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Abstract

and algorithms.

Multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope dilution (SID) is increasingly
becoming a widely accepted assay for the quantification of proteins and peptides. These assays have shown great
promise in relatively high throughput verification of candidate biomarkers. While the use of MRM-MS assays is well
established in the small molecule realm, their introduction and use in proteomics is relatively recent. As such,
statistical and computational methods for the analysis of MRM-MS data from proteins and peptides are still being
developed. Based on our extensive experience with analyzing a wide range of SID-MRM-MS data, we set forth a
methodology for analysis that encompasses significant aspects ranging from data quality assessment, assay
characterization including calibration curves, limits of detection (LOD) and quantification (LOQ), and measurement
of intra- and interlaboratory precision. We draw upon publicly available seminal datasets to illustrate our methods

Introduction

In the past decade, the scientific community has seen an
uptick in the use of mass spectrometry (MS) for the
quantification of proteins and peptides in complex biolo-
gical matrices. However, the technique that is most fre-
quently used in quantitative assays, selected reaction
monitoring (SRM, plural form: multiple reaction moni-
toring, MRM) MS was first reported in 1979 during the
introduction of the triple quadrupole (QqQ) mass spec-
trometer [1]. Initially used for the detection, identifica-
tion and quantification of small molecules [2-8], the
QqQ has become prolific in proteomics laboratories and
a necessary tool for the quantification of peptides and
proteins, especially for biomarker verification. Biomarker
verification is a step in the proteomics pipeline in which
candidate biomarkers that have been identified from
unbiased discovery experiments are targeted by quantita-
tive assays utilizing stable isotope-dilution and MRM-MS
[9]. This manuscript will focus on the statistical charac-
terization and evaluation of MRM-MS assays arising
from quantitative biomarker verification studies.
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The power of the QqQ mass spectrometer comes from
the inherent selectivity of its staged mass selection and
detection. In the majority of quantitative MS experi-
ments, the QqQ operates in SRM mode (plural form:
multiple reaction monitoring, MRM). In this mode, as
samples are ionized by electrospray ionization [10] and
enter the instrument, the first quadrupole (Q1) is set to
only allow the predefined m/z value of the precursor ion
to pass into the second quadrupole, or the collision cell.
In the collision cell, the selected ions enter a higher pres-
sure region with argon or nitrogen gas, resulting in low
energy collisions and fragmentation of the selected pre-
cursor ion into many product ions. Finally, only the pre-
selected product ions with specific m/z values are
allowed to pass through the third quadrupole (Q3) and
on to the detector [1]. The result is a very selective
means for separating the target ions away from every-
thing that is being introduced into the mass spectrometer
(i-e., through liquid chromatography or other sample
introduction), and further detecting fragment ions of the
target and reducing chemical noise from the sample. One
of the benefits of MRM-MS on a QqQ MS platform is
the speed at which it is able to detect multiple transitions
(Q1/Q3 pairs), which is on the order of 10 msec per tran-
sition or less, allowing high multiplexing capabilities.
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This ability can be harnessed for both the analysis of
many peptides (10’s-100’s) per assay, and the monitoring
of many transitions per peptide. This ability is important
because the identity of the peptide is reliant on the sparse
few transitions that are detected and that discriminate it
from other peptides or molecules in the sample. There-
fore, a highly selective assay for a particular peptide
would target several transitions, minimally three product
ions. This results in three or more independent measures
for a particular peptide target, which can make statistical
analysis more complicated.

Due to the inherent instability of electrospray ionization,
accurate and precise quantification is best achieved
through the addition of a stable isotope-labeled standard
(SIS) into the sample, an approach called isotope dilution
[11-19]. The most common internal standards have been
13C and/or 15N-labeled peptide analogs, which introduce
little chromatographic shift in reversed-phase chromato-
graphy so that they coelute with the target peptide and are
chemically identical to the target peptide, except for the
mass difference. The isotopically labeled standard is spiked
into the sample as far up-stream in the sample handling
process as possible. If isotopically labeled proteins are una-
vailable (such as uniformly 15N-incorporated proteins, or
proteins with 13C and/or 15N modified amino acids such
as arginine or lysine), then peptide analogs can be synthe-
sized with isotopically labeled amino acids and spiked in
pre- or post enzymatic digestion of the sample. These pep-
tide standards behave similarly to the target peptide with
regards to chromatographic separation, ionization, and
fragmentation. The intensity of the signals detected for the
SIS peptide is then compared to the signals for the analyte
peptide, and their peak areas (determined from the area
under the curve of the extracted ion chromatogram, XIC,
for each transition) are compared to generate a peak area
ratio (PAR). When the SIS peptide is spiked into the sam-
ple in a known quantity, the PAR is multiplied by the SIS
peptide amount and the analyte peptide concentration is
determined. While using only 3 transitions for the detec-
tion and identification of a target analyte seems sparse, the
chromatographic retention times of the analyte peptide
and SIS are also paired to ensure the proper peptide is
detected. Finally, another important criterion to ensure
peptide identity is the fragment ion ratio for a given pep-
tide. This concept was first described in the context of
small molecules as the “branching ratio”, where each time
a small molecule was fragmented and multiple product
ions were detected, the ratio of these ions to one another
was consistent: the largest fragment was always the largest,
the smallest was always the smallest, and so on, as long as
no interferences were present and the concentration was
within the linear range of detection [6]. In the context of
peptides, this effect is also seen from the fragmentation
along the peptide backbone, and ensuring this ratio is
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consistent between the peptide target and the IS provides
another level of selectivity and can indicate the presence
of interfering signal [20]. This topic is further discussed
below in Section 5.

While quantitative MRM-MS assays have been in
practice for decades [3-8,11-19,21-26], this manuscript
will focus on some more recent publications that use
SID-MRM-MS for the quantification of peptides in
plasma or similar complex matrices [19,21-26]. The first
few examples describe the use of SID-MRM-MS for the
quantification of peptides from samples with complex
biological matrices [17-19]. In all cases, the work
describes the use of SIS peptides as internal standards
added to the sample matrix, sample analysis by MRM-
MS and the calculation of peptide amount present in
the sample. These papers created a turning point in the
use of SID-MRM-MS in proteomics labs because they
demonstrated the feasibility of simple assay develop-
ment, throughput and precision in the quantification of
target peptides present in complex samples.

The earlier publications on peptide quantification using
SID-MS did not, in fact, have detailed sections on the sta-
tistical analysis of the quantitative data. Barr et al [16]
report variances between MS run to MS run, or between
digestion replicates, but did not discuss assay characteris-
tics such as linear range or limits of detection and quanti-
fication. Gerber et al [17] briefly described the linearity of
the assay between the concentration points assessed, but
did not discuss reproducibility, the slope of the response
curve or other metrics. Barnidge et al [18] showed the
effect of equal weighting versus 1/x weighting when plot-
ting the linear regression of the standard curve area ver-
sus concentration. Barnidge and Barr also discussed
percent recovery of the peptide target from the proteoly-
tic digest and sample handling, a topic that is further
explored by Agger et al, for the quantification of apolipo-
proteins A-1 and B [27]. The more recent publications
have more detailed sections on these calculations [24-26],
but may still not be exhaustive enough to describe all
aspects of calculations required to define an analytical
assay for the newcomer. Therefore, this manuscript will
consolidate many of the statistical and analytical
approaches used to describe the quantitative aspects of
SID-MRM-MS assays.

One example from a recent study—published in Nature
Biotechnology, and hence referred to as the NBT study—
evaluated the repeatability and reproducibility of SID-
MRM-MS across multiple labs for the quantification of
10 peptides from 7 proteins spiked into human plasma
[28]. The overall NBT study was constituted by three
(sub-) studies. Study I is the peptide-level spike, where
synthetic peptides were spiked into a background sample
matrix of digested plasma to generate a calibration curve
between 1 fmol and 500 fmol per pL in 1 pg of digested
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plasma. Study II is the protein-level spike, in which an
equimolar mixture of the 7 target proteins were digested
together, and then spiked into the background of
digested plasma. This phase was designed to determine
the effect of protein digestion on peptide recovery and its
contribution to assay variability. The third phase, Study
II1, was also a protein-level spike, but mimicked a “real
world” biomarker assay in which an equimolar protein
solution was spiked into neat plasma and all subsequent
sample handling steps (denaturation, reduction, alkyla-
tion, digestion, desalt and addition of stable isotope
labeled peptide standards) were conducted at the indivi-
dual laboratories. In all three cases, target peptides (or
proteins) were spiked in at 9 different concentrations
(1 fmol-500 fmol/puL in 1 pg/pL plasma) to generate a
response curve, and the SIS peptides were spiked in at a
fixed concentration of 50 fmol/pL in all samples includ-
ing the blank, which consisted of digested plasma only.
Eight laboratories participated in this study, seven of
which used the same MRM-MS platform (4000 QTRAP,
ABSciex) and the remaining lab used a TSQ Quantum
Ultra QqQ (Thermofisher). All labs used nanoflow chro-
matography and adhered to an SOP that was distributed
to dictate sample handling and data acquisition. All data
acquired from this study is available on-line (http://www.
proteomecommons.org/tranche/, Tranche hash: bCKpfN
0bl2ULLwCalovXn/spuw4rYfJF6H/L+/6sHAKGzCsj
4f2TDORauJjAwf9baB8tI36 HQOizji2tupYAPM29P2c
AAAAAAATOiw==), and will be used in example
calculations.

