-
ford (2P) systems helps almost as much as stacking all
four Stanford systems combined. Notably, both Stanford
(1P) and Stanford (2P) do not do as well in isolation
when compared to the Stanford (1N) system. When
stacked, however, they do slightly better. This suggests
that projectivity is a missing aspect in the UMass sys-
tem. This is explored in detail in the discussion section.
The “UMass¬Stanford (all, anchors)” and “UMass¬-

Stanford (all, arguments)” lines represent experiments to
determine whether it is useful to incorporate only por-
tions of the information from the Stanford system.
UMass¬Stanford (all, anchors) adds only the anchor
predictions from the four Stanford models and does not
significantly improve over the standalone UMass system.
UMass¬Stanford (all, arguments) includes only links
between event anchors and their arguments and
achieves a small improvement over the standalone
UMass system but with scores significantly lower than

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 5 of 12



when all information is stacked. Given the small gains
for both of these over the original UMass system, it is
clear that stacking information is most useful when
attached to both anchors and arguments. Our theory is
that most of our gains come from when the UMass and
Stanford systems disagree on anchors and the Stanford
system provides not only its anchors but also their
attached arguments to the UMass system. Otherwise,
the UMass system has little incentive to use the newly
proposed anchors. This is supported by a pilot

experiment where we trained the Stanford model to use
the UMass anchors and saw no benefit from stacking
(even when both anchors and arguments were used).
We provide a breakdown of our results on the Epige-

netics track in Table 3, this time in terms of recall, pre-
cision, and F1. As before, there is a substantial boost in
performance from stacking. The UMass model obtains
an F1 of 63.9% on its own and jumps to 67.1% when
given all four Stanford decoders as stacking input. For
this dataset, the non-reranked Stanford decoders are not
as far behind the UMass system, with the 1N decoder
only 1% lower than the UMass system. When combined
with a reranker, the Stanford model (1N decoder) even
outperforms the UMass model. However, it is signifi-
cantly more difficult to use the output of the reranked
Stanford model as stacking input. Stacking would
require nested cross-validation to produce outputs from
the reranker over the training set. This is because train-
ing the reranker itself requires running cross-validation
over the training set. Consequently, we were unable to

Table 1 Overall results

UMass Stanford FAUST

Recall Precision F1 Recall Precision F1 Recall Precision F1

GE Task 1 48.5 64.1 55.2 42.4 61.1 50.0 49.4 64.8 56.0

GE Task 2 43.9 60.9 51.0 – – – 46.7 63.8 53.9

EPI FULL 28.1 41.6 33.5 26.6 37.9 31.2 28.9 44.5 35.0

EPI CORE 57.0 73.3 64.2 56.9 70.2 62.8 59.9 80.3 68.6

ID FULL 46.9 62.0 53.4 46.3 55.9 50.6 48.0 66.0 55.6

ID CORE 49.7 62.4 55.3 49.2 56.4 52.5 50.8 66.4 57.6

FAUST (without novel)

Recall Precision F1

GE Task 1 47.6 69.7 56.6

Results on test sets of all tasks we submitted to, for three models. We list recall, precision, and F1 using the standard BioNLP approximate recursive metric. For
the GE and ID datasets, the Stanford model used all four decoders with the reranker. For EPI, the Stanford model used only the 1N decoder with the reranker. In
all three domains, the stacked UMass¬Stanford model (FAUST) used all four decoders from the Stanford model as inputs. The “FAUST (without novel)” is created
by removing all events which don’t occur in either the UMass or Stanford models (i.e., events which are novel to the stacked output).

Table 2 Stacking experiments on Genia

System Simple Binding Regulation Overall

UMass 74.7 47.7 42.8 54.8

Stanford (1N) 71.3 44.2 35.6 49.9

Stanford (1P) 70.7 42.6 34.6 49.1

Stanford (2N) 69.0 40.5 30.8 46.5

Stanford (2P) 72.0 40.3 35.4 49.5

Stanford (1N, reranked) 71.7 46.9 35.4 50.2

Stanford (1P, reranked) 70.6 44.5 35.5 49.4

Stanford (2N, reranked) 70.2 44.6 38.2 47.9

Stanford (2P, reranked) 71.1 47.8 35.9 50.5

Stanford (all, reranked) 71.6 48.1 35.9 50.7

UMass¬Stanford (all) (=
FAUST)

