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Abstract

Background: Electronic Health Records aggregated in Clinical Data Warehouses (CDWs) promise to revolutionize
Comparative Effectiveness Research and suggest new avenues of research. However, the effectiveness of CDWs is
diminished by the lack of properly labeled data. We present a novel approach that integrates knowledge from the
CDW, the biomedical literature, and the Unified Medical Language System (UMLS) to perform high-throughput
phenotyping. In this paper, we automatically construct a graphical knowledge model and then use it to phenotype
breast cancer patients. We compare the performance of this approach to using MetaMap when labeling records.

Results: MetaMap’s overall accuracy at identifying breast cancer patients was 51.1% (n=428); recall=85.4%,
precision=26.2%, and F1=40.1%. Our unsupervised graph-based high-throughput phenotyping had accuracy of
84.1%; recall=46.3%, precision=61.2%, and F1=52.8%.

Conclusions: We conclude that our approach is a promising alternative for unsupervised high-throughput
phenotyping.

Background
Electronic Health Records (EHR) collect patient data
obtained in the course of clinical care. These records,
when aggregated in Clinical Data Warehouses (CDWs),
are a rich source of data for research. For example, we
may want to estimate disease prevalence, track infectious
diseases, identify unexpected side-effects of drugs, iden-
tify cohorts of patients for studies and compare the effec-
tiveness of alternative treatments for a given condition.
Unfortunately, CDWs built from EHRs have not lived

up to these hopes. The fundamental problem is that we
are attempting to use EHR data for purposes other than
supporting clinical care. Over 20 years ago, van der Lei
warned against this practice and proposed that “Data
shall be used only for the purpose for which they were
collected.” [1] For example, ICD-9-CM codes are routi-
nely assigned to a patient for billing purposes, but billing

rules are not meant to preserve and encode clinical rea-
lity. Instead, billing rules are meant to comply with the
byzantine, sometimes mutually incompatible require-
ments of insurers, administrators, and regulators. For
example, patients and their insurers are billed only for
conditions for which they are treated by providers. In
multiple-provider situations this means that each provi-
der only sees a part of the patients’ conditions.
For example, consider a patient P with breast cancer

that gets her oncological treatment at Cancer Center A.
Cancer Center A bills the patient, and the patient’s insur-
ance, for cancer care. The same patient gets tonsillitis
and decides to go to outpatient clinic B. Clinic B sees
her, treats her, and bills her insurance for tonsillitis. At
this point in time, Cancer Center A has a record for a
patient with breast cancer, and Clinic B has a record for
a patient with tonsillitis.
This state of affairs is appropriate for routine clincal

care. Somewhere in the patient’s record at Clinic B a phy-
sician or nurse will have written that the patient also had
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breast cancer. If another physician at Clinic B needs to
know, she can find out by reading the patient’s file.
Now consider a researcher at Clinic B who wants to

know if breast cancer predisposes people towards tonsilli-
tis. Any attempt to find a correlation using billing data
will miss patient P. The same is true for researchers try-
ing to perform genomics research on these diseases; they
will simply miss these patients.
This is not idle speculation; at our outpatient clinic,

approximately 52% of patients who have or had breast
cancer according to their own charts have been billed for
the condition. Similarly, 23% of patients with endometrial
cancer have a billing code compatible with endometrial
cancer [2]. Data from other institutions and other condi-
tions are similar. For example, 52% of patients with an
ICD-9-CM code for Wegener’s Granulomatosis at St.
Alexius Medical Center actually met the diagnostic criteria
for the condition [3]. A strategy combining different ICD-
9 codes yielded an 88% positive predictive value (PPV) for
Lupus Nephritis cases at Brigham & Women’s Hospital in
Boston. However, the sensitivity was impossible to com-
pute (i.e., it was not known how many cases were missed)
[4]. Other studies had similar outcomes [5-10].
Many research efforts such as those focused on Com-