Additional studies have been reported that aim to tar-
get clinically relevant analyte concentrations of proteins
in plasma [21,23,24,26]. Of importance in these assays is
measurement precision, inter- and intra-assay reproduci-
bility or coefficient of variation (CV), as well as accuracy,
and limits of detection and quantification. The following
sections will discuss calculations of these parameters and
metrics and discuss the necessary experimental design, as
well as several methods for calculation and statistical
analysis of the data. Many of these algorithms and calcu-
lations will be illustrated using the NBT study.

Concepts and terminology for MRM-MS assay
characterization

MRM-MS assays are characterized and evaluated based
on several performance metrics and characteristics.
Definitions of these metrics and associated terminology
are laid out in this section, and will be used in the rest
of the manuscript.

Data
Peak areas from each of the monitored transitions
(usually 3 or more per peptide form) are determined
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based on the extracted ion chromatograms (measured
ion intensity or count per chromatographic time).

Peak area ratio

In the context of SID-MRM-MS, the peak area of each
peptide analyte transition is divided by the peak area of
the corresponding transition from the stable isotope
labeled peptide form to obtain the peak area ratio.

Calibration curve

Generally, a calibration curve is represented by the ana-
lytical response versus the concentration of a given ana-
lyte. For SID-MRM-MS experiments, a series of samples
are analyzed that contain the sample matrix, a fixed
concentration of SIS peptide, and varied concentration
of the analyte peptide. The data are often plotted as
“determined concentration” (or “measured concentra-
tion”) versus “theoretical concentration” (see Figure 1),
which will be used in the following examples. If the
spike level of the internal standard is unknown, the data
can also be plotted as peak area ratio versus theoretical
concentration of the analyte. From the calibration curve,
the slope is representative of the analytical sensitivity of
the method for the analyte. Calibration curves are
usually constructed so that the concentration spans at
least two orders of magnitude and bracket the limit of
detection and the upper limit of quantification.

Precision

The precision of the data is determined by measuring
replicates (3 or more) of one sample in the same manner.
Precision is usually represented by standard deviation
and coefficient of variation (CV).

Accuracy
Accuracy of the data is calculated (when the true con-
centration is known) as percent error.

Reproducibility
Synonymous with precision.

Limit of Detection

The lowest analyte concentration at which the signal is
discernable from the noise (chemical noise, white noise,
etc), or detected with confidence [29]. This can be calcu-
lated in a variety of ways, several of which will be
described below.

Limit of Quantification

The lower limit of quantification refers to the lowest con-
centration of the analyte at which quantitative measure-
ments can be made. The upper limit of quantification
describes the highest concentration of analyte above


http://www.proteomecommons.org/tranche/
http://www.proteomecommons.org/tranche/

Mani et al. BMC Bioinformatics 2012, 13(Suppl 16):59
http://www.biomedcentral.com/1471-2105/13/516/59

Calibration curves for Peptide: IAWALSR

Data points for Peptide: IAWALSR

2
2 °
LOD 15 Aued] e LOD 1S Ared]
® 2441 012 1.1E004 * 2481 012 116004
+ 2451 0,00 1.1E404 2451 0.00 1.1E+04]
4 2461 0.11 4.9E+03) ol 2y6.1 0.11 49E+08|
= Spike 1 ‘ - 1110
3 2 2
3 i -]
E 8 E
g H
3 g -
a [+ o
= 1
2 e
8 8
= = ° &
. *
= x * LOD
o 4 E]
T T T T T T T T T
0 50 100 150 0.01 0.1 1 10 100
Theoretical Gone (fmolful) Theoretical Gonc (fmolful)
Calibration curves for Peptide: GFGTDEQAIVDVVANR Data points for Peptide: GFGTDEQAIVDVVANR
3 ¥
= o / g o
+ 3y41 331 1.7E . rd + 3y41 3.31 1.7E+02f
+ 3y6.1 339 6.6E+01 . 7 361 3.30 B.6ENI|
* 3y7.1 169 B.OE+01) * * 3y7.1 1.60 8.0E+01)
= Spike level : 10 /,{ P 5 o Spike level : 10
3 p 3 e .
T 84 5 = 2 i
E = P * E .
= Ve / < i
b 2 ,/ g 3 4 3 i
3 7% § - * f .
/ .
B g } M * ‘
5 S El
a g4 / 3 e
8 , 8 .
3 P -
= * s = 3 4
A
LY -
5
° s 1l |
T T T T T T T T T
0 50 100 150 0.01 01 1 10 100

Measured Concentration (fmolful)

400

300

200

Theoretical Conc (fmaliul)

Study 1 Site 86 Peptide MBP-YLA

Theoretical Conc (fmol/ul)

Calibration curves for Site: 19 Peptide: bi0037

400 500 600
L

Measurad Gone (fmoliul)
200 300
L L
e

100
L

T T T T T T T
o 100 200 300 400 500 600

Theoretical Cone (fmoihi)

Calibration curves for Site: 56 Peptide: bi0167

g
=4 . g 7 7
— WS 7 ,,/
—— Robust g | P
—— Wt Robust -
o EER
T T T T 5
¢ s
100 200 300 400 H
5 g
a g4 i
Theoretical Concentration (fmol/ul) H & .
21
il
T T T T T T T
C 0 100 200 300 400 500 600

Theoretical Conc (imoli)

Figure 1 (a) A set of calibration curves for 3 transitions of a well-behaved peptide, with a relatively low LOD and a linear response
region spanning three orders of magnitude (n = 4 for each transition at all concentration points). The left panel shows the data points
on the linear scale along with the calibration curves. The panel on the right shows the data on a logarithmic scale so that all points are clearly
visible, along with the calculated LOD. (b) A set of calibration curves for 3 transitions of a poorly behaved peptide with significantly inconsistent
measurements, resulting in a high LOD, and a very restricted linear response region. (c) Regression lines fitted using ordinary least squares (OLS),
weighted least squares (WLS) where each point is weighted by the inverse square of its theoretical concentration, robust regression (using the
MM-estimator) and weighted robust regression (MM-estimator with inverse square weighting). Weighted regression lines for least squares
regression and robust regression are almost identical, with the robust regression line coming close. OLS is most affected by a few outliers.

(d) Example calibration curves (i) site 19 transition 37tr1_A in blue on the top, and (ii) site 56 transition 167tr3_A in green (bottom), that have
ideal slopes (i.e, slope = 1, see Table 1 and Section 3) when the regression line is fit using log-transformed data, but clearly have slope > 1 in
linear space. The black diagonal line represents slope = 1 in the panels above.
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which the signal departs from linearity. These two limits
of quantification define the linear range of the assay.

Overview

MRM-MS assays are used when the detection and quanti-
fication of specific analyte targets are required from a
complex mixture. Stable isotope-labeled standard (SIS)
peptides are used for a variety of reasons, but primarily act
as an internal standard for the measurement of the peptide
analyte and minimize the contributions of measurement
variations due to chromatography, ionization, fragmenta-
tion and detection by MS. Assays can be designed to
determine the Figures of Merit (limits of detection and
quantification, precision and accuracy) by incorporating a
calibration curve. The Figures of Merit can change due to
differences in sample matrix (both nature of matrix and
concentration) and factors affecting instrument sensitivity
(chromatographic resolution, ionization, MS detection,
etc). It is recommended to determine Figures of Merit if
any of these factors are changed, and periodically on the
same instrument, especially when analyzing samples that
will be detected near the lower LOQ of the assay or when
high precision is required.

In typical quantitative SID-MRM-MS assays, the
determined Figures of Merit are strongly influenced by
system performance, both in terms of sensitivity and
reproducibility from sample to sample. The noise con-
tributed by the sample matrix also plays a major role in
the magnitude of the calculated LOD and LOQ, and
this is determined usually by several (at least three, pre-
ferably more) repeat measurements of matrix blanks
(sample including everything except the target analyte)
run throughout the course of the assay. With current
technologies and on normally functioning nanoflow LC-
MRM-MS systems, typical peptide LODs can be
attained in the 100’s amol per 1 ug equivalent protein
digest load [21,28].

Calibration curve and regression analysis

The starting point of most quantitative assays is the cali-
bration curve (Figure 1a and 1b). A range of analyte con-
centrations is analyzed in sample matrix to define the
linear range of detection, limits of detection and quantifi-
cation, and reproducibility of the assay. The calibration
curve is designed to explore the possibility of endogenous
signal in the matrix by multiple measurements of a blank
sample (sample matrix and internal standard), and to
also determine if there is interference in the analyte sig-
nal. In the case of SID-MRM-MS, the SIS peptide is
always present in the sample to normalize for any instru-
ment-related issues that may affect analyte detection. It
may be spiked in upstream in the workflow to also
account for losses due to sample handling. The SIS pep-
tide is spiked in at a known concentration to determine
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the concentration of the target analyte. With the target
analyte spiked in at specific concentration and the SIS
peptide spiked in at a fixed, known amount, the peak
area ratio (PAR)-the ratio of peak intensities of the ana-
lyte to standard—is proportional to the concentration of
the analyte. The measured concentration is then calcu-
lated as the product of the PAR and the concentration of
the heavy standard:

measured concentration = PAR x concentration of heavy standard

When the target analyte is spiked in at various con-
centrations spanning a range of values, we obtain a set
of measured concentrations corresponding to the
spiked-in theoretical concentration. A linear calibration
curve relating the theoretical and measured concentra-
tion can be fitted:

measured concentration = slope x theoretical concentration + y-intercept

An ideal calibration curve has a slope of 1 and an
intercept of 0, indicating that the measured concentra-
tions are in excellent agreement with the theoretical
concentrations. An example of a well-behaved peptide is
shown in Figure la. Deviation of the slope from 1 indi-
cates less than ideal response, and a significant non-zero
intercept is indicative of the presence of endogenous
analyte (Section 4.1 and 4.2).