76.9 43.5 44.0 55.9

UMass¬Stanford (1N) 76.4 45.1 43.8 55.6

UMass¬Stanford (1P) 75.8 43.1 44.6 55.7

UMass¬Stanford (2N) 74.9 42.8 43.8 54.9

UMass¬Stanford (2P) 75.7 46.0 44.1 55.7

UMass¬Stanford (all, anchors) 76.4 41.2 43.1 54.9

UMass¬Stanford (all,
arguments)

76.1 41.7 43.6 55.1

UMass¬Stanford (all) without
novel events

77.3 44.5 43.5 56.2

BioNLP F1 scores on the development section of the Genia track (task 1) for
several event categories and overall F1. The best scores from each column are
bolded.

Table 3 Stacking experiments for the EPI track

System Recall Precision F1

UMass 56.7 73.2 63.9

Stanford (1N) 52.2 79.0 62.9

Stanford (1P) 51.7 78.2 62.3

Stanford (2N) 48.1 82.6 60.8

Stanford (2P) 51.9 77.6 62.2

Stanford (1N, reranked) 57.7 73.2 64.6

Stanford (1P, reranked) 57.6 70.4 63.3

Stanford (2N, reranked) 55.3 75.4 63.8

Stanford (2P, reranked) 56.9 71.3 63.3

Stanford (1N+2P, reranked) 57.9 71.1 63.8

Stanford (all, reranked) 57.0 73.1 64.1

UMass¬Stanford (all) (= FAUST) 57.9 79.7 67.1

BioNLP F1 scores on the development set of EPI using the CORE metric.

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 6 of 12



perform experiments stacking the UMass model with
the outputs from the reranked Stanford models. The
“Stanford (1N+2P, reranked)” line shows an experiment
where only the 1N and 2P decoders are used as input to
the reranker. The hope was that the best single model
(1N) would be improved by adding the most comple-
mentary decoder (2P) but the net result does not out-
perform the 1N model.
Table 4 shows our results on the development set of

the ID task. Here the gap between Stanford-only results
and the UMass results is much smaller and in some
cases negligible. This seems to lead to more substantial
improvements for stacking: UMass¬Stanford (all)
obtains an F1 2.2 points larger than the standalone
UMass system. Also note that the projective systems do
worse on their own, but are more useful when stacked.
An unusual result is that for both EPI and ID (Tables 3
and 4) the Stanford (2N) decoder provides the highest
precision but suffers in recall, resulting in a lower over-
all F1. This is because the 2N decoder ultimately ends
up proposing fewer events (339 proposed events for EPI
instead of ≈385 from the other three decoders).
Another possible approach to stacking conjoins all the

original features of the stacking model with the pre-
dicted features of the stacked model. The hope is that
this allows the learner to give different weights to the
stacked predictions in different contexts. However,
incorporating Stanford predictions by conjoining them
with all features of the standalone UMass system
(UMass¬Stanford (2P, Conj) in Table 4) does not help
here. It appears that the increased data sparsity from the
larger number of features ends up hurting performance.

In Table 5, we show a number of different model
combination techniques for UMass and Stanford mod-
els. The top table summarizes relevant results on Genia
from previous tables. The second table shows the results
of using the baseline model combination techniques to
combine Stanford results with the standalone UMass
model. For each Stanford model, we show its indepen-
dent performance as well as the effect of intersecting or
unioning it with the output from the UMass model.
None of these methods significantly improve perfor-
mance above UMass’s standalone performance on this
dataset (54.7%). Unsurprisingly, the intersected results
have significantly higher precision while the unioned
results have significantly higher recall.
One additional form of model combination is shown

in the “Stanford (all, reranked)” line in Table 5, bottom
table. Recall that the reranker itself can be used to com-
bine the outputs of multiple models. Allowing the reran-
ker to choose the best events from the n-best lists from
all four decoders yields an F1 of 50.7%. Combining the
four decoders instead via unioning (bottom table) yields

