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Abstract

Shotgun proteomics has recently emerged as a powerful approach to characterizing proteomes in biological
samples. Its overall objective is to identify the form and quantity of each protein in a high-throughput manner by
coupling liquid chromatography with tandem mass spectrometry. As a consequence of its high throughput nature,
shotgun proteomics faces challenges with respect to the analysis and interpretation of experimental data. Among
such challenges, the identification of proteins present in a sample has been recognized as an important
computational task. This task generally consists of (1) assigning experimental tandem mass spectra to peptides
derived from a protein database, and (2) mapping assigned peptides to proteins and quantifying the confidence of
identified proteins. Protein identification is fundamentally a statistical inference problem with a number of methods
proposed to address its challenges. In this review we categorize current approaches into rule-based, combinatorial
optimization and probabilistic inference techniques, and present them using integer programing and Bayesian
inference frameworks. We also discuss the main challenges of protein identification and propose potential solutions
with the goal of spurring innovative research in this area.

Introduction
The main objective of mass spectrometry-based proteo-
mics is to provide a molecular snapshot of the form (e.g.
splice isoforms, post-translational modifications), abun-
dance level, and functional aspects (e.g. protein-protein
interactions, protein localization) of each protein in a
biological sample [1-3]. Among proteomics strategies,
bottom-up or shotgun proteomics has emerged as a
high-throughput technology capable of characterizing
hundreds of proteins at the same time. In this scenario,
proteins in a sample are first digested into peptides, typi-
cally using site-specific proteolytic enzymes (e.g. trypsin).
Peptides are then separated by liquid chromatography
(LC) and analyzed by tandem mass-spectrometry (MS/
MS) resulting in a set of MS/MS spectra [4]. In contrast
to the top-down proteomics strategy, where intact pro-
teins are directly analyzed through mass spectrometers,
shotgun proteomics is characterized by high separation
efficiency and mass spectral sensitivity. At the same time,
it places higher demands on the computational and sta-
tistical techniques necessary for peptide identification,
protein identification, and label-free quantification.

In a standard computational pipeline, MS/MS spectra
from a mass spectrometer are searched against spectral
libraries [5-8] and/or in silico spectra [9-14] corresponding
to peptides from a protein database in order to provide
peptide-spectrum matches (PSMs). Such a database search,
depending on the parameters of the search and the MS/
MS platform, can result in a large number of PSMs that
are assigned scores indicating the confidence level of cor-
rect identification of the respective peptide. The next step
is to assemble a list of identified proteins from all, or a
subset of, PSMs and provide statistical confidence levels
for each protein.
Protein identification is a special case of label-free pro-

tein quantification because, in an ideal scenario, each
protein with a correctly inferred non-zero quantity
(abundance) would be considered identified. However,
label-free quantification has not yet reached the accuracy
needed for the wide dynamic range of quantities observed
in cellular or extracellular proteomes [15]. In addition, in
many practical situations it suffices to only consider the
existence of proteins in the sample and not their exact
quantity. Thus, solving the more general and significantly
more difficult problem of quantification to provide a
solution to its subproblem may result in less accurate
solutions to protein identification.
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Obtaining a list of identified proteins from a set of pep-
tide sequences with identification scores may seem
straightforward. However, there are several factors that
combine to challenge such intuition: (1) Usually only a
small number of peptide identifications, mostly unreli-
able, are available for each protein [16]. This is because
only the top-scoring PSMs for each peptide are typically
included into the candidate set for peptide identifications,
and among those candidates only a small subset are con-
sidered to be confident identifications. This leads to diffi-
culties in providing confident protein identifications, e.g.
if only a single peptide is identified from a protein. (2)
Peptides, even those from the same protein, are not
equally likely to be identified in a proteomics experiment
[17-19]. The probability that a peptide is identified in a
standard proteomics experiment has been referred to as
peptide detectability [19], see appendix. (3) Many peptide
sequences encountered in a typical proteomics workflow
can be mapped to more than one protein in a database.
These are referred to as degenerate or shared peptides
[20,21]. It is a common situation that a eukaryotic sample
contains more degenerate than unique peptides, i.e. pep-
tides that can be mapped to only one protein. (4) It is
non-trivial to estimate the false discovery rates (FDRs) of
identified peptides and proteins. Some approaches to
estimating peptide-level FDRs involve construction of
decoy databases or use unsupervised estimation of class-
conditional distributions (distributions of PSM scores
given correct and false identifications, respectively). How-
ever, a large number of low-scoring PSMs may create dif-
ficulties in determining the certainty of both peptide and
protein identification. While methods for the estimation
of peptide-level FDRs have been characterized relatively
well computing protein-level FDRs remains an open
problem [22,23].
The process of identifying proteins that are present in a

biological sample is now widely framed as a statistical
inference problem, and has been referred to as the
protein inference problem [20,21]. To date, a number of
approaches have been proposed to address this problem
[20,35-37]. We categorize those approaches into three
broad groups, noting that a particular method may
exploit more than one strategy:

1. Rule-based strategies - methods that rely on a
relatively small set of confidently identified (unique)
peptides that are subsequently assigned to proteins.
2. Combinatorial optimization algorithms - methods
that rely on constrained optimization formulations of
the protein inference problem resulting, for example,
in minimal protein lists that cover some or all confi-
dently identified peptides.
3. Probabilistic inference algorithms - methods that
formulate the problem probabilistically and assign

identification probabilities for each protein in a
database.

In the following sections, we provide justification for
the development of advanced protein inference algo-
rithms and then review the major computational strate-
gies. All combinatorial optimization techniques are
presented using a framework of integer programming; on
the other hand, probabilistic algorithms are summarized
using Bayesian inference principles. Our focus is also on
the intuition behind the algorithms, the types of solutions
generated, and the strengths and limitations of each
method. We believe this information is essential in order
to understand commonalities among the algorithms as
well as their principal differences. It is also important for
the proper interpretation of outputs from the various
protein inference tools already applied in bottom-up
proteomics.

Notation
Before discussing algorithmic details, it is important to
introduce notation that will be used throughout this
paper. Let us consider a set of tandem mass spectra S
from a proteomics experiment and let
be a database of proteins that the spectra are searched
against. Let also be the set of all pep-
tides in the database and, similarly, be the set of pep-
tides that belong to protein Pi. We now define two sets
of indicator variables as follows

tj =
{
1
0
if peptide pj is confidently identified
otherwise

and

xj =
{
1
0

if peptide pj is present in the sample
otherwise

Confident peptide identifications can be determined in
several ways, typically by using strict FDR thresholds on
the top-scoring PSMs (per peptide) and are estimated
using a decoy database [22] or tools such as PeptidePro-
phet [38], which calculate the posterior probability of a
correct peptide identification. When posterior probabil-
ities are available, stringent thresholds (e.g. 0.90) can be
applied directly to those probabilities. Alternatively, suffi-
ciently high scores from various search engines [9,39-42]
are sometimes used to select confident identifications.
It is important to mention that variables ti and xi are

different. For example, a peptide pj that is confidently
identified, e.g. using an FDR threshold of 0.01, will
result in setting tj = 1. On the other hand, xi can be seen
as a hidden variable that is to be inferred. Accordingly,
P(xj = 1|S) refers to the probability that peptide j is
present in the sample given all the data from the mass
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spectrometer. A set of confidently identified peptides,
using any of the above-mentioned approaches will be
denoted as .
In some situations it will be necessary to consider

peptides with explicit designations of their parent pro-
teins. In those cases, the j-th peptide derived from pro-
tein Pi will be denoted as pij. Two or more such
peptides will be allowed to have identical amino acid
sequences. For example, peptides pij and pkl (i ≠ k) with
identical amino acid sequences will be referred to as
degenerate peptides. In the context of protein inference,
peptides that occur multiple times only within a single
protein will not be considered degenerate. Finally, we
define

yi =
{
1
0
if protein Pi is present in the sample
otherwise

Variable yi can be seen as an equivalent of xi at the
protein level. Thus, is the posterior probabil-
ity that protein Pi is present in the sample. The sum-
mary of notation and abbreviations is shown in Table 1.