A standard way to fit such calibration curves is ordin-
ary least squares (OLS) regression [29]. While non-lin-
ear calibration curves could also be fitted, such curves
may tend to overfit the data, given the relatively small
number of points used for the fit. Furthermore, the
slope and y-intercept of a linear regression fit have addi-
tional relevance from a quantification perspective.

MRM-MS assays usually have a linear operating region
where the intensity response linearly varies as the spike-
in concentration of the target analyte is varied. When a
concentration curve is run, these limits of the linear
region are not known-—in fact determining this region is
one of the goals of running the response curve. As such,
we expect some analyte concentration values at the high
and/or low end of the spectrum to lie outside the linear
operating region. Therefore, when a linear OLS regres-
sion curve is fit, these points in non-linear regions of the
MRM-MS response can unduly affect the regression fit-
ting, resulting in skewed slope and y-intercept values.
Robust regression [30,31] is one approach used to
address this problem. Robust regression fitting algo-
rithms are resistant to outliers, and down-weight points
that deviate from the main bulk of data points, resulting
in more reliable estimates. Some common methods for
robust regression includes least median of squares (LMS)
regression, least trimmed squares (LTS) regression [32]
and the use of the MM-estimator [33].
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Furthermore, the variance of concentration measure-
ments tends to increase at higher concentrations. In
order to account for this trend data points are weighted
according to the inverse square of the measurement or
variance at that measurement level. This weighting can
be used either with least squares regression (resulting in
weighted least squares, or WLS regression) or with
robust regression.

A comparison of OLS, WLS and robust regression with
and without weighting for representative peptides in the
NBT Study data are shown in Figure 1c. As is evident
from the Figure, OLS is significantly influenced by the
few points at the higher concentration level. Robust
regression is more resistant to such outlier and tends to
fit the regression line to follow the trend captured by a
majority of points. The weighted regression lines for
WLS and robust regression are much closer and are sig-
nificantly less influenced by outliers and the high var-
iance at the upper end of the calibration curve.

An alternative to WLS or weighted robust regression is
to fit the regression line on log-transformed data [34],
where the logarithms of both the measured and theoreti-
cal concentrations are used as the data points for the
regression. The log transform converts heteroscedastic
data into a homoscedastic set [29] thereby eliminating
the dependence of variance on the concentration values.
But regression lines fit in log space tend to downplay the
deviation of the observed data from ideal, resulting in
slopes that are closer to 1, and hence could provide an
incorrect impression that the assay performance is better
than it actually is (see Table 1, and Figure 1d). In addi-
tion, with log transformation, the intuitive interpretation
of regression slope as sensitivity (see below) and intercept
as endogenous level (see Section 4.1 and 4.2) are no
longer valid, making it harder to interpret the results.
Plotting the data on a log-log scale, on the other hand,

Table 1 Comparison of the regression analysis in linear
and log space.

Regression slope after log-
transformation

Regression slope in linear space  not ideal ideal (slope = 1)
not ideal 167 53
ideal (slope = 1) 14 6

Measured and theoretical concentrations from NBT Study | (with 8 sites, 10
peptides and 3 transitions per peptide) are natural log transformed (other
common bases used for the log transform are 2 and 10). Weighted, robust
regression lines are fitted to the linear data while robust regression is used for
log-transformed data. The slope of each regression is assumed to be 1 (ideal)
if the 95% confidence interval calculated as slope * t.a/2qf * s.e. includes 1
(where, t(1a/2),4¢ is the 2-tailed t-distribution critical value for o = 0.05, df = (#
replicates - 1), and s.e. is the standard error for the regression slope). As is
evident from the table, log-transforming data results in more ideal slopes
(closer to 1). Visual inspection of the regression lines and associated data
indicate that this overestimation of the number of ideal peptides by log-
transformed regression is unwarranted and misleading, as illustrated by
examples in Figure 1d.
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enables more effective visualization since such a plot can
naturally accommodate the concentration variation range
normally used in such experiments (although the non-
log-transformed linear regression line cannot be conveni-
ently plotted, and may appear as a non-linear curve).

Traditionally in analytical chemistry, the slope of a linear
regression is related to the sensitivity of an assay, which
describes the ability of the assay to differentiate between
small changes in analyte concentration [35]. Calibration
sensitivity is equal to the slope of the calibration curve and
is independent of concentration. This definition is the
quantitative definition of sensitivity that is recognized by
the International Union of Pure and Applied Chemists
(IUPAC). Calibration sensitivity, however, does not take
into account measurement precision. Analytical sensitivity
(y), described by Mandel and Stiehler [36], takes into
account the precision of the measurements as well as the
slope of the calibration curve: y = m/s,, where m is the
slope of the calibration curve and s; is the standard devia-
tion of the measurement. In the context of peptide quanti-
fication, the slope of the calibration curve or the analytical
sensitivity would easily aid in the selection of the best pep-
tide targets, if there were several to choose from, and is
also a good measure of whether or not similar instruments
are measuring the target peptides with equal sensitivity.
However, in addition to sensitivity, other figures of merit
can be calculated from these values, including limit of
detection, limit of quantification, and the amount of endo-
genous signal present in the blank [35].

Given the importance of the slope and intercept of the
regression line for the calibration curve, an additional
approach to evaluating the robustness and quality of the
regression fit is to inspect the 95% confidence intervals for
the slope and intercept. While many regression fitting
algorithms provide an estimate of the standard error, the
95% confidence intervals can be easily calculated [33].
Bootstrap resampling is an alternative method for deter-
mining these limits [32] (also see Section 4.2 below).

Currently, less attention has been given to slope and y-
intercept, and are often not reported in publications, in
lieu of R? [37]. R? is a measure of “explained variance”,
and does not provide an indication of the robustness of
the regression fit. In addition to R other factors of the
regression fit including confidence intervals of the slope
and intercept, residuals and a graph of the data should be
examined before judging the quality of the regression line
[38].

Limits of detection and quantification

Limits of detection (LOD) and quantification (LOQ) are
important characteristics of any quantitative method,
and in the MRM-MS assay can be determined using the
calibration curve. The intuition and definitions related
to LOD and LOQ determination are described in
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Currie, 1968 [39]. There are a variety of methods to cal-
culate LOD and LOQ, based on different aspects of the
assay, and its intended application. A brief summary of
the different classes of methods to determine detection
and quantification limits is given below.

Blank Sample

In this approach, replicates of a blank sample—i.e., a sam-
ple with the target analyte absent—are used to determine
the LOD and LOQ of the analyte [39]. Assuming that
random measurement errors are normally distributed,
and with 5% risk of incorrectly claiming detection in the
absence of analyte (o) or missing the detection of analyte
(B), LOD = 3.29 6 and LOQ = 3 x LOD = 10 op where
op is the standard deviation of the blank sample.

Blank and Low Concentration Sample

The above method uses only the blank sample. In practice,
the standard deviation of the blank sample could be signif-
icantly different from the standard deviation with the ana-
lyte present at a low level. To account for this possibility,
LOD and LOQ calculation explicitly takes both the blank
and the low concentration samples into account. A varia-
tion of the partly nonparametric method in [40] is to use a
parametric approximation to account for a small number
of replicates. This approach used in [28] is to calculate
LOD as: LOD = pg +t(;.p) (Op + 65)/Vn, where pg is the
estimated mean of the blank samples, o is the standard
deviation of the blank samples and o5 is the standard
deviation of the low concentration samples. The equation
assumes that analyte concentration is estimated using the
mean of n replicates. Given the LOD, LOQ is estimated as
3 x LOD.

Calibration Curve

Instead of using just the blank or a low concentration
point, this method uses the entire calibration curve to
determine LOD. Also termed the calibration plot
method, the standard error sy, of the measured concen-
tration (y-estimate in the regression equation) is used in
place of the standard deviation of the blank sample [41].
The LOD is then calculated as LOD = 3 s,,/slope, and
LOQ = 3 LOD.

ylx

RSD Limit

This approach [42] determines LOQ based on an
accepted target value for relative standard deviation
(RSD). RSD is the absolute value of the coefficient of
variation (CV, the ratio of standard deviation to mean),
and is expected to be small at the LOQ (typically less
than 10% or 20%). The calibration curve is used to
determine the RSD at each spike-in level, and the RSD
variation is modeled as a function of the analyte concen-
tration using RSD = level x p,‘* = P,to8leved) "The
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parameters p; and p, are determined using a fitting pro-
cess, and the LOQ is that analyte concentration where
the target RSD is achieved. The LOD is then reported
as LOD = LOQ/3.

