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Abstract

Background: Identification of subcellular localization in proteins is crucial to elucidate cellular processes and
molecular functions in a cell. However, given a tremendous amount of sequence data generated in the post-
genomic era, determining protein localization based on biological experiments can be expensive and time-
consuming. Therefore, developing prediction systems to analyze uncharacterised proteins efficiently has played an
important role in high-throughput protein analyses. In a eukaryotic cell, many essential biological processes take
place in the nucleus. Nuclear proteins shuttle between nucleus and cytoplasm based on recognition of nuclear
translocation signals, including nuclear localization signals (NLSs) and nuclear export signals (NESs). Currently, only a
few approaches have been developed specifically to predict nuclear localization using sequence features, such as
putative NLSs. However, it has been shown that prediction coverage based on the NLSs is very low. In addition,
most existing approaches only attained prediction accuracy and Matthew’s correlation coefficient (MCC) around
54%~70% and 0.250~0.380 on independent test set, respectively. Moreover, no predictor can generate sequence
motifs to characterize features of potential NESs, in which biological properties are not well understood from
existing experimental studies.

Results: In this study, first we propose PSLNuc (Protein Subcellular Localization prediction for Nucleus) for
predicting nuclear localization in proteins. First, for feature representation, a protein is represented by gapped-
dipeptides and the feature values are weighted by homology information from a smoothed position-specific
scoring matrix. After that, we incorporate probabilistic latent semantic indexing (PLSI) for feature reduction. Finally,
the reduced features are used as input for a support vector machine (SYM) classifier. In addition to PSLNuc, we
further identify gapped-dipeptide signatures for putative NLSs and NESs to develop a prediction method, PSLNTS
(Protein Subcellular Localization prediction using Nuclear Translocation Signals). We apply PLSI to generate gapped-
dipeptide signatures from both nuclear and non-nuclear proteins, and propose candidate sequence motifs for
putative NLSs and NESs. Then, we incorporate only the proposed gapped-dipeptide signatures in an SVM classifier
to mimic biological properties of NLSs and NESs for predicting nuclear localization in PSLNTS.

Conclusions: Experiment results demonstrate that the proposed method shows a significant improvement for
nuclear localization prediction. To compare our predictive performance with other approaches, we incorporate two
non-redundant benchmark data sets, a training set and an independent test set. Evaluated by five-fold cross-
validation on the training set, PSLNuc attains an overall accuracy of 79.7%, which is 4.8% improvement over the
state-of-the-art system. In addition, our method also enhances the MCC from 0.497 to 0.595. Compared on the
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independent test set, PSLNuc outperforms other predictors by 3.9%~19.9% on accuracy and 0.077~0.207 on MCC.
This suggests that, in addition to NLSs, which have been shown important for nuclear proteins, NESs can also be
an effective indicator to detect non-nuclear proteins. Most notably, using only a few proposed gapped-dipeptide
signatures as input features for the SVM classifier, PSLNTS further enhances the accuracy and MCC to 80.9% and
0.618, respectively. Our results demonstrate that gapped-dipeptide signatures can better discriminate nuclear and
non-nuclear proteins. Moreover, the proposed gapped-dipeptide signatures can be biologically interpreted and
used in further experiment analyses of nuclear translocation signals, including NLSs and NESs.

Background

Introduction

In the eukaryotic cells, many essential biological pro-
cesses take place in the nucleus. Nuclear localization is
a complicated set of processes that play a crucial role in
the dynamical self-regulation of the cell [1]. To partici-
pate in the cell regulation processes, proteins are trans-
located in and out of nucleus. This import and export
are mediated by short binding sites on the protein
sequence, called nuclear localization signals (NLSs) and
nuclear export signals (NESs). Both NLSs and NESs
have been used as important features to detect nuclear
proteins. However, due to a tremendous amount of pro-
tein sequences generated from the post-genomic era,
NLSs and NESs are not yet well understood from exist-
ing experiments by the biologists, and so the set of cur-
rently known NLSs and NESs may be incomplete.
Therefore, developing computational methods to iden-
tify potential NLSs and NESs has become highly desir-
able to predict nuclear localization.