Table 4 Stacking experiments for the ID track

System Recall Precision F1

UMass 46.2 51.1 48.5

Stanford (1N) 46.9 50.2 48.5

Stanford (1P) 44.4 47.7 46.0

Stanford (2N) 45.0 54.8 49.4

Stanford (2P) 46.6 49.2 47.8

Stanford (1N, reranked) 47.5 51.4 49.4

Stanford (1P, reranked) 47.9 49.2 48.5

Stanford (2N, reranked) 45.7 52.3 48.8

Stanford (2P, reranked) 49.6 49.9 49.8

Stanford (all, reranked) 48.9 51.6 50.2

UMass¬Stanford (1N) 45.8 51.6 48.5

UMass¬Stanford (1P) 47.6 52.8 50.0

UMass¬Stanford (2N) 45.4 52.4 48.6

UMass¬Stanford (2P) 49.1 52.6 50.7

UMass¬Stanford (all) 47.6 54.3 50.7

UMass¬Stanford (2P, Conj) 48.0 53.2 50.4

Results on the development set for the ID track.

Table 5 Stacking and other model combination
techniques

Model F1

UMass 54.7

UMass¬Stanford 55.8

Model Alone Intersection with
UMass

Union with
UMass

Stanford (1N) 49.9 49.0 54.7

Stanford (1P) 49.0 48.3 54.6

Stanford (2N) 46.5 45.4 54.8

Stanford (2P) 49.5 49.1 54.4

Stanford (all) – 42.4 53.0

Stanford (1N,
reranked)

50.2 49.7 54.4

Stanford (1P,
reranked)

49.4 50.2 53.2

Stanford (2N,
reranked)

47.8 46.9 54.6

Stanford (2P,
reranked)

50.4 50.0 54.4

Stanford (all,
reranked)

50.7 50.0 54.7

Model Intersection Union

Stanford (all) 43.9 50.2

Stacking and reranking outperform the intersection and union model
combination baselines. The first section of the table summarizes the results
from the UMass and stacked models. The second section gives the
performance of each Stanford model alone and when combined with the
pure UMass model via the intersection and union methods. In the last section,
we evaluate the intersection and union baselines using only the four Stanford
models as inputs. The “Stanford (all)” line represents using all four individual
decoders without model combination (hence the Alone column in the second
table is left empty–it cannot be evaluated since it isn’t a single set of
outputs). In “Stanford (all, reranked)”, the reranker was used to combine the
four decoders into a single output before being intersected or unioned. All
results are on the development set for the Genia track.

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 7 of 12



an F1 of 50.2% whereas combining them using the inter-
section baseline gives an F1 of 43.9%. Thus, reranking
also improves over the union and intersection baselines.
Creating a direct comparison of stacking versus rerank-
ing for performing model combination is left as future
work.
We observed that the ID and GE corpora were similar

in their annotations. This allowed us to apply techniques
from domain adaptation. Our hypothesis was that it
might be possible to augment the training data of the
smaller ID corpus with the training and development
data from the larger GE corpus. Merging both training
sets is reasonable since there is a significant overlap
between both in terms of events as well as lexical and
syntactic patterns to express these. When building our
training set we add each training document from GE
once, and each ID training document multiple times–
this lead to substantially better results than including ID
data only once. For the UMass system, two copies of ID
were used whereas the optimal performance for the
Stanford system came from using three copies. Experi-
ments on the Stanford parser with the 2N decoder can
be seen in Table 6. While performance initially dips
after adding GE data, once enough ID data has been
added to adjust the distribution, the overall F1 improves.
With three copies of GE, gains occur primarily in recall
(38.0% to 45.0%) since the additional data helps to
recognize additional patterns. Precision drops from
59.3% to 54.8% since the data from GE is not exactly
from the same domain.

Discussion
Generally, stacking has led to substantial improvements
across the board. There are, however, some exceptions.
One is Binding events for the GE task. Here the UMass
and several reranked Stanford models still outperform
the best stacked system (see Table 2). Likewise, for full
papers in the Genia test set, the UMass model still does
slightly better, with 53.1% F1 compared to 52.7% F1.

This suggests that a more informed combination of our
systems (e.g., meta-classifiers) could lead to better per-
formance. For example, a naïve implementation could
be to simply avoid stacking for Binding events, and
within full papers. In order to better understand where
the improvements from stacking were coming from, we
performed several forms of error analysis. The first
examines to what extent projectivity is a factor. The sec-
ond traces where events proposed by the stacked models
originate and explores the novel events generated as a
result of stacking.