Figure 2 shows a comparison of the four methods for
determining LOD and LOQ for representative peptides
from the NBT Study. The calibration curve method gen-
erally tends to overestimate the LOD. The RSD Limit
method tends to significantly underestimate LOD,
resulting in extremely low LOD and LOQ value for
many peptides (e.g, MYO-LFT, CRP_ESD, LEP-IND).
The blank sample approach and the blank+low concen-
tration sample method result in approximately similar
values, with the blank sample method usually resulting
in lower limits. Based on this evaluation, we have cho-
sen the blank and low concentration sample algorithm
as the preferred method for determining LOD and
LOQ. This method is simple to implement and does not
require the generation of the entire calibration curve.

Endogenous presence of analyte signal in the sample
matrix is a difficult problem to deal with because it can
complicate the calculation of LOD and LOQ. In addi-
tion, any signal derived from a spiked-in analyte (as in a
calibration curve experiment) is added to the endogen-
ous signal. One experimental approach to circumvent
this issue is to use a surrogate matrix, one that is very
similar to the sample matrix, but does not contain the
endogenous analyte. This can be difficult to find, espe-
cially in a sample matrix as complex as plasma with
thousands of proteins ranging ten orders of magnitude
of concentration [43]. Using plasma from a different
species may even introduce new problems, such as
interfering signal. An experimental alternative is to use
the internal standard as a surrogate analyte and vary its
concentration in the sample matrix to generate a stan-
dard curve [44]. While a reasonable alternative, this can
cause questions to arise about the difference in the che-
mical noise that may be present at the m/z values for
the surrogate analyte versus the real analyte. A stable
isotope-labeled version of a peptide with a mass shift of
6 amu may have an entirely different level of chemical
noise contributed by the sample matrix and electronic
noise. Therefore, it is beneficial to consider a statistical
means of estimating the endogenous level of analyte
present in a sample matrix.

Endogenous levels of an analyte present in the LC-MS
matrix can be estimated using the linear range of the
calibration curve resulting from a dilution or standard
addition experiment [24]. Using the input data consist-
ing of measured concentration values for corresponding
calibration curve (theoretical, or true) concentrations, a
robust linear fit using least median squares regression
[32] is performed to determine the regression line
y-intercept for:
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Measured Concentration (fmol/uL)

Figure 2 A comparison of the various methods for calculating limit of detection (LOD, lower line in a pair) and limit of quantification
(LOQ, upper line in a pair). The four methods compared are described in Section 4. The method using blank + low concentration sample is
the most reliable, and consistently produces acceptable LOD and LOQ values for most practical purposes. The blank only method is a close
second, but can under-estimate the LOD and LOQ. The calibration curve method results in very conservative estimates, while the RSD limit
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measured concentration = slope x theoretical concentration + y-intercept

with the y-axis representing measured concentration
and the x-axis representing theoretical concentration.
The 99% confidence interval of the regression line y-
intercept is calculated using bootstrap estimation with
repeated (1000 or more) resampling iterations [45]. The
bootstrap estimation involves resampling with replace-
ment from the data, in order to assess expected variation.
For each resampled data set, the regression above is re-fit
to recalculate the slope. The basic non-parametric confi-
dence interval [45] for the slope is estimated as the range
(mgy, my_o), where my,, is the p-th percentile of the slope
in the resampled estimation, and (1-2a) is the confidence
level. Usually, a = 0.025 or 0.005, for a confidence level
of 95% or 99% respectively.

If the lower limit of the confidence interval is positive,
then the analyte is deemed to have an endogenous level
equal to the regression y-intercept. If the lower 99% con-
fidence interval is zero or negative, there is no expected
endogenous level for that analyte. Once endogenous
levels (if present) are calculated, the estimated LOD (and
hence LOQ) in the absence of endogenous analyte is the
difference of the calculated LOD (in the matrix) and the
estimated endogenous level.

The method has been applied to selected transitions (the
“best” transition that provides the lowest LOD) of the pep-
tides for which MRM assays have been configured in [24].
Of the 28 peptide transitions analyzed, 3 are reported to
have endogenous levels (see Table 2). The CRP peptides
(bi0090 and bi0092) are expected to have endogenous
levels. Thus, the only false positive is peptide bi0119 for
MRP14, with an estimated endogenous level of 0.28 fmol.
When all the 84 transitions monitored for these 28 pep-
tides are considered, 16 transitions have reported endo-
genous levels. Of the 16, six of the transitions are for CRP
peptides where an endogenous level is expected. Another
5 transitions have some form of interference (as is evident
from the unusually large LOD/LOQ values of these transi-
tions compared to other transitions for the respective pep-
tide), and the interference is interpreted as an endogenous
signal—these are situations that can be avoided by using
AuDIT [20] (see Section 5). The remaining 5 transitions
listed as having endogenous levels appear to be false
positives.

There have been no observed instances of false nega-
tives where an endogenous level was expected, and the
method returned with a 0 endogenous level. If such
instances are encountered, the confidence interval can be
relaxed to 95% (from the currently used 99%) to enable
overcoming false negatives (at the expense of more false
positives).

Effective application of the method is dependent on
having enough points on the concentration curve that
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are in the linear operating range. If there are too few
points in the concentration curve, or if the endogenous
level is so high that most of the concentration curve is
non-linear and affected by endogenous analyte, the
method will fail. Theoretically, the method is likely to
succeed if at least 50% of points on the concentration
curve fall in the linear operating range (since least med-
ian squares regression has a breakdown point of 0.5).

Imprecision and interference in MRM MS
Inaccurate quantification in peptide MRM-MS can result
from many factors including incorrect peptide identifica-
tion, matrix suppression, interference in one or more of
the product ion transitions monitored, poor chromato-
graphy, MS-instrument related signal attenuation and
saturation, and errors introduced during peak detection
and integration (Table 3). Interferences in MRM-MS
from such sources are usually detected by painstaking
and subjective manual examination of raw data [46]. Pro-
tein quantification for candidate biomarker verification in
clinical proteomics [19,21,23,24,28,47] and other rela-
tively high throughput applications increasingly require
the ability to assay for many 10’s to hundreds of proteins.
Clearly, manual inspection of such data is no longer pos-
sible nor desired. The quality assessment of MRM-MS
data can be automated using AuDIT, an algorithm for
Automated Detection of Inaccurate and imprecise Tran-
sitions in MRM-MS for quantitative peptide analyses in
any biological matrix, and can be used both in method
development as well as for routine testing of patient sam-
ples [20]. AuDIT greatly increases the speed, reliability
and accuracy of peptide identification and quantification
from MRM-MS data analysis. Figure 3 shows the analysis
workflow for using AuDIT.

AuDIT was designed to extensively use the concept of
“relative ratio” or “branching ratio” [6] defined as the
ratio of the peak areas for any 2 transitions of the same
precursor. All analyte (or all SIS) transition peak areas
are used in pairs to calculate the ratio. The relative ratio
is unlike the PAR, which is calculated as the ratio of ana-
lyte to SIS peak areas for a given transition of a specified
precursor. The AuDIT algorithm operates on prepro-
cessed data and executes the following steps:

1. Use all transitions of a peptide (peak area from
XICs) to calculate relative ratios by either the mini-
mal-pairs or all-pairs method. The minimal-pairs
method calculates the relative ratio of a given transi-
tion by dividing its peak area by the peak area of
one other transition from the same precursor. The
all-pairs method calculates ratios for all possible
transition pairs generated from one precursor. This
process is performed for each peptide analyte and its
corresponding SIS so that the relative ratios of the
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Table 2 Summary of endogenous calculations for 28 peptides from 8 proteins.

Protein Peptide Sequence LOD LOQ Endogenous Level
Natriuretic peptides B bi0096 MVLYTLR 0.082 0.246 0
bi0097 MoxVLYTLR 0.098 0.294 0
bi0098 ISSSSGLGCK 0.074 0223 0
bi0099 MVQGSGCFGR 0.081 0244 0
bi0100 MoxVQGSGCFGR 0216 0.647 0
CRP bi0090 ESDTSYVSLK 1454 4361 1072
bi0092 GYSIFSYATK 1.949 5.847 1.838
IL33 bi0120 DNHLALIK 0.606 1.818 0
bi0121 TDPGVFIGVK 0.172 0.515 0
bi0122 DFWLHANNK 0.271 0.812 0
bi0123 VLLSYYESQHPSNESGDGVDGK 0274 0.822 0
MCP1 bi0124 WVQDSMDHLDK 4523 13.568 0
MPO bi0102 IPCFLAGDTR 0.287 0862 0
bi0104 IANVFTNAFR 0329 0.988 0
MRP14 bi0118 LTWASHEK 0.397 1.190 0
bi0119 LGHPDTLNQGEFK 0475 1425 0.283
sCD40L bi0108 SQFEGFVK 0.203 0.609 0
bi0105 TTSVLQWAEK 0.202 0.606 0
bi0106 EASSQAPFIASLCLK 0.086 0.257 0
bi0109 SLSLLNCEEIK 0.071 0.212 0
Troponin bi0082 TLLLQIAK 0.088 0.265 0
bi0083 NITEIADLTQK 0.055 0.165 0
bi0084 NIDALSGMEGR 0.256 0.767 0
bi0086 VLAIDHLNEDQLR 0.154 0461 0
bi0087 SFMPNLVPPK 0.108 0.324 0
bi0088 SFM(oxPNLVPPK 0.116 0349 0
bi0089 YEINVLR 0.052 0.157 0

See section 4.2 for description.

analyte can be compared with the relative ratios of
the SIS.