Protein inference: significance and algorithms
Our first goal is to investigate the influence of degener-
ate peptides and to show that their presence is often a
major factor contributing to the challenges in protein
inference. We analyze several cellular and serum sam-
ples and characterize the peptide identification process.
The data include cell line and plasma samples from
Homo sapiens [16], a tissue sample from Mus musculus
[43], as well as samples from Saccharomyces cerevisiae
[44] and Deinococcus radiodurans [24]. The sets of spec-
tra were searched using MASCOT [39] against the
human IPI database (v3.35), mouse IPI database (v3.35),
Saccharomyces Genome Database (R63, 05-Jan-2010),
and D. radiodurans proteins extracted from GenBank
(27-Aug-2009), respectively.
Figure 1A shows the percentage of identified peptides

per protein for an FDR of 0.01 (on the unique peptide
level) when using a reversed database as decoy. We
observe that 32-63% of proteins are covered by only one
confidently identified peptide, while 5-36% of proteins
are covered by five peptides or more. Figure 1B shows
the percentage of degenerate peptides in each sample.
The results indicate that 57-68% of peptides in human
and mouse samples are degenerate, regardless of the
type of biological sample (e.g. cell line vs. tissue vs.
plasma). On the other hand, the yeast and D. radiodur-
ans data sets contain only 18% and 1% of degenerate
peptides, respectively. Figure 1C provides the percentage
of candidate proteins hit by unique peptides. In mouse
and human samples more than 80% of candidate pro-
teins are identified only with degenerate peptides. This
percentage decreases to 23% for yeast and 3% for D.

radiodurans. Finally, in Figure 1D we provide the per-
centage of protein groups of a particular size, where a
group is formed from the set of proteins that are hit by
exactly the same peptides. In accordance with previous
results, most of the yeast and D. radiodurans candidate
proteins are distinguishable; however, for human and
mouse samples, between 30% and 50% of protein groups
contain multiple proteins.
This analysis provides evidence that protein inference

is a non-trivial problem, especially for multicellular
eukaryotes that are known to contain large numbers of
paralogous proteins. It also emphasizes the importance
of developing sophisticated protein inference algorithms.

Rule-based approaches
With a typical LC-MS/MS experiment resulting in a
potentially large number of protein identifications, con-
cerns were raised regarding the impact of misidentified
proteins on biomedical science [45]. In response to this,
several guidelines were proposed regarding the standards
for publishing proteomics results [46-49]. The so-called
“two-peptide rule” or two-hit rule, requiring two or more
confidently identified peptides to define a confident pro-
tein identification, was advocated [46,48]. The same
guidelines also recommended the parsimony principle
(see next Section) as an explanation for the confident
peptide identifications, and suggested that “protein
family” - proteins with similar sequences due to single
amino acid variants, homologs, splicing variants, or anno-
tation mistakes - should be reported as one group if the
proteins share the same identified peptides.
There is a good rationale for using the two-peptide

rule. In principle, one correct unique peptide should be
sufficient to correctly identify a protein. However, even
for the low FDR associated with a set of peptides, many
individual peptides in a large data set are incorrectly
identified. Furthermore, proteins identified by single pep-
tide hits are more likely to be incorrectly identified than
proteins with higher peptide coverage [45]. It was
reported that FDRs for single-hit proteins can be over 10
times higher than FDRs at the PSM level [50], likely due
to the clustering of correct peptide identifications to the
correct proteins and the lack of clustering behavior for
the incorrect peptides [50,51].
However, the two-peptide rule has been challenged

[51,52]. First, while including single-hit proteins without
stringent quality control can compromise specificity,
ignoring such proteins will certainly compromise sensi-
tivity [52]. Second, controlling the confidence (FDR) at
the peptide level and then deducing the proteins using
heuristic rules leads to undefined FDRs at the protein
level [27,50-52]. On the other hand, controlling FDR
directly at the protein level may rescue some of the con-
fident single-hit proteins. Indeed, Gupta and Pevnzer
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demonstrated that using the “single-peptide rule” results
in 10-40% more protein identifications compared with
the two-peptide rule at a fixed FDR level [52]. The sin-
gle-peptide rule simply uses the highest scoring peptide
from a protein as a score for that protein, and then
directly estimates FDR at the protein level (rather than
at the peptide level) using decoy databases. Thus, any
protein that has one or more peptides with a score
above a certain threshold is deemed confident. This
statement seems problematic because proteins hit by
single peptides should not be reliable. However, two
mediocre peptides are not necessarily better than one
good peptide; thus, many proteins hit by a single peptide
can be rescued with more stringent score thresholds.

Since a significant portion of such proteins are correct
[53], it is not surprising that the single-peptide rule
leads to more protein identifications.
With the help of protein-level FDR estimation (using a

decoy database), better and more complex rules may be
devised to achieve even higher sensitivity. For example,
Weatherly et al. proposed setting separate score thresh-
olds for proteins with different number of confident
peptide identifications [51]. They reported that gradually
lower score thresholds were needed for proteins with
increasingly higher coverage. For the coverage of 1 (i.e.
proteins hit by single peptides), a MASCOT score of 44
was required, while for coverage of 6, a MASCOT score
as low as 11 was necessary for the same FDR [51].

Table 1 Summary of notation and abbreviations used throughout this paper.

Notation Description

Set of all fragmentation spectra outputted by mass spectrometer

Set of spectra identified for peptide j

s A single fragmentation spectrum,

Pi or i Protein i

pj or j Peptide j

pij Peptide j derived from protein i; used to explicitly indicate the parent protein for peptide j

Protein database, a set of proteins used for peptide and protein identification

Peptide database, the set of all (tryptic) peptides derived from

Set of peptides derived from protein Pi
ti Indicator variable, set to 1 if peptide is pj confidently identified

Set of peptides that are confidently identified

xj Indicator variable, set to 1 if is present in the sample

yi Indicator variable, set to 1 if is present in the sample

x = (x1, ... , xj , ...) Indicator vector representing all peptides in

y = (y1, ... , yi , ...) Indicator vector representing all proteins in

N(i) Set of peptides mapped to protein Pi

N(j) Set of proteins that contain peptide pj

xN(i) Indicator vector representing peptides in

Peptide identification probability, the probability that peptide j is present in the sample given the spectra identified for peptide j

P (xj = 1|s) The probability of the PSM matching to be correct when peptide j is the top-scoring match of spectrum

Protein posterior probabilities, the probability that protein i is present in the sample given all spectra

dij (q) Detectability of peptide pij at some specified quantity q; effective detectability

d0ij = dij(q0) Detectability of peptide pij at standard quantity q0 ; standard detectability

dij Detectability of peptide pij; effective detectability

NSPij The estimated number of (identified) sibling peptides of peptide pij, used by ProteinProphet to adjust the peptide identification
probability

PSM Peptide-spectrum match; when it is clear from the context, we use PSM to also refer to the top-scoring PSM per spectrum

FDR False discovery rate; the fraction of incorrect peptide identifications in or the fraction of incorrect protein identifications in a
given list outputted by a protein inference algorithm. FDR should be distinguished from the false positive rate (FPR), the fraction
of all peptides (proteins) from the database that are not present in the sample but are predicted to be present (at a particular
threshold).
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Despite the relative simplicity of rule-based approaches,
the performance of heuristic rules is fundamentally limited
by the lack of rigorous treatment and proper combination
of the peptide identification scores and prior knowledge.