Non-projectivity analysis
One hypothesis is that (non-)projectivity plays a large
role in where improvements from stacking occur [27].
This is because the UMass model does not include pro-
jectivity constraints while the projective decoders from
the Stanford model (1P and 2P) do. Since UMass¬Stan-
ford (1P) and UMass¬Stanford (2P) perform almost as
well as the stacked model with all four decoders (as
seen in Table 2), projectivity does appear to be a factor
at first. In Figure 3, we show how well models create
event structures with the correct amount of non-projec-
tivity. Despite allowing for non-projective structures, the
Stanford non-projective (1N and 2N) generally produce
completely projective event structures. The projective
Stanford decoders (1P and 2P, not shown in Figure 3)
naturally predict nearly projective outputs (there are a
small number of non-projective structures which are
created by the post-processing steps). The UMass and
FAUST systems predict non-projective structures much
more frequently, though rarely with the correct amount
of non-projectivity. Between the UMass and FAUST sys-
tems, there doesn’t appear to be a large difference in the
predicted projectivity. Thus, there is little evidence that
the output from the Stanford models greatly influences
the projectivity of the FAUST model via stacking.
However, in Figure 4, we show that while the pre-

dicted amounts of projectivity do not change much
between the UMass and FAUST systems, we generally
see larger improvements in documents with non-projec-
tive structures. These boxplots provide the distributions
of differences in accuracy (number of predicted events
matched with gold) between two models. Each chart
includes a boxplot for the distributions of these differ-
ences both for projective documents (i.e., documents
containing no projective arcs) and non-projective docu-
ments. Each boxplot shows the median value (solid red
line), 25th and 75th percentiles (blue lines), and 1.5
times the interquartile range (75th percentile to 25th
percentile, shown with solid black lines). For example,
the upper left chart shows that the differences between
UMass and the Stanford (1P) models on non-projective
documents tend to be positive–that is, the UMass

Table 6 Incorporating Genia data with training data for
ID track

Model Recall Precision F1

ID 38.0 59.3 46.3

ID (×1) + GE 40.2 52.0 45.3

ID (×2) + GE 41.7 52.4 46.4

ID (×3) + GE 45.0 54.8 49.4

ID (×4) + GE 43.8 55.2 48.9

ID (×5) + GE 44.7 55.1 49.4

Impact of merging several copies of ID training set with GE training and
development sets for the Stanford model. F1 scores are on ID development
data (2N parser only, Core metric). Best performance is achieved when using
three to five copies of ID to allow GE data to be used without overwhelming
the ID data.

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 8 of 12



system generally performs better on these documents
with a median difference of 1 event. In these boxplots,
the four Stanford decoders perform similarly to each
other with respect to UMass. Despite this, when com-
paring the 1N and 1P decoders (upper right chart), we
see that there is a small improvement on non-projective
documents. Performance on projective documents is
nearly identical in this case modulo outliers. A similar
trend can be seen in the comparison between the
FAUST and UMass systems. Putting these two figures
together, a larger story can be seen. None of the Stan-
ford models predict high numbers of non-projective
structures while the UMass system occasionally overpre-
dicts non-projectivity. When stacked with Stanford
decoders, it receives a soft constraint to produce more
projective structures.
Despite this, the FAUST system behaves similarly to

the UMass system in terms of its predicted projectivity.
Thus, while most of the improvements from stacking
occur on non-projective sentences, their non-projectivity
is mostly unaffected and the improved performance
must come from other factors in the structure. That is,

the event structures predicted are more accurate but
their overall projectivity is not significantly changed.

Event origin analysis
Next, we investigate the origins of events proposed by
the stacked models. Specifically, we aim to answer
which base models originally proposed each event (if
any) and how many events were novel in the stacked
model’s output. To perform this analysis, we collect the
outputs from the Stanford (2P), UMass, and FAUST
models. In the following, we will treat each model as
the set of its predicted events. We place each event e Î
FAUST in one of four classes:

Only 2P e ∈ FAUST ∩ (2P − UMass)
Only UMass e ∈ FAUST ∩ (UMass − 2P)
Both e ∈ FAUST ∩ (UMass ∩ 2P)
Novel e ∈ FAUST − (UMass ∩ 2P)

We allow an event to be contained by one of these
classes (i.e., 2) if it matches one of the events in the set
according to the BioNLP non-approximate recursive
scoring rules [2]. For each event type, we show the

Figure 3 Predicted non-projectivity. Accuracy of how well each model predicts the correct number of non-projective structures for each
document. Each (x, y) datapoint compares the number of gold non-projective arcs (x) in a document with the number of non-projective arcs in
the predicted output for that document (y). The area of each point is proportional to the number of documents it covers. A perfect model
would put all points along the diagonal y = x (dashed grey line). The Stanford 1N and 2N decoders, despite having the potential to produce
non-projective structures, produce almost completely projective structures. The UMass and FAUST models produce more non-projective
structures, though neither is especially precise at predicting the correct amount of non-projectivity. These experiments were performed over the
development section of Genia.