2. Apply the t-test to determine a p-value for the
hypothesis that the relative ratios for the analyte are
different from the relative ratios of the SIS.

3. Use the Benjamini-Hochberg false-discovery rate
method to correct the nominal t-test p-values to
account for multiple hypothesis testing [48].

4. Disaggregate the corrected p-values for the rela-
tive ratios into combined p-values for each transi-
tion. Each transition is used to calculate either 2
ratios for the minimal-pairs method or n-1 ratios for

the all-pairs method (where n is the total number of
observed transitions for each peptide). Calculation of
the p-value for determining if a transition is proble-
matic requires combining the p-values for the
respective relative ratios. Because the same peak
areas from a given transition were used in calculat-
ing all its ratios, the resulting p-values are not inde-
pendent. These dependent p-values are combined by
means of a previously outlined methodology [49,50].

5. Calculate the CV for the PAR (analyte/SIS) from
the results for all replicates in a transition for a
given sample.

Table 3 Summary of potential problems encountered during analysis of SID-MRM-MS data that often require manual
identification or re-integration and their effect on the precision and accuracy of quantification.

Data Issue

Impact on Quantification

Poor chromatographic peak shape

Chromatographic peak too narrow (<6 points across)

Detector saturation

Inconsistent integration between analyte and SIS peptides

Interference in analyte or SIS signals

Imprecise and inaccurate area assessment
Imprecise and inaccurate area assessment
Inaccurate peak area assessment

Imprecise and inaccurate peak area assessment
Inaccurate peak area assessment
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MRM-MS Peptide Data
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Figure 3 Analysis work flow for isotope dilution MRM-MS data with and without the use of AuDIT. After LC-MRM-MS analysis of samples,
transition peaks are identified and integrated with software from either the mass spectrometer vendor or another supplier. (A), Flow of data with
use of the automated algorithm. The statistical test identifies problem transitions from the variation in the relative ratios for the analyte and the

SIS. The CV of the PARs is used as a filter to flag transitions with unacceptably large variation. (B), The current standard practice of careful manual
inspection of all transitions by an expert. Adapted from Abbatiello, Mani, et. al, Clinical Chemistry, 56, 291-305 [20].

6. A transition is marked as “bad” if either the cor-
rected combined p-value for the transition is less
than the p-value threshold of 10~ or if the CV is
greater than the CV threshold of 0.2 (20%). Transi-
tions not satisfying either of these conditions are
classified as “good.” Although the chosen thresholds
work well for many data sets, they can be changed
to fine-tune the algorithm as needed.

There are currently no automated methods for identi-
fying transitions with interferences (or other problems,
see Table 3) that can render them unsuitable for quantifi-
cation. As such, the final decision on the quality of a
transition is subjective and has relied entirely on expert
review of the data [46]. In order to evaluate our algo-
rithm for inaccurate and imprecise transition detection,
we compared the results of AuDIT with that of an expert
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using a two-step process. In the preliminary phase, the
expert looks at all the integrated extracted ion chromato-
grams, and creates an unbiased “pre-algorithm” annota-
tion which records any potential problems the expert
observes like poor chromatography, inaccurate peak inte-
gration, etc., and is recorded at the level of the MRM
transition. The data is then run through AuDIT, and the
‘good’ or ‘bad’ classification of the algorithm is compared
with the expert’s annotation ("global”, in Table 4). In
cases where AuDIT’s decision and the expert’s annota-
tion disagree, the expert re-evaluates those transitions to
see if AuDIT’s assessment (good or bad) is justifiable—i.e.,
the actual observations of questionable data quality or
interferences are such that the relative ratio may not be
affected (and hence the transition may be used for quan-
tification), or vice versa. This final phase of expert review
creates a “post-algorithm” annotation, and is performed
with the same criteria and rigor as the first review, but
primed for issues that might have been overlooked or
wrongly assessed. This focused annotation is compared
with AuDIT decisions to evaluate its efficacy in identify-
ing inaccurate transitions, and the overall performance is
summarized in Table 4.

Table 4 Validation of AuDIT.
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A 2 x 2 contingency matrix is created to evaluate the
performance of AuDIT on each dataset. Defining a ‘posi-
tive” as a ‘good’ transition call, the Table shows the var-
ious elements of the contingency matrix. Algorithm
performance is estimated using i) overall accuracy, ii)
sensitivity and iii) specificity, as described in Table 4.
A receiver operating curve (ROC) is used to evaluate the
combined effect of incorporating p-value and CV in the
algorithm calculations for flagging inaccurate and impre-
cise peptides (Figure 4). The area under the ROC curve
(AUC) is an indication of the quality of the classifier [51].
The ROC and AUC also show that the t-test and the CV
jointly achieve significantly better performance than
either measure alone. The AUC of the ROC curve for
transition quality prediction using only the CV is less
than 0.5, indicating that this modality is worse than a
random predictor. The CV is affected only under specific
circumstances, most of which are orthogonal to situa-
tions where a significant t-test score will be obtained.
It is therefore imperative that both the t-test and the CV
be used in order to derive an accurate predictor of impre-
cise or inaccurate transitions. The p-value for these
experiments was set to 10~ and the CV value set to 0.2.

Dataset Annotation TN TP FN FP Overall Sensitivity ~ Specificity
Accuracy (%) (%) (%)
10 Peptide Standard Curve, 3 transitions  Site 1 Global 89 119 29 33 77 80 73
MultiQuant 11
Focused 7 144 1 8 97 99 94
Site 2 Global 9 217 14 30 84 94 23
Focused 23 247 0 O 100 100 100
Site 3 Global 19 200 33 18 81 86 51
Focused 50 218 2 0 99 99 100
Site 4 Global 21 162 74 13 68 69 62
Focused 81 174 14 1 94 93 99
10 Peptide Standard Curve, 3 transitions, Site 1 Global 29 163 35 43 71 82 40
Skyline
Focused 56 206 8 0 97 96 100
Site 2 Global 1 210 15 44 78 93 2
Focused 15 25 1 0 100 100 100
Site 5 Global 35 34 2 199 26 94 15
Focused 37 232 0 1 100 100 97
10 Peptide Standard Curve, 5 transitions, Site 6 Global 46 277 122 23 69 69 67
MultiQuant 16
Focused 8 2% 0 6 99 100 97
Clinical Samples, 3 transitions, MultiQuant Cardio-vascular Global 4 33 5 9 73 87 31
Peptides
Focused 9 40 O 2 96 100 82

For each dataset, two contingency matrices are calculated. The ‘pre-test’ evaluation by the expert identifies overall data problems like poor chromatography,
inaccurate peak integration, etc. Comparison of this global annotation with the algorithm calls results in one set of contingency matrices (shown under
Annotation = Global). The second ‘post-test’ re-evaluation is based on the algorithm outcome, and accounts for the fact that the global annotation could be
overly conservative (i.e., mark too many transitions as BAD). This focused annotation is compared with the algorithm-derived decisions to derive a second,
algorithm-guided set of contingency matrices, shown under Annotation = Focused. TN: True Negative, TP: True Positive, FN: False Negative, and FP: False Positive.
Overall Accuracy = (TP + TN)/(TP + TN + FN + FP). Sensitivity = TP/(TP + FN). Specificity = TN/(TN + FP). A transition is BAD if it has some form of interference, i.
e, it is imprecise of inaccurate. If not, the transition is labeled as GOOD. Adapted from Abbatiello, Mani, et. al., Clinical Chemistry, 56, 291-305 [17].
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Figure 4 ROC curve and sensitivity-specificity plots summarizing performance of AuDIT in identifying inaccurate and imprecise
transitions, as evaluated by an expert. AuDIT uses the t-test p-value and the CV of the PAR (ratio of analyte peak area to SIS peak area) to
detect problem transitions. (A), Both the p-value and the CV are required to achieve acceptable performance (i.e, as indicated by AUC values in
parentheses). (B), Specificity and sensitivity values achieved as the p-value threshold is varied from 0 to 1 (with a fixed CV threshold of 20%). The
chosen p-value threshold of 10™ used for all of the analyzed data is indicated by the red circle (sensitivity, 98%; specificity, 97%). The rainbow
color bar (right y axis) keys the location of the p-value threshold on the sensitivity-specificity curve. Adapted from Abbatiello, Mani, et. al., Clinical

Chemistry, 56, 291-305 [20].

Both the p-value and CV thresholds are adjustable. While
the CV was set to an arbitrary value of 0.2, a sensitivity-
specificity curve (Figure 4b) was used to assess the effect
of changing the p-value threshold for comparison of the
relative ratios of the fragment ions between the analyte
and SIS peptides. As the p-value threshold increases
above 107°, a concomitant decrease in sensitivity is
observed. At p-values lower than 107, the specificity of
the algorithm decreases. Thus, a p-value of 10> was
selected as the optimum threshold for sensitivity and spe-
cificity of the algorithm for identification of inaccurate or
imprecise transitions.