Previous works

At present, only a few predictors are designed specifically
to identify proteins imported into the nucleus. PredictNLS
[2] predicts nuclear proteins based on the presence of
known or putative NLSs derived from the contents of
NLSdb. NucPred [3] uses regular expression matching and
multiple program classifiers induced by genetic program-
ming to detect putative NLSs. NUCLEO [4] incorporates
sequence motifs from known NLSs in a support vector
machine (SVM) classifier for predicting nuclear localiza-
tion. NpPred [5] applies SVM classifiers and hidden
Markov models (HMM) using k-peptide composition and
achieves high accuracy based on a data set, in which pro-
teins are filtered at 90% sequence identity [6]. Although
general localization prediction methods provide compre-
hensive information, they do not consider compartment-
specific features to optimize for a particular localization
site [5]. Besides the above predictors designed to predict
nuclear localization proteins, several methods, such as
NLStradamus, NetNES, and NoD, have been proposed to
detect NLSs and NESs. NLStradamus [7] uses HMMs to
predict NLSs in proteins, and NetNES [8] predicts NESs
using neural network and HMMs. In addition, NoD [9]

applies artificial neural network algorithm to detect
nucleolar localization sequences in eukaryotic and viral
proteins. Moreover, several methods [10-13] have been
developed to further classify nuclear proteins according to
their subnuclear localizations. In this study, we will pro-
pose a method to improve nuclear localization prediction
based on potential NLSs and NESs generated from our
analysis of gapped-dipeptide signatures.

Challenges

Prediction of nuclear proteins presents several challenges.
First, methods that integrate biological features only from
known or putative NLSs could suffer from the problem
of low coverage in high-throughput proteomic analyses
due to the lack of information to characterize NESs from
nuclear exported proteins. Second, several predictors are
implemented on redundant training sets, which might
lead to overestimation of the predictive performance.
Thus, the performance would be significantly lower if
redundant sequences were meticulously removed (e.g., at
25% sequence identity or even less) [4]. Meanwhile, the
performance of amino acid composition-based and
sequence homology-based methods might be significantly
degraded if homologous sequences are not detected [14].
In addition, the k-peptide feature representation from
amino acid composition-based methods can result in a
very large feature dimension during the machine learning
procedure, in which an effective feature reduction is
highly desirable to reduce dimension. Finally, results of
these two types of methods are generally difficult to
interpret; therefore, it is difficult to determine which bio-
logical features should be used to identify nuclear or
non-nuclear proteins and why they work well for predic-
tion. If the features were biologically interpretable, the
resultant knowledge could help in designing artificial
proteins with the desired properties.

Our contributions

In this study, we first present a method, PSLNuc (Protein
Subcellular Localization prediction for Nucleus), for pre-
dicting nuclear localization in proteins. For feature repre-
sentation, sequence homology information from a
smoothed position-specific scoring matrix (PSSM) is
incorporated to calculate the weights of gapped-dipeptides.
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After that, probabilistic latent semantic indexing (PLSI) is
used for feature reduction. Finally, the reduced features
are applied as input vectors for an SVM classifier. In addi-
tion to PSLNuc, we further generate gapped-dipeptide sig-
natures for potential NLSs and NESs, and develop another
prediction method, PSLNTS (Protein Subcellular Localiza-
tion prediction using Nuclear Translocation Signals). To
propose candidate sequence patterns of putative NLSs and
NESs, we apply PLSI to generate gapped-dipeptide signa-
tures from both nuclear and non-nuclear proteins. Then,
we further incorporate only the proposed gapped-dipep-
tide signatures in an SVM classifier to mimic biological
properties of NLSs and NESs in PSLNTS.

Experiment results show that PSLNuc achieves high pre-
diction accuracy, which demonstrates that homology
information of gapped-dipeptides reduced by PLSI can sig-
nificantly enhance the performance. Our analysis suggests
that, in addition to NLSs, which have been shown impor-
tant for nuclear proteins, NESs could also be an effective
indicator to detect non-nuclear proteins. Most notably,
the overall accuracy of PSLNTS is further improved to
0.809 using only the proposed gapped-dipeptide signa-
tures. This implies that gapped-dipeptide signatures can
better discriminate nuclear and non-nuclear localization.
In addition, since sequence redundancy tends to overesti-
mate the predictive performance, we incorporate non-
redundant data sets and show the general accuracy of
nuclear prediction should be approximately 0.800. Finally,
since the proposed gapped-dipeptide signatures are biolo-
gically interpretable, they can be easily applied to advanced
analyses and experimental designs of nuclear translocation
signals.

Results and discussion

Data sets

To compare the predictive performance with other
approaches, we utilize two benchmark data sets of pro-
teins from Swiss-Prot that have been constructed in pre-
vious works [2-4]. The training and testing sets are
comprised of proteins whose localization sites are experi-
mentally determined. In addition, both the nuclear and
non-nuclear proteins are redundancy-reduced using Blas-
tClust with a 10% identity threshold, so that the remain-
ing sequences have no more than 10% identical residues
in the aligned regions covering at least 90% of the
sequences. Table 1 lists the number of nuclear and non-
nuclear proteins in the training and testing data sets. The
training and testing sets are available in the supplemen-
tary material [see Additional file 1].