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 9 of 12



number of events in each class and the frequency of
events that were correct (Figure 5). We can now see
that the majority of events are not novel and most origi-
nate from the intersection of the Stanford (2P) and
UMass models. Furthermore, the novel events are fre-
quently incorrect. There are several compatible explana-
tions. One is that the majority of novel events are in the
Binding and Regulation categories which tend to be
more complex and thus harder to predict. Additionally,
novel events by definition are ones that haven’t been
proposed by either model and thus haven’t been “vetted”
as closely. Contrast this with the high precision of
events that come from both base models. Since novel
events proved to be unreliable, we experimented with
removing them from the output of the stacked model
and reevaluated. The net effect is a 0.3% increase in
BioNLP F1 to 56.2% for the Genia development section
(Table 2). On the Genia test section, this results in a
0.6% improvement over the state-of-the-art result from
the FAUST system (Table 1). As expected, the gains
come from a 5% boost in precision and a 2% drop in
recall. In Figure 5, one can also see that the largest sin-
gle band consists of Gene Expressions proposed by both
the UMass and Stanford (2P) models. In general, Gene

Expressions have very high precision and are easy to
recognize. This leads to a large intersection between the
models’ proposed events.

Conclusions
We have exploring different methods of model combi-
nation for biomolecular event extraction. The leading
technique in our experiments, stacking, was used by the
FAUST entry to the BioNLP 2011 shared task. By using
the predictions of the Stanford models as features of the
UMass model, we substantially improved upon both sys-
tems in isolation. This helped us to rank first in three of
the four tasks we submitted results to. Remarkably, in
some cases we observed improvements despite a 5% F1
margin between the models being combined.
Stacking and reranking outperform the union and

intersection baselines as model combination techniques.
By allowing the better performing base model (UMass) to
flexibly determine how to incorporate new information
from the other base models, the model combination can
be done in a more informed and finer-grained fashion.
Our analysis has shed light on where the improvements

from stacking originate. While stacking does not improve
the model’s ability to predict the correct levels of

Figure 4 Differences on projective and non-projective documents. Document-wise differences in performance (number of predicted events
matched with gold) between two models. Positive differences indicate that the first model outperformed the second model. Each chart includes
a boxplot for the distributions of these differences for both projective documents (i.e., documents containing no projective arcs) and non-
projective documents. Each boxplot shows the median value (solid red line), 25th and 75th percentiles (blue lines), and 1.5 times the
interquartile range, (75th percentile to 25th percentile, shown with solid black lines) and outliers (blue plus symbols). In general, larger
improvements happen in non-projective documents. The FAUST model performs comparably to UMass on projective documents (the 25th, 50th,
and 75th percentiles here are 0). However, on non-projective documents, the differences are generally positive, indicating that this is one class of
document that is improved by stacking. These experiments were performed over the development section of Genia. There were 205 projective
documents and 54 documents with at least one non-projective arc.

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 10 of 12



projectivity, it does primarily improve the performance on
non-projective documents. Additionally, while stacking
can generate novel events, these turn out to be low in pre-
cision and ultimately harmful to overall performance.
There are many possible avenues to pursue in the

future. While this paper explored stacking the four
related Stanford models, using a broader set of base
models would certainly improve performance with mini-
mal effort (similar to the experiments run in [1] com-
bining the outputs from the six best systems).
Additionally, further attention could be placed on the
specific features for stacking. In this study, we explored
two feature templates for stacking (non-conjoined and
conjoined where non-conjoined ended up performing
better) but there is likely a middle ground to allow the
stacking model to incorporate the predictions from the
stacked model(s) more finely. Finally, it is worth investi-
gating incorporating novel components into the UMass
dual decomposition framework, e.g., the maximum-
spanning tree component from the Stanford model.