parative Effectiveness Research (CER), genomics, proteo-
mics, genealogy require accurate knowledge of the
patient’s entire medical history and list of conditions;
sometime referred to as the patient’s phenotype. These
research endeavors aren’t interested in the patient’s billing
history. They are interested in what conditions the patients
actually had. This is also known as high-throughput
phenotyping.
This information is often available in physicians’ and

nurses’ notes. Further, clinical notes will contain infor-
mation about past events, unlike other sources of infor-
mation. For example, a patient with a remote past history
of breast cancer, now without evidence of disease, will
not receive medications, and will not have procedures or
lab exams done that could point to the diagnosis. Clinical
notes may also be more abundant than other sources of
information. Our CDW contains 295,000 patients with at
least one clinical note; 161,000 patients with at least one
recorded vital sign; 143,000 patients with at least one
medication in a structured field; and 138,000 patients
with at least one lab exam. Thus, clinical notes are an
important resource for research projects that require
clinical information.
Manual review of hundreds of thousands of charts is

impractical. Even smaller-scale manual review is expen-
sive, and prone to error and inconsistent coding [11].
The biomedial informatics reserch community therefore
continuously seeks ways to extract computable informa-
tion from free text [12]. Automated coding systems such
as MetaMap [13], cTAKES [14], and MedLEE [15] can

map text to Unified Medical Language System (UMLS)
concepts; however, without the addition of customized
rules they draw no inferences from it. Many interesting
problems require determining the state of the patient –
i.e. “did the patient ever have breast cancer?” instead of
the easier “does this document mention breast cancer?”
Automated classification systems built using Weka[16] or
MAVERIC’s ARC [17] address the second need, and per-
form very well on cross-validation [2,17]. However, these
systems have two weaknesses. The first weakness is that
they require training data, which are expensive and slow
to create, as it requires a clinician to read each patient’s
chart and decide whether the patient had the condition
in question. The second weakness is that a system that
works well to identify one concept may not work as well
to identify a different concept, or even the same concept
in another data set; in other words, these systems are not
generalizable [12].
We therefore set out to build a high-throughput phe-

notyping system that required neither training data nor
customized disease-specific rules, used available external
knowledge, and performed well compared to existing
automated coding systems. We based our design on the
intuition that clinicians first look for explicit statements
that assert that a patient has the condition of interest. If
they fail to find these statements, they look for evidence
of the condition. For example, the question “does the
patient have diabetes?” can be answered by finding a
statement in the notes that asserts that the patient has
diabetes. However, if the explicit assertion is missing, it is
still possible to determine whether the patient has dia-
betes by looking for concepts that are commonly asso-
ciated with diabetes. Thus, a physician might read the
chart and discover that the patient had high glycosylated
hemoglobin (a lab marker of long-term glucose concen-
tration in blood), takes metformin (a drug used to treat
diabetes), and had a foot exam (commonly performed on
patients with diabetes during office visits). The presence
or absence these additional elements may add evidence
for or against a diagnosis of diabetes respectively, in the
event that the concept is explicitly mentioned. In other
words, human experts use background knowledge to
understand text; specifically, they look for consistency
between multiple concepts found in the text.In many
respects, this process mirrors the construction and inte-
gration phases of Kintsch’s influential construction-inte-
gration model of text comprehension: concepts derived
from both the reader’s background knowledge and ele-
ments of the text itself are integrated during the process
of constructing a mental representation of the text, and
the extent to which these concepts are collectively con-
sistent with a particular interpretation (e.g., patient has
diabetes) determines whether or not this interpretation
prevails.
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We imitate this comprehension process [18] by con-
structing a nearest neighbor graph using a limited
breadth-first search from a seed term on UMLS concepts
extracted from our CDW, to simulate associative retrieval
of related concepts during the process of text compre-
hension. We also simulate the imposition of external
knowledge not explicitly mentioned in the record by
using knowledge from the UMLS and the biomedical
literature to curate the graph. Finally, we use spreading
activation on the graph to simulate the integration com-
ponent of Kintsch’s model, which resolves inconsistencies
by spreading activation across the links between con-
cepts, such that concepts that are contextually consistent
will ultimately be more activated.