AuDIT can be applied to data exported from most
MRM-MS analysis software, and can potentially be
embedded into such applications to greatly reduce man-
ual inspection and alert the researcher of potentially
errant data at an early point in the data analysis, poten-
tially allowing problematic samples that exhibited large
CV values (for example, maybe caused by column degra-
dation and poor peak shape) to be re-acquired. In addi-
tion, incorporation of AuDIT into the MRM-MS
workflow would streamline the processing, likely result-
ing in more efficient generation of accurate and precise
quantitative data from SID-MRM-MS analyses.

The AuDIT software is available at http://www.broad-
institute.org/cancer/software/genepattern/modules/
AuDIT.html.

AuDIT provides a mechanism to evaluate SID-MRM-
MS data quality from the perspective of minimizing
interferences to enable robust quantification. A comple-
mentary approach involves assigning quality scores to the
MRM-MS spectra in order to statistically define error
rates for peptide identities, as implemented in mProphet
[52]. mProphet uses characteristics of the transition
peaks and the concept of “decoy peaks” (measured where
no real peaks are present) to derive a composite discrimi-
nant score that statistically captures the quality and relia-
bility of the MRM-MS data for each peptide.

In addition to AuDIT and mProphet, other data analy-
sis software packages possess features that help to evalu-
ate the composite signal of all transitions measured for a
peptide and its SIS to monitor for differences. Such fea-
tures are available in Skyline [53], a vendor neutral data
analysis program, by monitoring the signal contribution
from each transition and enabling the user to compare it
to that of the SIS peptide with the output in visual plots.
PinPoint software (Thermo Fisher Scientific) also com-
pares the fragment ion ratio of the light and heavy pep-
tides to look for agreement and reports the fragment ion
ratios for the light and heavy peptides, also with visual
plots. These software features work well for detection of
interfering signal in a transition from a given peptide,
and through the use of visual plots enable rapid screening
of large data sets with a variety of peptide targets.
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Intra- and interlaboratory variation

In order for MRM-MS combined with stable isotope dilu-
tion to be used as an assay for quantitative measurement
of proteins and peptides, the precision and variability of
the assay needs to be characterized not only in a given
laboratory, but also across multiple laboratories. Assess-
ment of the intra- and inter-lab variation of MRM-MS
assays was the primary goal of the NBT Study described in
Section 2.

In the NBT study, intralaboratory variability and repro-
ducibility in studies I-III were evaluated by comparing
the measured concentrations to the theoretical concentra-
tions across the range of spiked-in analytes and determin-
ing the coefficient of variation (CV = standard deviation/
mean) for these quantitative measurements. In addition
to calculating CV, graphical visualization [54] can assist
in analysis and provide insight on variation across con-
centration levels, study phases and different laboratories.
Figure 5a shows measured log concentration (y axis) ver-
sus theoretical (spiked-in) concentration (x axis) for the
SSDLVALSGGHTFGK peptide derived from horseradish
peroxidase (HRP-SSD). Data for each site are color-
coded, and organized by study phase and concentration.
As expected, a linear trend is observed in the measured
concentrations for studies I-III as spiked-in analytes
increase across the concentration range. However, mea-
sured concentrations decrease as laboratories progress
from study I to II to III. This trend is a result of apparent
peptide loss from incomplete digestion of HRP protein
and variability in sample handling at each site, as study
complexity was increased. Study I represents the opti-
mum assay performance, as synthetic peptides (not pro-
teins) were used as analytes. Protein digestion in study II
(at a central location in the absence of plasma) and study
III (at individual sites and in the presence of plasma)
introduces potential sources of sample loss that decrease
analyte recovery and reduce measured concentrations for
studies II and III. Intralaboratory CVs for studies I and II
constitute a measure of the technical variation due to
instrument and data acquisition, as all sample preparation
was performed centrally. The intralaboratory CVs at each
analyte concentration point are shown in Figure 5b for
the HRP-SSD peptide with color-coded markers repre-
senting individual laboratories. Similar calculations and
plots are derived for the other 9 peptides.

The results are summarized in Table 5. Intralaboratory
precision is represented by the median CV calculated
from all concentration points for a particular peptide
(based on quadruplicate measurements for a single cho-
sen transition) for each site, and for each study. The
interlaboratory precision is represented by the median
CV calculated at each concentration point for a particular
peptide across all sites and for each study. In Table 5 the
interlaboratory precision at a concentration close the

Page 14 of 18

LOQ is shown. The CV calculations at each concentra-
tion point for a peptide at a given laboratory is based on
four replicates for studies I and II and on 12 data points
(four technical replicates for each of the three process
replicates) for study III.

In this analysis, the interlaboratory precision is calcu-
lated as the median intralaboratory CV. While this mea-
sure summarizes the precision obtained across multiple
laboratories, it does not account for the accuracy of the
measurement across different laboratories—all the
laboratories may have repeated measurements that are
very close (high precision, and hence low CV), but the
actual measurements may differ significantly from
laboratory to laboratory (poor accuracy). Hence, in clini-
cal domains, the interlaboratory precision is calculated
as the CV of all the measurements of a peptide (at a
concentration) across all the laboratories [55]. An addi-
tional study investigated the use of more sophisticated
mixed effect models to evaluate the sources of variation
in the NBT study [56].

Discussion

For researchers new to SID-MRM-MS assays, this sec-
tion outlines important aspects of the experimental
design and data analysis, along with practical tips.

When constructing a calibration curve, attempt to use
a concentration range that extends past the estimated
LOD and upper LOQ so that these Figures of Merit can
be calculated from the data. Prepare the calibration
curve in a matrix that is identical to that of the actual
sample in order to accurately reproduce the chemical
noise contributions from the matrix. If this is not possi-
ble, use a matrix that is very similar in composition.
Analyze matrix blank samples periodically throughout
the assay. This will provide the best determination of
the signal-to-noise of the sample matrix and internal
standards, and detect any potential for analyte carryover
that would be encountered in a quantitative assay of
unknown samples.

To determine the technical variability of an assay, ana-
lyzing a minimum of 3 technical replicates (repeat injec-
tions from the same sample) is suitable. The use of
process replicates (preparations of the samples made at
different times) can be used to calculate the analytical
variability of an assay. Usually, technical variability is
smaller than analytical variability. A minimum of 3
replicates should be prepared for each concentration
point in calibration curves. The precision of the calcula-
tions improves with increased sample size, so if time
and resources permit, more replicates are favorable.

Most methods of calculating the LOD or LOQ use the
calibration curve data points to interpolate the deter-
mined value. To make sure the calculated LOD seems
reasonable, it is recommended to visually inspect the
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Figure 5 Box plots of variation in MRM quantitative measurements, interlaboratory CV, and intralaboratory CV. All CV calculations are
performed on the original data, while log-scaled axes are used to enchance visualization in the plots. (a) Intralaboratory assay CV. Box plots showing
measured log concentration (y axis) versus theoretical (spiked-in) concentration (x axis) for HRP-SSD across the entire concentration range in diluted
plasma. Protein concentration in mg/ml is mg protein equivalent in 1 ml undiluted plasma. The box plots for studies | and Il are based on four
replicate measurements, whereas those for study Ill summarize 12 measurements (four from each of 3 process replicates). Each of the eight sites was
assigned a random numerical code (19, 52, 54, 56, 65, 73, 86, 95) for anonymization. (b) Interlaboratory assay CV. Values are shown for studies I-lll for
the entire range of HRP-SSD final analyte concentrations in plasma. Within each box plot, actual intralaboratory CV values for individual laboratories are
shown with color-coded markers. The CV values are calculated based on the single best performing transition (lowest combined CV) across studies |
and II. This same transition is also used for study Ill. Adapted from Addona, et. al., Nature Biotechnology, 27(7):633-41 [28].
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Table 5 Summary of Results for Studies |, Il, and Il (combined results for process replicates a, b, c) for each peptide
across sites for inter-site CV, intra-site CV, linear slope and % recovery.

Signature Study | Study I Study 11
Peptide
Inter- site Intra- site  Linear % Inter- site Intra- site Linear % Inter- site Intra- site Linear %
cv cv Slope  Recov. cv cv Slope  Recov. cv cv Slope  Recov.
APR-AGL 9.20% 39-11.2% 1.157 1145 13.10% 2.0-7.8% 0.575 575 13.70%  7.3-45.2% 0.738 794
CRP-ESD 5.90% 2.2-59% 1.124 1184 10.50% 3.1-84% 0.573 614 16.70%  85-18.1% 0439 489
CRP-GYS 5.40% 14-10.2% 1.324 140.5 5.60% 1.2-6.4% 0.546 56 1850%  6.6-35.0% 0.159 18.5
HRP-SSD 14.10% 4.0-89% 1.198 1204 5.50% 4.6-73% 0.794 823 2190%  84-21.4% 043 457
LEP-IND 1250%  2.9-10.3% 1.163 119.1 2950%  2.6-153% 0.152 149 50.40% 11.7- 0.242 256
54.9%

MBP-HGF 4.30% 1.7-6.3% 1.161 1186 9.30% 1.5-7.8% 0.758 773 21.80%  74-32.8% 0.238 238
MBP-YLA 5.10% 2.1-93% 1.275 1303 4.10% 1.5-14.1% 0.806 83.8 N/A N/A% N/A > 10
MYO-LFT 4.90% 1.6-5.7% 1.518 1544 3.80% 2.0-6.3% 1.012 101.3 2310%  89-21.6% 0.504 604
PSA-IVG 6.90% 1.3-14.7% 1.658 1654 5.50% 2.0-11.2% 0.848 819 1720%  7.6-13.7% 0.587 58
PSA-LSE 8.90% 1.2-6.9% 1.098 14 5.30% 2.0-4.6% 1.524 1513 1030%  7.6-13.7% 0918 927

The CVs increase in distribution between studies |, I, and Ill as expected with increasing complexity of the three studies. Adapted from Addona, et. al., Nature

Biotechnology, 27(7):633-41 (25).

individual concentration points to make sure the calcu-
lated values make sense and the concentration point
above the calculated LOD is easily discernable. The
main factors affecting the calculated LOD of an assay
are the noise present in the matrix blank, and the repro-
ducibility of that noise. Matrices that have a lot of noise
and/or where the measurement of that noise is very
variable will result in higher LODs.