Tables
Throughout these tables, the notation L¬R denotes that
predictions from model R were used as stacking input
to model L. Note that a previous paper [27] contained
incorrect F1 scores from the Stanford system. These
have been corrected here.

Acknowledgements
We thank the BioNLP shared task organizers for creating the shared task
along with its surrounding resources and for their quick responses to
questions. This work was supported in part by the Center for Intelligent

Information Retrieval and in part by UPenn NSF medium IIS-0803847. We
gratefully acknowledge the support of the Defense Advanced Research
Projects Agency (DARPA) Machine Reading Program under Air Force
Research Laboratory (AFRL) prime contract no. FA8750-09-C-0181.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 11, 2012: Selected articles from BioNLP Shared Task 2011. The
full contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/13/S11.

Author details
1Department of Computer Science, Stanford University, Stanford, CA, USA.
2Department of Computer Science, University of Massachusetts at Amherst,
Amherst, MA, USA.

Authors’ contributions
DM and SR conceived and designed the project with help of MS, CM, and
AM. SR implemented the original UMass model. DM and MS implemented
the original Stanford model. SR and DM performed the model combination
experiments and initial analysis. DM performed the non-projectivity and
event origin analyses with help from SR and CM. DM and SR drafted the
manuscript with help from CM. CM and AM helped direct the experiments.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 26 June 2012

References
1. Kim JD, Ohta T, Pyysalo S, Kano Y, Tsujii J: Overview of BioNLP’09 shared

task on event extraction. Proceedings of the Workshop on BioNLP: Shared
Task Association for Computational Linguistics; 2009, 1-9.

2. Kim JD, Pyysalo S, Ohta T, Bossy R, Tsujii J: Overview of BioNLP Shared
Task 2011. Proceedings of the BioNLP 2011 Workshop Companion Volume for
Shared Task Portland, Oregon: Association for Computational Linguistics;
2011.

3. Florian R, Ittycheriah A, Jing H, Zhang T: Named entity recognition
through classifier combination. Joint Human Language Technology
Conference/Annual Meeting of the North American Chapter of the Association
for Computational Linguistics (HLT-NAACL ‘03) Association for Computational
Linguistics; 2003, 168-171.

Figure 5 Origins of events proposed by the stacked model. For each event in the stacked model’s output, we show which model(s)
originally proposed the event or whether the event was novel (generated by the stacked model). We group events by their event type and
whether they were correct with respect to the gold standard. Event origin (only from the Stanford 2P predictions, only from UMass, from both
Stanford 2P and UMass, or novel to the stacking output) is marked by hatching while event correctness is indicated by color. Several
observations can be made: Novel events tend to be more incorrect than correct, events originating from both base models have high precision,
and Gene Expressions events have high agreement between the two base models.

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 11 of 12

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S11
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S11


4. Bennett J, Lanning S, Netflix: The Netflix Prize. KDD Cup and Workshop in
conjunction with KDD 2007.

5. Hall K, Havelka J, Smith D: Log-linear models of non-projective trees, k-
best MST parsing and tree-ranking. Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, 962-966.

6. Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur A, Lally A,
Murdock J, Nyberg E, Prager J, et al: Building Watson: An overview of the
DeepQA project. AI Magazine 2010, 31(3):59-79.

7. Nivre J, McDonald R: Integrating Graph-Based and Transition-Based
Dependency Parsers. Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics (ACL ‘08) Columbus, Ohio:
Association for Computational Linguistics; 2008, 950-958.

8. Surdeanu M, Manning CD: Ensemble Models for Dependency Parsing:
Cheap and Good? Joint Human Language Technology Conference/Annual
Meeting of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL ‘07) Los Angeles, CA; 2010.

9. Riedel S, McCallum A: Fast and Robust Joint Models for Biomedical Event
Extraction. Proceedings of the Conference on Empirical methods in natural
language processing (EMNLP ‘11) 2011.

10. McClosky D, Surdeanu M, Manning C: Event Extraction as Dependency
Parsing. Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics (ACL ‘11) Portland, Oregon; 2011.

11. Björne J, Heimonen J, Ginter F, Airola A, Pahikkala T, Salakoski T: Extracting
Complex Biological Events with Rich Graph-Based Feature Sets.
Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared
Task Boulder, Colorado: Association for Computational Linguistics; 2009,
10-18.