Methods
Sources of data
We used four different data sources: 1. UMLS concepts
extracted from the clinical notes in our CDW using
MetaMap [13]; 2. A Reflective Random Indexing (RRI)
representation of the UMLS concepts [19,20]; 3. The
relationships in the 2010 AA UMLS Metathesaurus;
4. A database of semantic predications extracted from
the biomedical literature using SemRep [21]. The rela-
tionships derived from the metathesaurus and SemRep
were used to select conceptual relations that were more
likely to be clinically relevant, as RRI alone draws a
measure of general relatedness between concepts only.

Experimental design
Our experiment consisted of four phases: 1. Compute a
measure of pairwise correlation between UMLS concepts
extracted from the entire CDW; 2. Build a nearest neigh-
bor graph of UMLS concepts based on this pairwise cor-
relation measure; 3. Use the graph to perform inference
on a patient-by-patient basis.

Computing a measure of pairwise correlation between
UMLS concepts
We used MetaMap (http://metamap.nlm.nih.gov) [13] to
extract UMLS concepts from 1,540,173 clinical notes
belonging to outpatient records for 260,772 patients in
the UTHealth CDW, after excluding patients in the test
dataset (described below). We generated a file for each
individual patient containing the UMLS Concept Unique
Identifier (CUI) for each UMLS concept identified by
MetaMap within that patient’s record, thereby creating a
representation of each patient as a “bag of concepts”.
However, given the large dimensionality of the UMLS
(over 2,500,000 unique concepts), a naïve representation
of each unique concept as a dimension would be very
sparse.
We therefore used Reflective Random Indexing (RRI)

[19], a variant of Random Indexing [20] to derive a

measure of the similarity between pairs of concepts, as
implemented in the Semantic Vectors software package
(http://code.google.com/p/semanticvectors/) [22,23]. The
random indexing paradigm involves the generation of a
semantic vector representation of a given concept by
superposition of randomly constructed elemental vectors
representing the contexts in which the concept occurs
[22,23]. First, we generated random elemental vectors,
1000-dimensional sparse vectors that are mutually
orthogonal or close-to-orthogonal, for each CUI. Then,
we generated a semantic vector for each document in
the corpus of clinical notes by adding the elemental vec-
tor for every CUI extracted by MetaMap from a given
document using log-entropy weighting to emphasize
CUIs that occur focally in the corpus, and normalized
the result. Finally, we built a second set of vectors for
each UMLS concept (i.e. CUI) by adding the document
vectors for every document in which a given CUI
occurs, and normalizing this result by dividing every
dimension by the length of the vector.This second set
was called the semantic concept vectors.
The RRI approach provides a computationally conveni-

ent way to capture second-order associations: meaningful
estimates of the relatedness between a pair of CUIs can
be calculated even if these do not co-occur directly in
any patient record. A detailed account of RRI is beyond
the scope of this paper, but we refer the interested reader
to [19]. For a simplified graphical representation, please
see Figure 1.
The semantic vector representation allowed us to com-

pute the relatedness between any pair of CUIs in our
CDW by calculating the cosine of the angle between
their semantic vector representations. In other words, we
computed the Vector Cosine Comparison (VCC)
between pairs of vectors. The pairs with the highest VCC
were most closely correlated. The advantage of using a
semantic vector representation is that their small dimen-
sionality allows a very large number of vectors in RAM
simultaneously. The ability to keep the entire vector
store in RAM makes the computations extremely fast.