Often in practice, the largest influence on the sensitiv-
ity of an assay is not the instrument itself, but how well
the instrument is performing. Variability can have a pro-
found impact on sensitivity. Evaluating the reproducibil-
ity of an LC-MRM-MS system is highly recommended
before evaluating its sensitivity. This can be accomplished
by making repeat measurements of the same sample
using the same method, to achieve CV values less than
20%.

Last but not least, automated data processing tools
and algorithms should be applied with care, continually
assessing data quality, consistently accounting for out-
liers, and monitoring results.

Conclusion

>MRM-MS assays are increasingly being deployed to
measure and quantify peptides (and hence, proteins) in
a variety of matrices and backgrounds. This manuscript
provides a complete toolkit for the analysis and inter-
pretation of MRM-MS experiments.

Sound statistical analysis of MRM-MS data starts with
high quality data. Using algorithms like AuDIT and
mProphet (Section 5), the data quality assessment can be
automated resulting in a more reliable high throughput
analysis pipeline which quickly weeds out poor quality
transitions or transitions with interferences.

Calibration and characterization of detection limits
and variability are important aspects of any quantitative
assay. We present a comparative set of methods and
approaches for MRM-MS assay calibration, regression
analysis, determination of confidence intervals, dealing
with endogenous signal, assessment of detection limits
and multi-laboratory characterization of assay perfor-
mance and precision.

While systematic and principled analysis of data is
essential for achieving the full potential of quantitative
MRM-MS assays, care has to be exercised in experiment
design and data generation to maximize reproducibility
and data quality. There are many experimental and other
variables beyond the scope of this manuscript that need to
be addressed for successful deployment and use. Several
new multi-laboratory studies aim to circumscribe and con-
trol these aspects. Two such factors worth mentioning are
(i) digestion and (ii) system suitability assessment. Repro-
ducible digestion of proteins is a pre-requisite for reliable
quantification using MRM-MS. Several on-going studies
attempt to not only determine standard operating proce-
dure to ensure proper digestion, but also use specially cho-
sen marker peptides to detect improper or incomplete
digestion. Furthermore, given the complexity of chromato-
graphy and MS instrumentation, constant assessment of
optimal system performance is necessary to guarantee
data quality[43]. Studies for defining, assessing and main-
taining system suitability are also under way. Most of
these large multi-laboratory studies are being carried out
under the auspices of the Clinical Proteomics Technology
Assessment for Cancer (CPTAC) program sponsored by
the National Cancer Institute (http://proteomics.cancer.
gov), with the overarching goal of advancing biomarker
discovery and enabling the advancement of promising new
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technologies like MRM-MS towards clinically deployed
assays.

Acknowledgements

Support for this work was provided in part by the Broad Institute of MIT and
Harvard and by grants from the National Cancer Institute (U24CA126476)
and National Heart Lung and Blood Institute (HHSN268201000033C) to SAC,
and in part by a grant from the National Institutes of Health (Grant NCI RO1
CA126219 to DRM, as part of NCI's Clinical Proteomic Technologies for
Cancer Program).

This article has been published as part of BMC Bioinformatics Volume 13
Supplement 16, 2012: Statistical mass spectrometry-based proteomics. The
full contents of the supplement are available online at http://www.
biomedcentral.com/1471-2105/13/5S16.

Competing interests
The authors declare that they have no competing interests.

Published: 5 November 2012

References

1. Yost RA, Enke CG: Triple quadrupole mass spectrometry for direct
mixtxure analysis and structure elucidation. Analytical Chemistry 1979,
51:1251-1264.

2. Brumley WC, Sphon JA: Regulatory Mass Spectrometry. Biomed Mass
Spectrom 1981, 8:390-396.

3. Sphon JA: Use of mass spectrometry for confirmation of animal drug
residues. J Assoc Off Anal Chem 1978, 61:1247-1252.

4. Vargo JD: Determination of sulfonic acid degradates of chloroacetanilide
and chloroacetamide herbicides in groundwater by LC/MS/MS. Analytical
Chemistry 1998, 70:2699-2703.

5. Draisci R, Palleschi L, Ferretti E, Lucentini L, Cammarata P: Quantitation of
anabolic hormones and their metabolites in bovine serum and urine by
liquid chromatography-tandem mass spectrometry. J Chromatography A
2000, 511-522.

6. Kushnir MM, Rockwood AL, Nelson GJ, Yue B, Urry FM: Assessing analytical
specificity in quantitative analysis using tandem mass spectrometry.
Clinical Biochemistry 2005, 38(4):319-327.

7. Kuhara T: Noninvasive human metabolome analysis for differential
diagnosis of inborn errors of metabolism. J Chromatogr B Analyt Technol
Biomed Life Sci 2007, 855(1):42-50.

8. Pitt JJ, Eggington M, Kahler SG: Comprehensive screening of urine
samples from inborn errors of metabolism by electrospray tandem mass
spectrometry. Clinical Chemistry 2002, 48:1970-1980.

9. Rifai N, Gillette MA, Carr SA: Protein biomarker discovery and validation:
the long and uncertain path to clinical utility. Nature Biotechnology 2006,
24:971-983.

10.  Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM: ) Electrospray
ionization for mass spectrometry of large biomolecules. Science 1989,
246(4926):64-71.

11. Browne TR: Stable isotopes in pharmacology studies: present and future.
J Clin Pharmacol 1986, 26:485-489.

12. Moore LJ, Machlan LA: High accuracy determination of calcium in blood
serum by isotope dilution mass spectrometry. Anal Chem 1972,
44:2291-2296.

13. Cohen A, Hertz HS, Mandel J, Paule RC, Schaffer R, Sniegoski LT, Sun T,
Welch MJ, White ET: Total serum cholesterol by isotope dilution/mass
spectrometry: a candidate definitive method. Clin Chem 1980, 26:854-860.

14. Lisek CA, Bailey JE, Benson LM, Yaksh TL, Jardine I: Quantitation of
endogenouse substance P by on-line microcolumn liquid
chromatography/continuous-flow fast atom bombardment mass
spectrometry. Rapid Commun Mass Spectrom 1989, 3(2):43-4614.

15.  Parsons HG: Stable isotopes in the management and diagnosis of inborn
errors of metabolism. Can J Physiol Pharmacol 1990, 68:950-954.

16.  Barr JR, Maggio VL, Stemman O, Jr DGP, Cooper GR, Henderson LO,

Turner WE, Smith SJ, Hannon WH, Needham LL, Sampson EJ: Isotope-
dilution mass spectrometric quantification of specific proteins: model
application with apolipoprotein A-1. Clin Chem 1996, 42:1676-1682.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.
33.

34.

35.

Page 17 of 18

Gerber SA, Rush J, Stemman OK, Kirschner MW, Gygi SP: Absolute
quantification of proteins and phosphoproteins from cell lysates by
tandem MS. Proc Natl Acad Sci USA 2003, 100(12):6940-6945.

Barnidge DR, Dratz EA, Martin T, Bonilla LE, Moran LB, Lindall A: Absolute
quantification of the G protein-coupled receptor rhodopsin by LC/MS/
MS using proteolysis product peptides and synthetic peptide standards.
Anal Chem 2003, 75(3):445-451.

Kuhn E, Wu J, Karl J, Liao H, Zolg W, Guild B: Quantification of C-reactive
protein in the serum of patients with rheumatoid arthritis using multiple
reaction monitoring mass spectrometry and 13C-labeled peptide
standards. Proteomics 2004, 4(4):1175-1186.

Abbatiello SE, Mani DR, Keshishian H, Carr SA: Automated detection of
inaccurate and imprecise transitions in peptide quantification by
multiple reaction monitoring mass spectrometry. Clinical Chemistry 2010,
56:291-305.

Keshishian H, Addona TA, Burgess M, Kuhn E, Carr SA: Quantitative,
multiplexed assays for low abundance proteins in plasma by targeted
mass spectrometry and stable isotope dilution. Mol Cell Proteomics 2007,
6:2212-2219.

Bondar OP, Barnidge DR, Klee EW, Davis BJ, Klee GG: LC-MS/MS
quantification of Zn-alpha2 glycoprotein: a potential serum biomarker
for prostate cancer. Clinical Chemistry 2007, 53:673-678.