Combinatorial optimization algorithms
The input to this class of algorithms typically consists of
a set of confidently identified peptides =

{
pj|tj = 1

}
and a protein database . The objective is to provide a
list of proteins that optimizes certain criteria. In one
way or another, all such formulations result in NP-hard
problems and are usually solved using approximation
algorithms.

The minimum set cover formulation
Minimum set cover (MSC) problem: Given a set of
confident peptide identifications and protein database
, find a smallest protein list L ⊆ such that each pep-

tide from is assigned to at least one protein from L.
More formally,

Figure 1 Summary of peptide identification results over five data sets using a false discovery rate of 0.01 and a reversed database.
(A) Percentage of identified peptides per protein in each sample; (B) percentage of degenerate peptides in each sample; (C) Percentage of all
proteins hit by at least one unique peptide, calculated as the number of proteins with at least one unique peptide divided by the number of all
proteins hit by at least one peptide; (D) Percentage of protein groups of a particular size, where groups consist of proteins identified by the
same set of peptides. The number of identified peptides and proteins in each sample were as follows: (3006, 1898) in human cell line; (700, 390)
in human plasma; (5062, 4331) in mouse liver; (4012, 1154) in yeast; and (969, 368) in D. radiodurans. Peptide identifications correspond to
charges +1, +2, and +3, combined.
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This protein inference formulation is identical to the
classical computer science problem of minimum set
cover, where given a set of elements (peptides) U and a
set of subsets (proteins) over U, the goal is to find a
smallest (not necessarily unique) set of subsets that con-
tain all elements in U. It is convenient to visualize the
MSC formulation using bipartite graphs (Figure 2A).
Using graph representation, it is relatively easy to see
that an optimal solution to the MSC problem can also
be provided if the original graph is divided into con-
nected components and an optimal MSC solution pro-
vided separately for each component.
The MSC approach has been implemented in the

IDPicker software [54,55]. IDPicker, however, also con-
tains several heuristics that further simplify the solution
and its interpretation. The algorithm starts by collapsing
the peptide-protein bipartite graph such that all pep-
tides/proteins connected to the same proteins/peptides
form group nodes containing multiple peptides or pro-
teins. It then finds a set of disconnected subgraphs
within a bipartite graph using a depth-first search.
Finally, it performs a MSC optimization in each of those
subgraphs. IDPicker extends beyond algorithmic imple-
mentations, e.g. it contains modules for calculating con-
fidently identified peptides (using an FDR-based
approach), modules for combining scores from multiple
search engines, as well as visualization of results.
The minimum set cover formulation is one of the most

commonly encountered strategies in protein inference,
and is recommended by the guidelines for publishing
proteomics results [46,48]. Its intuition is to select the

smallest among many possible solutions (Occam’s razor,
parsimony principle), which can be justified by consider-
ing the number of possible solutions when protein list
consists of exactly n proteins. Assuming n ≪ | |, the
solutions of smaller sizes are selected from a smaller
solution space and are therefore less likely to be spurious
findings. In many practical situations, including protein
inference, the MSC formulation leads to natural and
acceptable solutions. However, it is not obvious that a
minimalist formulation should apply to biological sam-
ples in which multiple paralogous proteins or protein iso-
forms may be present at the same time. This approach
also ignores other available information, e.g. peptides
that are not identified (all dashed edges in Figure 2B),
gene functions [56] or mRNA expression levels [57].

The partial set cover formulation
Although the MSC formulation relies on a set confi-
dently identified peptides, a subset of such peptides are
expected to be incorrect identifications. This fact pro-
vides motivation for the partial set cover approaches
where the goal is to find the minimum protein list that
covers at least 100·c% of the identified peptides, where
0 < c ≤ 1 is a user specified parameter.

Minimum partial set cover (MPSC) problem: Given
a set of confident peptide identifications U , protein data-
base , and parameter c (0 < c ≤ 1), find a protein list L
of minimal size such that at least 100·c% of identified
peptides are assigned to the proteins from L. More
formally,

Figure 2 (A) A bipartite graph showing two connected components with five identified peptides and four proteins that contain these peptides.
(B) An expanded bipartite graph showing the situation corresponding to the first connected component in panel A, with unidentified peptides
added. The unidentified peptides are connected to their parent proteins using dashed lines.
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where zj ∈ {0, 1} indicates whether peptide is
excluded

(
zj = 1

)
from the list of assigned peptides. Both

MSC and MPSC problems are NP-hard in general. Thus,
optimal solutions cannot be guaranteed in situations with
a large number of identified peptides (note that each pep-
tide from adds a constraint in the problem formula-
tion). A number of approximation algorithms have been
proposed ranging from greedy algorithms to integer pro-
gramming, and several such algorithms have been tested
in protein inference [58].
Both the MSC and MPSC problem formulations result

in situations where it is not possible to distinguish among
proteins identified exclusively by degenerate peptides (e.g.
proteins P1 and P2 in Figure 2). Nesvizhskii and Aebersold
have identified several such classes of proteins, naming
them indistinguishable proteins, subset proteins, subsum-
able proteins, etc. [20]. Because such situations are com-
mon for eukaryotes or samples containing multiple closely
related organisms, different problem formulations are
necessary to provide appropriate tie resolutions.

The minimum missed peptide formulation
The MSC-based formulations of the protein inference
problem rely only on peptides that were confidently
identified ( ) and thus ignore all unidentified peptides
from the proteins containing at least one peptide from
, see dashed edges in Figure 2B. In addition, these

methods implicitly assume that each peptide is equally
likely to be observed in an MS/MS experiment. The first
combinatorial approach addressing these aspects was the
minimum missed peptide (MMP) formulation [59]. This
approach relies on the concept of peptide detectability
(appendix).
To provide intuition for the MMP approach, let us

consider the example in Figure 3, which itself corre-
sponds to the bipartite graph from Figure 2B. When con-
sidering only peptides in (solid lines in Figure 2B),
proteins P1 and P2 would be classified as indistinguishable
[20]; however, given detectabilities of all peptides, it can
be inferred that protein P1 is more likely to be present in
the sample than protein P2. Specifically, the three identi-
fied peptides (shaded) are the most detectable peptides in
protein P1. On the other hand, these peptides are among
the least expected peptides to be observed if protein P2

was in the sample. Thus, protein P1 is more likely to be a
correct identification than protein P2. Note that the tie
resolution was provided by considering unidentified
peptides.
Before formalizing the MMP approach, let us consider

a particular solution to the protein inference problem in
which different peptides from are assigned to protein
Pi. Note that some peptides may not be assigned
to Pi

(
xij = 0

)
although their sequence can be mapped to

the protein and the peptide is confidently identified(
tij = 1

)
. Peptide pij is defined as missed if and

where dij is detectability of peptide pij. In other words,
a peptide is missed if in a particular inference solution
(1) it is not confidently identified and (2) a peptide with
lower detectability from the same protein is identified
and assigned to that protein. We emphasize that the
peptides with detectabilities lower than the minimum
detectability of assigned peptides for protein Pi are not
considered missed due to the fact that protein quantity
influences effective detectability of all peptides in Pi.
Thus, for effective detectability below a certain thresh-
old, no peptides are expected to be observed. The MMP
approach can now be formalized as follows.
Minimum missed peptide (MMP) problem: Given a

set of confident peptide identifications , protein data-
base , and peptide detectability for each peptide