12. Riedel S, Chun HW, Takagi T, Tsujii J: A Markov Logic Approach to Bio
Molecular Event Extraction. Proceedings of the Workshop on BioNLP: Shared
Task 2009.

13. Kim JD, Wang Y, Takagi T, Yonezawa A: Overview of the Genia Event task
in BioNLP Shared Task 2011. Proceedings of the BioNLP 2011 Workshop
Companion Volume for Shared Task Portland, Oregon: Association for
Computational Linguistics; 2011.

14. Ohta T, Pyysalo S, Tsujii J: Overview of the Epigenetics and Post-
translational Modifications (EPI) task of BioNLP Shared Task 2011.
Proceedings of the BioNLP 2011 Workshop Companion Volume for Shared
Task Portland, Oregon: Association for Computational Linguistics; 2011.

15. Pyysalo S, Ohta T, Rak R, Sullivan D, Mao C, Wang C, Sobral B, Tsujii J,
Ananiadou S: Overview of the Infectious Diseases (ID) task of BioNLP
Shared Task 2011. Proceedings of the BioNLP 2011 Workshop Companion
Volume for Shared Task Portland, Oregon: Association for Computational
Linguistics; 2011.

16. Riedel S, McCallum A: Robust Biomedical Event Extraction with Dual
Decomposition and Minimal Domain Adaptation. BioNLP 2011 Shared
Task 2011.

17. Komodakis N, Paragios N, Tziritas G: MRF optimization via dual
decomposition: Message-passing revisited. Proceedings of the 11st IEEE
International Conference on Computer Vision (ICCV ‘07) 2007.

18. Rush AM, Sontag D, Collins M, Jaakkola T: On Dual Decomposition and
Linear Programming Relaxations for Natural Language Processing.
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL ‘07) 2010.

19. Crammer K, Singer Y: Ultraconservative online algorithms for multiclass
problems. Journal of Machine Learning Research 2003, 3:951-991.

20. Stanford Biomedical Event Parser (SBEP). [http://nlp.stanford.edu/software/
eventparser.shtml].

21. McDonald RT, Pereira F, Ribarov K, Hajic J: Non-Projective Dependency
Parsing using Spanning Tree Algorithms. Proceedings of the joint
Conference on Human Language Technology and Empirical methods in
natural language processing (HLT ‘05) The Association for Computational
Linguistics; 2005 [http://acl.ldc.upenn.edu/H/H05/H05-1066.pdf].

22. MSTParser. [http://sourceforge.net/projects/mstparser/].
23. Collins M: Discriminative Reranking for Natural Language Parsing.

Proceedings of the 17st International Conference on Machine Learning (ICML’
00) Stanford, California; 2000, 175-182.

24. Charniak E, Johnson M: Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking. Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL ‘05) 2005, 173-180.

25. McDonald R, Pereira F: Online learning of approximate dependency
parsing algorithms. Proceedings of the 11th Conference of the European
Chapter of the ACL (EACL ‘06) 2006, 6:81-88.

26. McClosky D, Surdeanu M, Manning CD: Event Extraction as Dependency
Parsing in BioNLP 2011. BioNLP 2011 Shared Task 2011.

27. Riedel S, McClosky D, Surdeanu M, McCallum A, Manning CD: Model
Combination for Event Extraction in BioNLP 2011. BioNLP 2011 Shared
Task 2011.

doi:10.1186/1471-2105-13-S11-S9
Cite this article as: McClosky et al.: Combining joint models for
biomedical event extraction. BMC Bioinformatics 2012 13(Suppl 11):S9.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

McClosky et al. BMC Bioinformatics 2012, 13(Suppl 11):S9
http://www.biomedcentral.com/1471-2105/13/S11/S9

Page 12 of 12

http://nlp.stanford.edu/software/eventparser.shtml
http://nlp.stanford.edu/software/eventparser.shtml
http://acl.ldc.upenn.edu/H/H05/H05-1066.pdf
http://sourceforge.net/projects/mstparser/

	Abstract
	Background
	Results
	Conclusion

	Background
	The BioNLP shared task
	Model combination approaches
	Stacking model
	Stacked model
	Using the Stanford model as a stacked model

	Intersection and union

	Results
	Discussion
	Non-projectivity analysis
	Event origin analysis

	Conclusions
	Tables
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