Hoofnagle AN, Becker JO, Wener MH, Heinecke JW, et al: Quantification of
thyroglobulin, a low-abundance serum protein, by immunoaffinity
peptide enrichment and tandem mass spectrometry. Clinical chemistry
2008, 54(11):1796-1804.

Mani DR, Addona T, Keshishian H, Burgess M, Shi X, Kuhn E, Sabatine MS,
Gerszten RE, Carr SA: Quantification of cardiovascular biomarkers in
patient plasma by targeted mass spectrometry and stable isotope
dilution. Molecular & cellular proteomics 2009, 8(10):2339-2349.

Abbatiello SE, Pan YX, Zhou M, Wayne AS, Veenstra TD, Hunger SP,

Kilberg MS, Eyler JR, Richards NG, Conrads TP: Mass spectrometric
quantification of asparagine synthetase in circulating leukemia cells
from acute lymphoblastic leukemia patients. Journal of Proteomics 2008,
71:61-70.

Kuhn E, Addona T, Keshishian H, Burgess M, Mani DR, Lee RT, Sabatine MS,
Gerszten RE, Carr SA: Developing multiplexed assays for troponin | and
interleukin-33 in plasma by peptide. 2009.

Agger SA, Mamey LC, Hoofnagle AN: Simultaneous quantification of
apolipoprotein A-1 and apolipoprotein B by liquid-chromatograph-multiple-
reaction-monitoring mass spectrometry. Clin Chem 2010, 56(12):1804-1813.
Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM,
Spiegelman CH, Zimmerman LJ, Ham A-JL, Keshishian H, Hall SC, Allen S,
Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusak MP, Dodder NG,
Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J,
Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H,
Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ,
Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL,
Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA: Multi-site
assessment of the precision and reproducibility of multiple reaction
monitoring-based measurements of proteins in plasma. Nature
biotechnology 2009, 27(7):633-641.

Lavagnini I, Magno F: A statistical overview on univariate calibration,
inverse regression, and detection limits: Application to gas
chromatography/mass spectrometry technique. Mass spectrometry reviews
2007, 26(1):1-18.

Rousseeuw PJ, Leroy AM: Robust Regression and Outlier Detection. Wiley-
Interscience 2003.

Wilcox RR, Keselman HJ: Robust Regression Methods: Achieving Small
Standard Errors When There Is Heteroscedasticity. Understanding Statistics
2004, 3(4):349-364.

Venables WN, Ripley BD: Modern Applied Statistics with S. Springer 2002.
Yohai VJ, Stahel WA, Zamar RH: A procedure for robust estimation and
inference in linear regression. In Directions in Robust Statistics and
Diagnosis, Part Il. Springer-Verlag;Stahel WA, Weisberg SW 1991,

Schoeller DA: A review of the statistical considerations involved in the
treatment of isotope dilution calibration data. Biological Mass
Spectrometry 1976, 3(6):265-271.

Skoog DA, Holler FG, Niemann LH: Princlples of Instrumental Analysis.
Saunders College Publishing 1998.


http://www.biomedcentral.com/1471-2105/13/S16
http://www.biomedcentral.com/1471-2105/13/S16
http://www.ncbi.nlm.nih.gov/pubmed/21902234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21902234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6796151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/721737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/721737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9666733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9666733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15766733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15766733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12406983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12406983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12406983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16900146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16900146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14764644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14764644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16788893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2200587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2200587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4564243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4564243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2485177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2485177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2485177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2485177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23057097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23057097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12771378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12771378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12771378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20022980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20022980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20022980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15048997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15048997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15048997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23056523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23056523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23056523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23056523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19959622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19959622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19959622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20147306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20147306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20147306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18801935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18801935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18801935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19372185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19372185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19372185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18541474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18541474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18541474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20923952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20923952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20923952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16788893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16788893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16788893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3382801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2619804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12488461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12488461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14588026?dopt=Abstract

Mani et al. BMC Bioinformatics 2012, 13(Suppl 16):59 Page 18 of 18
http://www.biomedcentral.com/1471-2105/13/516/59

36. Mandel J, Stiehler RD: J Res Natl Bur Std 1964, 53:155-159.

37. Yergey AL: The presentation of calibration curves and quantitative data.
Biomed Environ Mass Spectrom 1998, 15(8):465-465.

38. Feinstein AR: Principles of Medical Statistics. Journal of the Royal Statistical
Society Series B (Methodological) Chapman and Hall; 2001.

39. Currie LA: Limits for qualitative detection and quantitative
determination. Application to radiochemistry. Analytical Chemistry 1968,
40(3):586-593.

40. Linnet K, Kondratovich M: Partly nonparametric approach for determining
the limit of detection. Clinical chemistry 2004, 50(4):732-740.

41, Anderson DJ: DetermInatlon of the Lower Limit of Detection. Clinical
chemistry 1989, 35(10):2152-2153.

42, Vial J, Mapiphan KL, Jardy A: What is the Best Means of Estimating the
Detection and Quantification Limits of a Chromatographic Method? .
Chromatographia 2003, 57:5303-S306.

43. Anderson NL, Anderson NG: The human plasma proteome: history,
character, and diagnostic prospects. Mol Cell Proteomics 2002,
1(11):845-867.

44, Li W, Cohen LH: Quantitation of endogenous analytes in biofluid without
a true blank matrix. Anal Chem 2003, 75(21):5854-5859.

45. Davison AC, Hinkley DC: CBootstrap Methods and Their Application.
Cambridge Series in Statistical and Probabilistic Mathematics Cambridge
University Press; 1997.

46. Yan Z, Maher N, Torres R, Cotto C, Hastings B, Dasgupta M, Hyman R,
Huebert N, Caldwell GW: Isobaric metabolite interferences and the
requirement for close examination of raw data in addition to stringent
chromatographic separations in liquid chromatography/tandem mass
spectrometric analysis of drug in biological matrix. Rapid Commun Mass
Spectrom 2008, 22:2021-2028.

47.  Whiteaker JR, Zhao L, Zhang HY, Feng LC, Piening BD, Anderson L,
Paulovich AG: Antibody-based enrichment of peptides on magnetic
beads for mass-spectrometry-based quantification of serum biomarkers.
Anal Biochem 2007, 362(1):44-54.

48.  Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B (Methodological) 1995, 57(1):289-300.

49.  Kost JT, McDermott MP: Combining dependent P-values. Statistics &
Probability Letters 2002, 60(2):183-190.

50. Brown MB: A Method for Combining Non-Independent, One-Sided Tests
of Significance. Biometrics 1975, 31(4):987-992.

51. Sing T, Sander O , Beerenwinkel N, Lengauer T: ROCR: visualizing classifier
performance in R. Bioinformatics 2005, 21:3940-3941.

52. Reiter L, Rinner O, Picotti P, Huttenhain R, Beck M, Brusniak MY,
Hengartner MO, Aebersold R: mProphet: automated data processing and
statistical validation for large-scale SRM experiments. Nature methods
2011, 8(5).

53. MaclLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B,
Kern R, Tabb DL, Liebler DC, MacCoss MJ: Skyline: an open source
document editor for creating and analyzing targeted proteomics
experiments. Bioinformatics 2010, 26:966-968.

54. Tufte ER: The Visual Display of Quantitative Information. 2nd edition edition.
Graphics Press; 2001.

55. Hoofnagle AN: Quantitative clinical proteomics by liquid
chromatography-tandem mass spectrometry: assessing the platform.
Clinical Chemistry 2010, 56(2):161-164.

56. Xia JQ, Sedransk N, Feng X: Variance Component Analysis of a Multi-Site
Study for the Reproducibility of Multiple Reaction Monitoring
Measurements of Peptides in Human Plasma. PLoS ONE 2011, 6:214590.

57. Briscoe CJ, Hage DS, Stiles MR: System Suitability in Bioanalytical LC/MS/ Submit your next manuscript to BioMed Central
MS. Journal of Pharmaceutical and Biomedical Analysis 2007, 44:484-491. and take full advantage of:
doi:10.1186/1471-2105-13-516-59 ) ) o
Cite this article as: Mani et al: Statistical characterization of multiple- * Convenient online submission
reaction monitoring mass spectrometry (MRM-MS) assays for « Thorough peer review

quantitative proteomics. BMC Bioinformatics 2012 13(Suppl 16):S9.
* No space constraints or color figure charges

¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/17241609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16096348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16096348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2619804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21298095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21298095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17433601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17433601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14588026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14588026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18512848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18512848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18512848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18512848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17241609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17241609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23136378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16096348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16096348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20147306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20147306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20147306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19959622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19959622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21298095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21298095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21298095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17433601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17433601?dopt=Abstract

	Abstract
	Introduction
	Concepts and terminology for MRM-MS assay characterization
	Data
	Peak area ratio
	Calibration curve
	Precision
	Accuracy
	Reproducibility
	Limit of Detection
	Limit of Quantification
	Overview

	Calibration curve and regression analysis
	Limits of detection and quantification
	Blank Sample
	Blank and Low Concentration Sample
	Calibration Curve
	RSD Limit

	Imprecision and interference in MRM MS
	Intra- and interlaboratory variation
	Discussion
	Conclusion
	Acknowledgements
	Competing interests
	References