Figure 3 A detectability plot corresponding to the situation
from Figure 2B. Peptides in each protein are ranked according to
their detectability. The identified peptides p1, p2, and p3 are shaded,
while the remaining peptides are white. The situation provides
intuition for a decision that protein P1 is more likely to be present
in the sample than protein P2. Note that detectabilities of peptides
p1, p2, and p3 are not necessarily identical in the two proteins. This
is because they depend on peptide sequence but also on the
context of the parent protein (neighboring peptides).
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, find a set of proteins that covers all pep-
tides in and minimizes the number of missed peptides.
More formally,

minimize
∑
i,j

zij · (1 − tj)

subject to (zij − zik) · (dij − dik) ≥ 0 (∀i, j ∈ N(i), k ∈ N(i))∑
i∈N(j)

zij ≥ tj (∀pj ∈ C),

where zij ∈ {0, 1} indicates whether detectability dij for
peptide is above or equal to

(
zij = 1

)
or below(

zij = 0
)
the minimum detectability of peptides assigned

to protein Pi and N(i) is a set of peptides connected to
Pi in the expanded bipartite graph (see Figure 2B). A set
of identified proteins can now be determined as

yi =
{
0 if

∑
j∈N(i) zij · tj = 0

1 if
∑

j∈N(i) zij · tj > 0

Alves et al. have shown that the minimum cover set
problem can be reduced to the minimum missed peptide
formulation [59]. Thus, the MMP problem is NP-hard
and approximation algorithms are needed for large-scale
problems. Alves et al. proposed an efficient greedy
approximation algorithm that provides a good solution
[59-61]. Alternative formulations and algorithmic
approaches are also possible. For example, this algorithm
can be generalized in a relatively straightforward manner
to a partial set formulation or to a version that minimizes
the overall probability of unidentified peptides.
Although the MMP formulation was the first protein

inference technique capable of resolving indistinguishable
proteins, it generally shares the limitations of other
approaches based on combinatorial optimization techni-
ques. That is, these algorithms do not provide probabilities
for identified proteins, unless post-processing statistical
models are used [62].

Probabilistic inference algorithms
Similarly to the previous classes of algorithms, probabil-
istic approaches to protein inference generally consist of
two steps. First, PSM scores are converted to PSM prob-
abilities using algorithms such as PeptideProphet [38].
After this pre-processing step, protein inference is per-
formed based on an assumed probabilistic model. In
probabilistic terms, protein inference involves comput-
ing protein posterior probabilities for every
protein in .
Several classes of probabilistic algorithms have been

proposed so far [21,24,60,61,63-71], with different strate-
gies and levels of rigor in addressing protein groups and
different run-time performance. Some probabilistic algo-
rithms do not address degenerate peptides [63,65,68,70],

while some such as ProteinProphet [21] combine prob-
abilistic inference with the parsimony principle (for
degenerate peptides) and protein grouping (for indistin-
guishable proteins). In the following subsections, we
provide an in-depth discussion of the three major prob-
abilistic methods: ProteinProphet [21], MSBayesPro [61],
and Fido [71], and briefly mention several other meth-
ods. We use the same notation for all models and, when
possible, provide new interpretations of the algorithms.
We aim to reveal inherent connections and principal
differences among the methods. For original derivations
and interpretations, readers are referred to the original
publications.

ProteinProphet
ProteinProphet is the first and most widely used probabil-
istic protein inference approach [21], with importance
comparable to the first automated peptide identification
tool, SEQUEST [9]. ProteinProphet consists of four major
steps; together, they convert the original PSM probabilities
from PeptideProphet to peptide identification probabilities
and then combine the peptide identification probabilities
to infer proteins.
Pre-processing In order to obtain protein identification
probabilities, peptide identification probabilities are
needed as input. Here, the difficulty is to obtain one
peptide identification probability from typically multiple
spectra matched to a peptide. The solution used in Pro-
teinProphet is to simply take the maximum value
among the peptide-spectrum matching probabilities for
peptide j (step 1, Figure 4A), i.e.

where is the set of spectra identified for peptide j. If
no spectrum is matched to the peptide, i.e. if
then . Recently, the iProphet algorithm
was proposed to improve this approach [72].
Combining peptide probabilities A key feature of Pro-
teinProphet is that protein probabilities are computed
by assuming peptide identifications to be independent
pieces of evidence for the presence of protein i in the
sample, i.e.

where N (i) is the set of peptides mapped to protein i.
This assumption, however, is not easy to justify because
peptide identifications are not statistically independent.
That is, if one peptide from the protein is confidently
identified, the chance is higher that another peptide
from the same protein will also be identified. Another
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problem with this assumption is that each degenerate
peptide is counted toward all proteins it maps to. These
issues are addressed via the following two adjustment
steps.
Adjustment for peptide identification probability
To address the limitation due to the independence
assumption, ProteinProphet replaces in
the equation above by ; step 2, Figure 4A. The
difference between the adjusted peptide identification
probability ) and the original peptide identifica-
tion probability comes from the presence of
other spectra (peptides) mapped to the same protein as
peptide j. They are expected to change the confidence of
peptide identification. However, it is not straightforward
to estimate . Nesvizhskii et al. defined the
expected number of sibling peptides (NSP), i.e. the num-
ber identified peptides (other than peptide pj) weighted by
the adjusted peptide identification probability ),
from the same protein. Specifically,

NSPij =
∑

j′∈N(i),j′ �=j P(xj
′ = 1|S),

where i indexes a parent protein of peptide j (step 4,
Figure 4A). ProteinProphet then approximates

, which is computed from ) and
) by using the Bayes rule. Since computing

NSPij requires , and computing
requires NSPij, iterative updating is used until conver-
gence (steps 2, 4; Figure 4A).
Adjustment for peptide degeneracy In order to address
degenerate peptides, a weighting scheme is used to
modify protein probabilities to

P(yi = 1|S) = 1 −
∏
j∈N(i)

(1 − wij · P(xj = 1|S)),

where wij is the “proportion” of peptide j assigned to
protein i (step 3, Figure 4A). Nesvizhskii et al. defined
that

wij = P(yi = 1|S)/
∑

i′∈N(j)
P(yi′ = 1|S),

where N(j) is the set of proteins that contain peptide j
(step 5, Figure 4A). This adjustment step is in accor-
dance with the parsimony principle cause

∑
i∈N(j) wij = 1,

i.e. one peptide is ensured to come from only one pro-
tein in total. Note that wij = 1 for all unique peptides
and that wij = 0 if peptide j cannot be mapped to pro-
tein i, i.e. when i /∈ N(j). Since the calculations of wij

Figure 4 (A) A diagram of the ProteinProphet algorithm. The numbers in the circles correspond to the steps mentioned in the text. The
presence of loops in the diagram represents iterative inference algorithms used by ProteinProphet. (B) Toy examples illustrating the impact of
fluctuations in peptide identification probabilities on the inference outcome from ProteinProphet (version 4.2 RAPTURE rev 2). Top part shows
four identified peptides corresponding to two proteins. Peptides p1 and p2 are shared peptides while peptides p3 and p4 are unique peptides for
proteins p1 and p2, respectively. The numerical values are the peptide identification probabilities used in the toy examples. Bottom:
ProteinProphet results on seven data sets with minor changes in peptide identification probabilities. Noisy Input and Output: the peptide and
protein identification probabilities respectively; group: protein group probability; N/A: not reported in ProteinProphet output.
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and are mutually dependent, another itera-
tive updating procedure is used until convergence.
By combining these four steps, with a minor modifica-

tion to include weights wij for peptides in the NSP
adjustment step, i.e.