Predictive performance on benchmark data sets

Table 2 shows the performance comparison with other
approaches based on two benchmark data sets, a training
set and an independent test set. First, evaluated by a five-

Page 3 of 10
Table 1 Data sets
Nuclear Non-nuclear
Training 2,842 2,606
Testing 564 398
Total 3,406 3,004

Numbers of nuclear and non-nuclear proteins for training and testing.

fold cross-validation on the training set, PSLNuc attains
an overall accuracy of 0.797, which is a 4.8% (0.048)
improvement over the state-of-the-art performance by
NUCLEO. In addition, our method also enhances the
Matthew’s correlation coefficient (MCC) from 0.497 to
0.595. Secondly, an independent test data set is incorpo-
rated to compare the predictive performance of PSLNuc,
NUCLEO, PredictNLS, and NucPred. For the overall accu-
racy, PSLNuc significantly outperforms the other
approaches by 3.9% (0.039) to 19.9% (0.199). Moreover,
our method performs better by 0.077 to 0.207 in terms of
MCC. Experiment results demonstrate that feature reduc-
tion by PLSI is able to extract discriminative features for
predicting nuclear localization. Meanwhile, our method
suggests that proposed smoothed PSSM (smoothPSSM)
weighting scheme can better discriminate nuclear and
non-nuclear localization by the incorporation of neighbor-
ing residues. Finally, in addition to NLSs, which have been
shown important for nuclear proteins, NESs could also be
an effective indicator to detect non-nuclear proteins.

Proposed gapped-dipeptide signatures correspond well
with known nuclear translocation signals

To generate gapped-dipeptides for nuclear and non-
nuclear localization, we choose ten preferred topics for
nuclear and non-nuclear proteins based on localization-
preference confidence, respectively. The confidence is
calculated by the absolute value of nuclear localization-
preference minus non-nuclear localization-preference.
For every preferred topic, we select up to twenty most
abundant gapped-dipeptides. Finally, the resultant
gapped-dipeptide signatures for nuclear and non-nuclear

Table 2 Performance comparison

Training Data Set (by five-fold cross-validation)

Method tp tn fo fn Sens Spec Acc MCC
PSLNuc 2317 2030 576 525 0.815 0.779 0.797 0.595
NUCLEO 2157 1924 682 685 0759 0760 0749 0497
Independent Test Data Set

tp tn fo fn Sens Spec Acc  MCC
PSLNuc 452 258 140 112 0.805 0.646 0.739 0457
NUCLEO 430 246 152 134 0760 0620 0700 0.380
PredictNLS 153 369 29 411 0270 0930 0540 0250
NucPred 376 233 165 188 0670 0590 0630 0250

Performance comparison of different nuclear localization predictors.
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proteins are listed in Table 3 and Table 4, respectively.
We compare the generated gapped-dipeptide signatures
with known experimentally determined NLSs and NESs
in the biological literature and databases. The signatures
that have been reported as motifs for NLSs and NESs are
shown in bold face in Table 3 and Table 4, respectively.
It is observed that many gapped-dipeptide signatures are
motifs critical for predicting nuclear localization, espe-
cially for NLSs. Our experiment results show that the
proposed method can capture biological features of
nuclear and non-nuclear proteins.

Figure 1(A) and 1(B) illustrate further analyses of
amino acid composition and grouped amino acid com-
position of selected gapped-dipeptide signatures, respec-
tively. When analyzing physicochemical properties in
grouped amino acid composition, each amino acid is
grouped into one of the four categories: aromatic
(FYW), charged (DEHKR), nonpolar (AIGLMV), and
polar (CNPQST). From Figure 1(A), it is observed that
nuclear signatures show great preferences for Arginine
(R), Histidine (H), and Lysine (K), which can be discov-
ered in most NLSs; while non-nuclear signatures exhibit
high compositions in Leucine (L), Isoleucine (I), Pheny-
lalanine (F), Valine (V), Methionine (M), and Proline
(P), which occur frequently in NESs. In addition, as
shown in Figure 1(B), nuclear signatures prefer basic
(HKR) or polar (CGNQSTY) amino acids, and non-
nuclear ones favor hydrophobic (AFILMPVW) amino
acids. Experiment results demonstrate that the amino

Table 3 Gapped-dipeptide signatures for nuclear proteins

Gapped-dipeptide signatures for nuclear proteins
G2P  GI11P  G8P P11P P5P P3Q P5Q KI1K KéK