Constructing a nearest-neighbors graph
We built a nearest-neighbors graph by starting with a
seed concept (in this case, C0006142, Malignant neo-
plasm of breast), then performing a breadth-first search
adding the nearest neighborss to the seed (i.e., the con-
cepts with the semantic vectors that had the highest VCC
to the seed concept). We recursively iterated through the
most closely-related concepts to the seed concept, and
added any previously unseen concepts to the graph. We
added up to six concepts at each level, and recursed at
most three times to limit the size of the graph. In other
words, the first level added six concepts; the second level,
up to 36 concepts (six for each concept in the first level);
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the third level, up to 216 (63). If a concept was already
present in the graph, it was not added again. We selected
the thresholds arbitrarily, based on the observation that
human beings have a working memory of between five

and nine items [24]. We used the result of the VCC
between concepts in the CDW as the weight of the edge.
Nearest-neighbor graphs tend to be noisy as RRI does

not capture the nature of the relationship between

Figure 1 Simplified RRI workflow Patient records are turned into a concept representation by MetaMap, which is then used to generate
patient vectors. Patient vectors are used to generate semantic vectors for UMLS concepts. Note that the random and semantic vectors can
contain real numbers, and are normalized in actual use.
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concepts; we therefore used computable knowledge
from the literature and the UMLS to filter the graph.
We checked each nearest-neighbor relation against two
databases. We removed relations that were absent in
both databases from the graph. One database was the
UMLS Metathesaurus. Any relationship between two
concepts present in the Metathesaurus was enough to
validate the nearest-neighbor relationship. The second
database was a set of triples (concept-relationship-
concept) extracted from the literature by SemRep from
a set of 10,000,000 biomedical articles in PubMed. If the
relationship was present in either database, it was kept,
and labeled with the name of the relationship (either
from the UMLS or the literature).

Perform inference on a patient-by-patient basis
We instantiated and manipulated the graphs with our
own MEDRank software (https://github.com/drh-uth/
MEDRank, [25]). After instantiating the graph for each
patient, every concept was assigned a starting value of 0.
We populated each patient’s graph with concepts
extracted by MetaMap from that patient’s clinical notes.
MetaMap produces a confidence score between 0 and
1000 for each instance of a concept in a given document.
We mapped these scores linearly to the range [0,1]. We
then added all normalized confidence scores for each
concept for each patient. We considered UMLS concepts
that were not found in the patient’s record to have a
score of 0. For every concept in the graph, we set its
starting activation to the sum of its normalized confi-
dence scores in all of a patient’s notes.
After populating the graph for a single patient, we

spread activation along the graph’s edges for a maximum
of three steps. The new activation for each node was the
sum of its weighted incoming weights, minus the weight
it spread to other nodes. We then read the value of the
node corresponding to the original seed concept, and
used this as the output of the process.

Evaluation
We created a test set by taking a random sample of
10,000 records of our CDW. We then eliminated
records that did not meet our inclusion criteria (Addi-
tional file 1). The remaining 428 records were reviewed
by a clinician (PBS), who labeled them as “Breast Can-
cer” (meaning that the patient had, at some point in his
or her life, been diagnosed with any kind breast cancer)
or “No breast cancer” meaning that the patient had
never been diagnosed with breast cancer.
Our baseline was the performance of MetaMap acting

as an automated coding system. We compared this to
the performance of our graph-based spreading activation
system.

The outcome measure was the ability to discover the
state of the patient as determined by the clinician. We
counted the number of true positives, true negatives,
false positives, and false negatives for the computed
state of the patient. We calculated the precision, recall,
F1 (harmonic mean of precision and recall), and overall
accuracy of the automated process.
By measuring the peformance of MetaMap using this

outcome measure with and without the graph-based
process, we were able to determine how the graph-
based process changed the quality of concept extraction.

Results
The resulting graph contains 20 nodes and 18 edges.
Of these, six nodes and four edges were not connected
to the main body of the graph, and therefore could not
influence the output value. Thus, the active graph con-
tained 14 nodes and 14 edges and is presented in
Figure 2.
Our test set contained 428 patients. Of these 428

patients, 82 had breast cancer (19.2%) and 346 (80.8%)
did not.
MetaMap’s overall accuracy at identifying breast can-

cer patients was 51.1%; its recall was 85.4% (i.e. it found
70 of the 82 patients who had breast cancer), its preci-
sion was 26.2%, and its F1 value was 40.1%. The graph-
based discovery process labeled 38 patients as positive
(recall=46.3%). Its precision was 61.2%, and its F1 was
52.8%. Its overall accuracy was 84.1% (Table 1).