NSPij =
∑

j′∈N(i),j′ �=j wij · P(xj′ = 1|S),

protein identification probability can be
approximated through a variant of the expectation-max-
imization (EM) iterative process (steps 2-5; Figure 4A).
Since indistinguishable proteins remain indistinguishable
in ProteinProphet, the grouping strategy is adopted by
treating the indistinguishable proteins as one protein.
Therefore, a “group probability”, i.e. the probability that
any one of the proteins in the group is identified, is
reported.
As the first probabilistic inference method for protein

identification, ProteinProphet has been very successful
and, as part of the Trans-Proteomic Pipeline [73],
remains the most widely used protein inference tool.
Although the degenerate peptides are handled by a parsi-
mony-driven weighting procedure, an iterative method
by ProteinProphet is used to obtain those weights and
ultimately results in reasonable probabilities for proteins.
Recently, the tool has been improved, mainly at the pre-
processing step, due to iProphet [72]. By using the same
computational strategy as in the NSP adjustment step of
ProteinProphet, iProphet obtains one identification prob-
ability for each peptide by aggregating the PSM probabil-
ities of the peptide from multiple search engines, spectra,
experiments, charge states, and PTM states.
Limitations Because ProteinProphet relies on certain
strong assumptions, e.g. the parsimony-driven weighting
(step 5, Figure 4A), its outputs are not always sensible
from a statistical perspective. One such scenario was
noticed by the authors [21], that for a set of proteins with
shared peptides, a protein with a unique peptide, no mat-
ter how small the identification probability is, always dom-
inates the protein(s) without unique peptides. In other
words, the algorithm assigns score 1 to the protein with a
random but unique peptide identification and score 0 to
other proteins. This is undesirable, since there are always
a large number of random peptide identifications with
close to 0 probabilities in real proteomics data sets.
To address the issue, only peptides with probabilities ≥0.2
are used to compute protein probabilities. Similarly, we
observed that the inference outcome of ProteinProphet is
sensitive to minor changes in peptide probabilities. This
can be illustrated by a simple example shown in Figure 4B.
Consider two homologous proteins P1 and P2 with identi-
fied peptides {p1, p2, p3} and {p1, p2, p4}, respectively. Sup-
pose p1 and p2 are reliable identifications, but that p3 and
p4 are not, with small identification probabilities. In the

seven toy datasets (A-G) in Figure 4B, we varied the iden-
tification probability of peptides p3 and p4, and computed
the protein probability using ProteinProphet. In data sets
A and E, when the probabilities of unique peptides are not
larger than 0.5, ProteinProphet considers proteins P1 and
P2 indistinguishable, and only reports a group probability;
in data set B, when probability of peptide p3 is slightly
larger than p4 (which has probability 0.5 or less), Protein-
Prophet considers protein P1 as much more reliable than
P2; in data sets C and G, when probability of peptide is
(slightly) larger than p3 (which has probability 0.5 or less),
ProteinProphet considers protein P2 as much more reli-
able than P1; in data set D, when the probabilities are both
larger than 0.5, ProteinProphet considers both proteins to
be reliable; while in data set F, when the probability of
peptide p3 is 0.2 or less, ProteinProphet suggests that only
protein P2 can be the true protein, despite the significant
probability that peptide p4 is a random identification. This
non-continuity of the inference results is counterintuitive.
Naturally, one would expect the probability of protein P2
(P1) decreases (increases) gradually as the probability of
peptide p3 decreases.
Although ProteinProphet applies the parsimony princi-

ple to the issue of shared peptides, it uses a probabilistic
model and an EM-like algorithm. Thus, ProteinProphet
distinguishes itself from the other parsimony principle-dri-
ven methods, such as the combinatorial approaches dis-
cussed earlier. However, it is not clear how often
ProteinProphet actually leads to the same solutions as
other various combinatorial approaches regarding proteins
with shared peptides. In addition, with the presence of
degenerate peptides, the inference problem is difficult;
thus, it would be interesting to compare the EM-like itera-
tive algorithm used by ProteinProphet with the heuristics
used by the combinatorial approaches to examine how
efficiently they handle large data sets.

MSBayesPro
MSBayesPro [61] is defined as a full probabilistic protein
inference method which provides “perhaps the most rig-
orous existing treatment of the peptide degeneracy pro-
blem” [71]. The MSBayesPro model includes peptide
detectability in the probabilistic model; thus it can, to
some degree, distinguish among “indistinguishable”
proteins.
Model structure MSBayesPro is a Bayesian network
(Figure 5) serving as a generative model for the data.
The high level structure of the network is simple: Pro-
teins ® Peptides ® Spectra, which mimics the experi-
mental protocol in proteomics where proteins are first
digested into peptides, from which spectra are gener-
ated. Hence,

P(y, x,S) = P(y)P(x|y)P(S|x) ∝ P(y)P(x|y)P(x|S),
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where y is a vector of random indicator variables for all
candidate proteins, x is a vector of random indicator vari-
ables representing all peptides from those proteins, and
S represents the data, i.e. all the spectra generated in the
experiment. The Peptides ® Spectra associations are
defined by the available PSM scores (or probabilities).
The Proteins ® Peptides connections, however, are
determined by the sequences of the peptides and candi-
date proteins. If the sequence of peptide pj can be exactly
mapped to protein Pi, there will be an edge pointing
from the protein node i to peptide node j in the network.
This is similar to the structure of the model used in Pro-
teinProphet, although the latter is not a Bayesian net-
work. However, there is an important difference between
MSBayesPro and ProteinProphet, i.e. all peptides, identi-
fied and unidentified, are included in the network struc-
ture in MSBayesPro. In contrast, the unidentified
peptides are ignored in ProteinProphet and other Baye-
sian network models [69,71] proposed subsequently.
Other than the simplification of the model structure, we
believe there is no legitimate justification for excluding
unidentified peptides from a probabilistic model. Such
peptides will have the identification probability

; thus xj = 0 is guaranteed in the inference
step. We note that it is these unidentified peptides that,
together with the peptide detectability information, will
lead to tie resolution between grouped proteins and
improve the scoring of proteins hit by single peptides.
The MSBayesPro model has an important property in

that the peptide identifications are conditionally indepen-
dent given the presence of the parent proteins (Figure 5).

This is not to be confused with the independence assump-
tion of peptide identification used in ProteinProphet.
Actually, the conditional independence assumption in
MSBayesPro will lead to marginally dependent peptide
identifications if two peptides share parent proteins
directly or indirectly through other peptide/protein nodes
(that is, if the two peptides are in a connected component
of the graph). Furthermore, the conditional independence
assumption aligns with the LC-MS/MS experiment. Con-
sider a protein Pi that is in the sample at some known
abundance qi. Then, further knowing the information that
one peptide is already identified from this protein does not
inform whether another peptide from the same protein
should be identified in MS/MS or not. With conditional
independence, we can expand the joint probabilities of the
set of peptides N(i) (both the identified ones and those
that are not) from protein i as

P(xN(i)|yi = 1, yi′ �=i = 0, qi = q) =
∏

j∈N(i)
P(xj|yi = 1, yi′ �=i = 0, qi = q).

where qi is the abundance of protein Pi.
Model inputs and parameters MSBayesPro requires
peptide identification likelihood ratios and a set of peptide
detectabilities. The former is a required input to the
method, and the latter, as required parameters of MSBaye-
sPro, can be provided as an input, or ideally, peptide
detectabilities should be estimated via a machine learning
model from the same data set on which protein inference
is carried out [24,61].
For peptide identifications, the input to MSBayesPro is

the likelihood ratios rather than

Figure 5 An example of a Bayesian network used as a generative model in MSBayesPro. Three layers are provided reflecting the LC-MS/MS
experiment in which proteins are first digested into peptides which are then matched to the MS/MS spectra. The numbers associated with the
directed edges indicate peptide detectabilities (between the first two layers) and PSM identification scores (between the last two layers). Note
that some peptides may not be matched with any spectra while some others may be matched with more than one spectrum. The peptides not
matched to any spectra are shown using dashed lines.
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the peptide identification probabilities that impli-
citly include a uniform prior [60,61]. Here the original
peptide-invariant class priors used to compute peptide
identification probability are replaced in MSBayesPro by
the peptide sequence and protein abundance dependent
detectabilities, which are more informative priors. We
note that this treatment in MSBayesPro is somewhat
related to the NSP adjustment in ProteinProphet, which
essentially changes the prior to incorporate information
from the NSP values (interestingly, NSP values may
roughly reflect protein abundances, in similar ways as
effective detectability). Note that unlike detectability,
NSP is not specific to the sequence of a peptide.
Using peptide detectability is an important distin-

guishing feature of MSBayesPro. Detectability is
required to build the conditional distribution tables
between the Protein and Peptide layers and subse-
quently to compute the posterior probabilities for the
proteins. However, to use detectability properly it is
important to consider the impact from protein quantity
(appendix). Li et al. [60] proposed a quantity adjustment
formula to convert standard peptide detectability
d0ij = P(xj = 1|yi = 1, qi = q0) to effective detectability
dij(q) = P(xj = 1|yi = 1, qi = q), where qi, the quantity of
protein Pi, is estimated by the maximum likelihood or
moment matching approaches. If a (degenerate) peptide
pj is shared by multiple proteins, the network structure
requires combining detectabilities dij over all parent
proteins of pj. Here, MSBayesPro assumes that
dj = 1 − ∏

i∈N(j) P(xj = 0|yi = 1, qi) = 1− ∏
i∈N(j) (1 − dij).

Alternative approaches in combining multiple detect-
abilities may also work, but the key intuition is the fol-
lowing: if, for a given peptide, there are multiple parent
proteins all present in the sample, the detectability of
the peptide should be larger than its detectability from
any of the individual proteins alone. This treatment per-
mits a non-parsimonious solution, because a degenerate
peptide is allowed to come from more than one parent
protein.
Inference algorithms With the Bayesian network model
structure and parameters specified, it is in principle easy
to exactly compute the joint posterior probability for
the proteins, i.e. . An optimal solution
for the presence of all proteins (the maximum a posteriori
configuration) is computed as . The
joint posterior probability can be further marginalized to
compute for the presence of each individual pro-
tein in the sample. In practice, this is not always possible
due to the prohibitive time complexity, i.e. the inference
on Bayesian networks is NP-hard in general [74]. MSBaye-
sPro uses Gibbs sampling instead of exact computation
when a connected component in the Bayesian network is

large (it is easy to show that connected components
should be considered separately).
It is important to note that MSBayesPro also reports

estimated protein quantities and the marginal posterior
probabilities for peptides, which provide better scores for
measuring peptide confidence [61]. Thus, in its core,
MSBayesPro is also a label-free quantification algorithm.
Further generalization of the MSBayesPro model has been
suggested to unify the peptide and protein identification
problems and perform higher-level inference on genes and
pathways based on proteomics data [75].
Limitations The use of peptide detectability is both the
strength and a limitation of MSBayesPro. The method
requires good detectability predictions in order to achieve
good performance [24]. However, prediction of detectabil-
ity for non-tryptic peptides and post-translationally modi-
fied peptides is not a fully solved problem yet, which limits
the applicability of MSBayesPro. In addition, detectabilities
cannot be expected to provide tie resolution for proteins
with nearly identical sequences. These cases, however,
reveal the limits of shotgun proteomics experiments and
should be addressed by follow-up experiments such as
well-designed targeted proteomics experiments. Another
limitation is related to the computational complexity: effi-
cient approximation algorithms are necessary for MSBaye-
sPro to work on very large data sets.

The Fido model
The Fido model [71,76] uses a Bayesian network, but was
primarily designed for fast inference. The major contri-
bution of this method consists of two graph transforma-
tions applied to each connected component: collapsing
protein nodes that are connected to the identical sets of
peptides and pruning of spectral nodes (with user speci-
fied parameters) that results in splitting of the connected
components. Both transformations facilitate tradeoffs
between the accuracy and speed of the inference step.
Fido also allows an application of advanced probabilistic
inference algorithms, e.g. the junction tree algorithm,
which significantly improve protein inference on large
graphs.
There are two major differences in the Bayesian network

models used by Fido and MSBayesPro. First, unidentified
peptides are ignored in Fido and a sequence-independent
parameter is used as a replacement for peptide detectabil-
ity (Figure 6). Hence, the resulting Bayesian network is
simpler and inference is faster. Second, another parameter
b is introduced to the model, which is the prior probability
for a peptide to be identified from an artificial “noise”
node. This addresses the situation where input peptide
probabilities are not accurate (e.g. many incorrect peptides
are assigned high probability). We believe this is a legiti-
mate remedy for disasters that can happen during the
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peptide probability estimation. However, parameter b
seems to be redundant given that (1 − α)|N(j)| is the prob-
ability for a peptide pj to be identified from “noise”. The
authors indeed observed strong inverse correlation
between the optimal values of a and b.
One limitation of the Fido model is that it requires a

decoy (randomized) database to find the best values of the
parameters (α, β, and γ- the prior for the presence of pro-
teins) by combining an ROC optimization (in a supervised
manner) with FDR estimation. Some versions of this
approach may lead to overly optimistic performance esti-
mates. Decoy database-independent maximum likelihood
approach may be an alternative to fit the parameters.
Finally, the parameter optimization step dramatically
increases the run time of the algorithm (up to 2000 times),
which compromises the overall speed of the method [71].

Other probabilistic approaches
Yang et al. recently investigated protein inference from
an information retrieval (IR) point of view [68]. This
work is interesting because it leverages methods in the
IR field to the protein identification problem in proteo-
mics. The authors found that the Prob-OR score, which
is similar to ProteinProphet without the two adjustment
steps, is dramatically worse than Prob-AND score,
which is related to the protein posterior probabilities

computed by MSBayesPro if degenerate peptides were
treated as unique to each parent protein. We emphasize
that the IR method proposed by Yang et al. is inherently
a ranking approach rather than an inference approach;
hence, it does not directly address the shared peptide
issue as do the other probabilistic approaches discussed
above.
Gerster et al. [69] recently reported a new probabilistic

approach, Markovian Inference of Proteins and Gene
Models (MIPGEM), that is similar to MSBayesPro and
Fido. MIPGEM models peptide probabilities as random
variables as in some previous approaches [66] and
assumes conditional independence between peptide
scores given their parent proteins (Markovian assump-
tion). Similar to the Fido model, MIPGEM does not con-
sider peptide detectability or unidentified peptides
although the authors suggested that including detectabil-
ity would be a future consideration. Table 2 provides a
summary of the major probabilistic inference methods.
Several other methods are reviewed in [35-37].