Discussion
Our graph-based process complements MetaMap by
leveraging structured knowledge (the UMLS) and predi-
cate triples obtained from the literature. It requires no
training or manual adjustments, improves overall accu-
racy and F1. We were able to use graph-based techni-
ques to successfully integrate signals from our clinical
records, the UMLS, and the biomedical literature.
To better understand MetaMap’s performance, we

examined 10 false positives. In all 10 cases, breast cancer
was mentioned in relation to the patient’s family history.
Unfortunately, developing a reasonable rule-based system
to eliminate family-history related false positives is diffi-
cult. There are many different ways in which the relation-
ship is described, from “Patient has a sister who may have
had breast cancer” to “Family history: Breast cancer –
grandmother.” Although we considered removing text
labeled “family history” from the clinical notes, the text
may be part of a longer narrative section, or may have
one of several different, sometimes ambiguous headers.
Developing a system to reliably detect family history
references is analogous to detecting breast cancer refer-
ences in the first place. In other words, it is a subtle text
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classification problem that may require intensive devel-
opment and fine-tuning at each insititution.
On the other hand, we acknowledge that we are show-

ing merely a proof of concept. While we believe that our
technique has great potential, we are presenting only a
single condition for which it works.
We have not yet leveraged the different kinds of rela-

tionships between concepts in the graph to improve per-
formance. It is possible that TREATS and DIAGNOSES
relationships, for example, are much more important
than IS_A or parent/child relationships from the UMLS
for the purposes of discovering patients with a certain
condition.
Our graph construction process was inspired by a

high-level understanding of clinician reasoning (i.e.
“Does the file say that the patient has breast cancer? If

not, does it say that the patient has been treated with
procedures commonly used to treat breast cancer?”), but
it does not reflect a formal model of diagnosis. The
parameters we used in this study were inspired by cog-
nitive models of text comprehension, in which elements
of the text and associations from the mind of the reader
are integrated, and discrepancies resolved through
spreading activation such that the ultimate representa-
tion favors those concepts that are contextually appro-
priate (i.e., mutually consistent).
Additionally, although the completely unsupervised

graph-based discovery approach presented here worked
well, it may work even better with some human input.
For example, Tamoxifen is almost exclusively used to
treat breast cancer, and it was not discovered by the
graph-building process. We believe that it was not dis-
covered in this study because its strength of association
in our CDW is low, due to the fact that our breast
oncological practice is small and focused on surgical
treatment. It is likely to appear in graphs built at other
institutions, and adding it manually to the graph would
potentially improve its generalizability.
Although we demonstrate our technique on breast

cancer, the methodology will clearly apply to other

Figure 2 Graph for Breast Cancer The graph generated by our iterative process for UMLS Concept C0006142, Breast Cancer. The edge labels
specify the type of relationship; relationships prefixed with “UMLS:” were found in the UMLS. Relationships without a prefix (i.e. “PROCESS_OF”)
were discovered in the literature.

Table 1 Performance of MetaMap and the graphical
method on determining the breast cancer status of the
patient as determined by a physician

Accuracy Recall Precision F1

MetaMap 51% 85% 26% 40%

Graphical method 84% 46% 61% 53%
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diseases. In the near future we will undertake the neces-
sary test data set construction to evaluate how well the
graph-based technique generalizes to other conditions.

Conclusions
Graph-based approaches can leverage existing external
knowledge to improve concept extraction from clinical
text. Unlike previous approaches to this problem, it
requires neither the development of customized rules,
nor the construction of an expert-annotated training set
for supervised machine learning. It outperforms Meta-
Map when identifying breast cancer patients. Since this
approach is disease-independent, it has the potential to
generalize to other conditions.

Additional material

Additional file 1: Inclusion criteria Complete list of inclusion criteria for
manual review
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