Discussion
Our main goal in this review was to present the chal-
lenges, intuition and proposed solutions to the protein
inference problem. With increased throughput of proteo-
mics experiments, the tools and approaches presented

Figure 6 An example of a Bayesian network used in the Fido model. Three layers mimic the LC-MS/MS experiment in which proteins are first
digested into peptides which are then matched to the MS/MS spectra. The numbers associated with the directed edges correspond to PSM
identification scores between the peptide and spectrum layers, while a, b, and g are the three parameters used in Fido. Note that unidentified
peptides are not modeled.
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here will have increasingly more important applications
to many problems in biology and biomedical sciences.
These applications include inference and verification of
gene models, identification of splice forms or post-trans-
latioinally modified sites. Some of these problems can
only be addressed using proteomics techniques and, as
such, proteomics holds great promise in systems biology,
biomarker discovery, diagnostics, prognostics and treat-
ment monitoring.
Undoubtedly, there is a need for more sophisticated

methodology for protein inference, unbiased performance
evaluation of these techniques, as well as stand-alone tools
with graphical user interface that will facilitate transition
from research environments to practice in biomedical
sciences. We conclude this paper by discussing the current
issues in evaluating protein inference algorithms and then
speculating on the ideal protein inference approaches.

Evaluation of protein identification methods
Despite the development of computational protein identi-
fication methods, objectively evaluating the performance
of the methods remains a problem. Two strategies are cur-
rently available: the use of standard samples (mixtures of
known proteins) and the use of decoy protein sequences
to estimate FDR at the protein level. Both approaches
have limitations.
To date, only a limited number of standard samples

[78-80] containing 10-50 proteins have been used to facili-
tate evaluation of peptide/protein identification. The
advantage of using standard samples is that the truth is
known; thus, the accuracy measures, e.g. precision and
recall, of protein identification can be directly computed.
However, standard samples are frequently plagued by con-
taminant proteins and the boundary between true and
false protein identification is blurred. Another limitation

Table 2 A comparison between different probabilistic protein inference algorithms.

Methods ProteinProphet MSBayesPro Fido MIPGEM

Underlying
graph
structure

Bipartite graph with identified
peptides and matching
proteins1

Bayesian network with all peptides
from proteins with at least one
identified peptide

Bayesian network with
identified peptides and
matching proteins

k-partite graph with identified
peptides, matching proteins and
(optionally) matching gene models2

Inference
algorithm

EM (Expectation
Maximization) like

1) Exact3;
2) Memorizing-Gibbs sampling

1) Exact3 ;
2) Pruning
approximation

1) Exact3;
2) Direct sampling

Input Probabilities for peptides with
user-defined cutoff for p
(often p > 0.05 is used)

Likelihood ratios for peptides with
p > 0.05 and peptide
detectabilities

Likelihood ratios for
peptides
with p > 0.05

Probabilities for peptides with user-
defined cutoff for p (often p > 0.05 is
used; 0.9 for best performance)

Output 1) Protein probabilities;
2) Protein group probabilities;
3) NSP adjusted peptide
probabilities

1) MAP solution, protein
abundances and probabilities;
2) Protein group probabilities;
3) Posterior peptide probabilities

1) Protein probabilities;
2) Protein group
probabilities

1) Protein probabilities;
2) Gene model probabilities

Protein prior
estimation

No protein priors Direct frequency estimation based
on protein posterior probabilities
in one run of MSBayesPro

Grid search optimizing
cross-
validation performance
through multi-runs of
Fido with different
priors

Grid search optimizing model
likelihood through multi-runs of the
MIPGEM with different priors

Peptide
probability
adjustment
by

NSP from a parent protein Protein quantity adjusted peptide
detectability

Two detectability-like
parameters a, b

Treating peptide identifications as
random variables

Protein
grouping

Yes No (indistinguishable proteins are
resolved)

Yes No (indistinguishable proteins are not
resolved)

Peptide
charge

Considered Ignored Considered Considered

Novel
aspects

1) First probabilistic protein
inference algorithm;
2) Efficient EM algorithm

1) A Bayesian network;
2) Resolves indistinguishable
proteins using unidentified
peptides and peptide detectability;
3) Modified Gibbs sampling

1) Using a noise model
to remedy inaccurate
peptide probabilities;
2) Pruning algorithm,
efficient inference

Gene model probabilities4

Availability http://tools.proteomecenter.
org

http://darwin.informatics.indiana.
edu/yonli/

http://noble.gs.
washington.edu/proj/
fido

-

1. For ProteinProphet, the underlying bipartite graph does not correspond to a Bayesian Network although it guides the EM-like algorithm through inference.

2. MIPGEM uses a rule-based protein removal scheme to simplify the network structure;

3. Exact computation is used only for small connected components;

4. Gene centric proteomics was proposed in [77], and implemented earlier in a deterministic way in [67].
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of standard samples is their small number of proteins,
which leads to difficulties in assessing statistical signifi-
cance in method comparisons.
The second approach estimates protein-level false dis-

covery rates with the help of decoy databases. Although
the approach has been used in several studies [51,52], two
serious problems of the approach are generally ignored.
We suggest that using decoy databases for evaluation of
protein identification algorithms should be approached
with these limitations in mind. First, unlike the decoy (e.
g. reversed, randomized) database approach for peptides,
the decoy database for proteins does not produce the cor-
rect estimation of the number of incorrect protein identi-
fications when the correct proteins comprise a significant
portion of the database. In an extreme scenario, when all
proteins in the database are present in the sample, all the
identified proteins from the forward database are correct
despite many peptides being incorrect identifications.
On the other hand, all identified proteins from a decoy
database are incorrect. Thus, using a decoy directly will
produce a non-zero FDR, while FDR = 0 is the correct
answer.
This problem can be addressed by correcting for the

bias due to the number of true proteins in the forward
database. Let the number of identified forward and
decoy proteins be nF and nD, and the total number of
forward and decoy proteins in the databases be NF and
ND, respectively. Let the protein level FDR in forward
database be FDRP and the rate of incorrect protein iden-
tifications from the forward and decoy database be

γF =
FDRP · nF

NF − (1 − FDRP) · nF ,

and

γD =
nD
ND

,

respectively. An assumption regarding a decoy database
is that the rates of the false protein identifications are
identical; hence, γF = γD. By solving this equation we find

FDRP =
nD · (NF − nF)
nF · (ND − nD)

.

Note that there is a correction factor
(NF − nF)(ND − nD) in this equation compared to the
FDR formula used for peptides. Also, when
NF = nF, FDRP = 0 as expected. A related correction is
implemented in the MAYU approach [50] developed for
FDR estimation from large proteomics data sets, i.e. the
case when nF/NF � 0. Further corrections may be
needed if the average lengths of the identified vs. non-
identified proteins are different.
We would like to point out that, for probabilistic pro-

tein inference algorithms, theoretical protein FDR values

can be computed based on the protein posterior prob-
abilities. However, such theoretical FDR values are only
accurate when the reported protein posterior probabil-
ities are accurate. Hence, they need to be evaluated them-
selves, e.g. against the target/decoy-based empirical
FDRs.
The second and more serious issue for applying the

decoy approach is related to the existence of protein
families. In fact, to our knowledge, no solution has yet
been proposed. Simply speaking, a randomized data-
base cannot serve as a good decoy for evaluating meth-
ods on data sets that contain many degenerate peptide
identifications. The reason is that such peptides are
typically shared among forward proteins, which could
be similar to each other due to biological/annotation
reasons, but not with decoy proteins. As a result, a ran-
domized protein database cannot provide indications
whether the identifications made among homologous
proteins are correct or not. For this reason, a rando-
mized decoy database is expected to underestimate
FDRs for eukaryotic samples, which have large number
of shared peptides (Figure 1). The problem might be
addressed using well-constructed non-random
sequence database or using a closely related proteome
database as decoy. Evaluating protein inference algo-
rithms using such non-random decoys, however,
remains a research problem.
We emphasize that both standard mixtures and the tar-

get/decoy approach for complex samples have their pros
and cons in evaluating protein inference algorithms, and
they are not mutually exclusive approaches. In fact, stan-
dard mixtures can be used to validate the target/decoy
approach for protein FDR estimation. It is generally a
good idea to use both strategies for a more complete and
objective evaluation.

A need for guidelines for comparisons between methods
Due to the complexity of protein inference, fair evaluation
of the proposed methods has been challenging. This is due
to two major aspects. First, reliable and objective valida-
tion of the protein identification results is itself a challen-
ging problem, as the FDR estimation is still unreliable. In
addition, it is not even obvious how to compare models
whose outputs are considerably different, e.g. those that
provide protein groups and those that resolve ties between
all proteins. Second, due to the lack of agreed upon guide-
lines, avoidable unfair comparisons are sometimes seen in
the literature [69]. In other works, different peptide identi-
fication algorithms or scoring schemes are sometimes
used as inputs to different protein inference methods,
making the protein inference comparisons uninterpretable.
In order to address this situation, we tentatively pro-

pose the following principles for comparisons of protein
inference algorithms. First, whenever possible, the same
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or equivalent peptide identification scores as input to dif-
ferent programs should be used. Second, effort should be
made to provide inputs most appropriate to each algo-
rithm considered. For example, algorithms that take all
peptide identifications should be provided all scores,
while programs that take only confident identifications
should be provided such a subset. Third, at least one
standard protein mixture data set should be used and all
known proteins (whether they belong to “indistinguish-
able” protein groups or not) in such data sets should be
included in the evaluation of the protein inference meth-
ods. This will allow the evaluation of protein inference
algorithms on proteins identified without any unique
peptides. Finally, and in an ideal scenario, large data sets
from complex samples of unknown proteins should also
be used to compare different programs; however, we cau-
tion that the current decoy database strategy may not
provide reliable FDR estimates at the protein level (eva-
luation for protein data sets with significant fraction of
degenerate peptides is a particular problem).

The ultimate protein inference approach
Despite the amount of published work, the protein
inference problem is far from solved. We believe two
aspects are crucial to the future approaches. First, the
model should be probabilistic and with degenerate pep-
tides treated in principled ways. Second, unidentified
peptides should be exploited with peptide detectability
incorporated into the model, perhaps adjusted to allow
modeling peptide competition at the elution stage in a
given sample. Despite the current limitations of peptide
detectability predictions, especially for non-tryptic and
modified peptides, it is believed that including detect-
ability [24,35,69,71] or peptide-specific information for
peptide probability adjustment [21] would improve the
current methods for protein inference.
Furthermore, we believe that better estimation of pep-

tide/protein quantity might also help protein inference
by, for example, improving the quantity adjustment of
peptide detectability [60,61], and provide additional
input information for protein inference. As mentioned
in the Introduction, protein inference can be viewed as
a special case of protein label-free quantification. In fact,
an ideal inference algorithm should automatically be a
quantification algorithm, and vice versa. We believe
much better performance can be achieved by combining
the protein inference and quantification tasks into one
statistical framework.
Algorithmic development is equally important for rig-

orous and yet practical probabilistic inference. Serang
et al. [76] proposed an approximate solution by setting
low peptide probabilities to zero and then applying the
graph pruning procedure. In this way the complexity of
the problem can be controlled at arbitrarily low levels

with the price of potentially high error (i.e. the com-
puted probability may greatly deviate from the exact
values). The Gibbs sampling approach implemented in
MSBayesPro can achieve arbitrarily high accuracy in
probability estimation; however, the time required for
the inference can be prohibitively long. A fast algorithm
with controllable error bound is desirable. Applying
well-established exact or approximate graph inference
algorithms, e.g. the junction tree algorithm [76], is an
important direction for further investigation.

Appendix
Peptide detectability
Peptide detectability has been defined as the probability
that a peptide will be identified in a proteomics experi-
ment given the presence of its parent protein in a sample
[19,24]. There are multiple factors, spanning all phases of
a proteomics experiment, that influence peptide identifi-
cation. For example, during sample storage and prepara-
tion, some peptides may be truncated at their termini
resulting in semi-tryptic or non-tryptic peptides (in the
case of trypsin digestion) which usually remain unidenti-
fied in a database search [25]. Peptides with different
hydrophobicity patterns may not be retained in the LC
stationary phase (hydrophilic peptides) or may be insolu-
ble in the LC mobile phase (hydrophobic peptides).
Peptides that eluted will be ionized with different efficien-
cies based on the presence and distribution of charged
residues in their sequence. Furthermore, in complex bio-
logical samples, peptides are likely to co-elute with many
other peptides and thus compete for ionizing protons
during the electrospray ionization. Many peptides may
elute and ionize well, but poorly fragment, producing
MS/MS spectra with few peaks. Such peptides are diffi-
cult to interpret by computational methods. In addition,
peptides whose m/z values are outside of the range of the
mass spectrometer (200-2000 Da) cannot be identified.
Apart from physicochemical aspects, there are several
biological factors influencing peptide identification.
For example, the three-dimensional structure of a protein
could lead to the existence of sites with different sensitiv-
ities to proteolytic digestion. Other sites may be post-
translationally modified by one of more than 200 different
post-translational modifications (PTMs) observed in
eukaryotes [26]. Many such peptides typi-cally remain
unidentified unless a database search explicitly specifies
the PTM type or the sites of interest (which, in turn, leads
to a decrease in the number of identifications for regular
peptides). Finally, different peptide identification software
packages are based on different assumptions and are
known to result in differences among identified peptides
[27].
It has been shown that the detectability of a peptide at

standard quantity, i.e. standard detectability, is a property
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of the peptide sequence and thus can be predicted from
peptide/protein sequence for a given experimental plat-
form [17,19,24,28-33]. On the other hand, the quantity of
a protein also determines the fate of a peptide with
respect to its identification. For example, peptides with
high standard detectability that are present in a sample in
low quantity may not be identified, while peptides with
relatively low detectability present at high quantity may
in fact be observed. Therefore, protein quantity and stan-
dard detectability collectively determine the effective
detectability of each peptide in a protein. Effective pep-
tide detectability cannot be predicted from amino acid
sequence alone (unless protein quantity can be shown to
depend on protein sequence) and has to be estimated
from a set of peptide identifications and their standard
detectabilities [24].
A detectable peptide is related to a proteotypic peptide,

which is “an experimentally observable peptide that
uniquely identifies a specific protein or protein isoform”
[18]. In practice, proteotypic peptides were required to
be observed in more than 50% of experiments in which
their parent protein was identified [18,30]. The relation-
ship between two definitions can be best understood
from an interesting property of peptides in MS/MS
experiments to group at either high or low end of the
detectability scale in a standard sample [24,34].
In summary, the identification of a peptide in a pro-

teomics experiment is a stochastic event that depends
on multiple factors. It is therefore convenient to sum-
marize all these factors using a probabilistic framework.
The standard detectability of peptide pj from protein
Pi (at quantity q0) will be denoted as dij

0, while the
effective detectability at an arbitrary quantity q will be
denoted as dij(q).
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