K10K

K2K K5K KOK K3K K4K E4E EIE  ES8E EOE  PIT
poT  P6T P10T G2G G1G G5G P1S  S6P P3G G4P
POG Q11Q Q10Q Q5Q R13R R11R R10R R9R R12R R7R
R3R R4R (C8S S2C  S6C  NoP P12N  SO9D E12D D12D
D4D D13D S12T S8T  S10T KOR K2R R2R  ROR ROK
R2K K1R R1K R3K K4R M3P P12M R1H Q8R Q2H
HOR  S7Q Q125 S13H SI10H S2H  HeS S12H  P7Y P4y
Y5P N3N N6N  NON KIH HOK Hé6K K10H D25 D5S
K8 DOS N8N H8N H5N SeL T4E E13S TeE S13S
$10S HOH H4H HTH H13H NOE NOK N4K KIN  D2T
GoL  G8L  E8C KIC K5C  Kr7C  (CQC  CoC  K3C 4K
H8C H12C H13C H10C Deél D10l D121 A13Q AeQ Q%A
Q6A  S11S M35 Q13T KIT  QIT Q9T NIS S7/N  N8S
H1l IOH  E121  S2E  E11l D6A S3D D8A M13Q M3Q
L13S L12S VeSS S9N S13G  E9S S3S  NOS  S3N  H1Q
H10Q H3Q H5Q T7E  T8E TI12E T9E WI13K WIT1K N11I
12N M13D M2D F13D  LIH  HIL A3H L5H ROG A9H
H10A P3R A10H

Our method propose 183 gapped-dipeptide signatures for nuclear proteins.
Signatures that have been reported as motifs for nuclear localization signals
(NLSs) are shown in bold face.
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Table 4 Gapped-dipeptide signatures for non-nuclear
proteins

Gapped-dipeptide signatures for non-nuclear proteins

L2L L2F F5L F2L MOV M1V VOM V1M V3V V2v
A3V A8V  A12l A6l A4l 2A ET1L L11Q Q1L L11E
Q5w Q13w S7W Q12w 113l 191 12t 1ol yey - YOY
Y5Y  Y12Y  VON  L2N 12Q 25 R11A R8A RIA  KiL
LK LOK F10A F11A  F11S F10S L8A L4A L5A  A6L
F3F F4F  F1OF FI13F L8L L3L I3L L12L V11D V13D
V7D v4D  I5E 14D M2 ESI W8P WOP WI10P W3P
V5V VI3V G2V GITV S2S 545 ASS S9S WIH  H1oW
W8H Yiow M3M M2M  M13M MOM TOT T13T T/ TIT
H1Y  H3Y H13Y H7Y F12C F9C FOC F10C A7K  A3K
AT0A  A4A AS5A  ASA  Y2G YOG GOY GOF F2K  KOF
K3F QI3L L13Q LIT LioQ Ci2t 112C Ciol G310 WA4E
WwoL  W5L  WIL Y7T Y7V YeV V5Y EIM 9K  R11M
ITOK 13K F13K  TiK K5I K2V H1OL L12H H8L E13L
E131  E10V N13L KI3N KI2N 9N  VION V12N VIN R10Q
D3R R2D VG M11G VI3G L3G 16N I5N VOl 111N
K7L V4H  H12Vv V8H  H4v  FOE Di13L D12L 3D DoL
H1TM L1OM  M7H  H12l  ESL  E11A E12A ASE ET10A 14N

NOI N13I NI

Our method propose 183 gapped-dipeptide signatures for non-nuclear
proteins. Signatures that have been reported as motifs for nuclear export
signals (NESs) are shown in bold face.

acid preferences of selected nuclear and non-nuclear
signatures correspond well with biological knowledge
[15].

Gapped-dipeptide signatures better discriminate nuclear
and non-nuclear proteins

To demonstrate that our method can capture biological
properties of putative NLSs and NESs, we further
examine the predictive performance using only the
proposed gapped-dipeptide signatures. In PSLNTS, we
incorporate 366 selected gapped-dipeptide signatures
in an SVM classifier to see whether gapped-dipeptide
signatures can better discriminate nuclear and non-
nuclear proteins. Table 5 compares the performance of
PSLNTS, PSLNuc, and NUCLEO. Using only the 366
gapped-dipeptide signatures, PSLNTS performs slightly
better than PSLNuc by nearly 0.010 (1%) and 0.023 for
overall accuracy and MCC, respectively. Experiment
results demonstrate that the selected signatures can
capture biological properties of NLSs and NESs, and
thus, can resolve the ambiguity to discriminate nuclear
and non-nuclear proteins.

Conclusions

In this study, we first incorporate gapped-dipeptides
weighted by a smoothPSSM encoding and reduced by
PLSI to predict nuclear localization in PSLNuc. Our
results show that PSLNuc significantly improves the



Su et al. BMIC Bioinformatics 2012, 13(Suppl 17):513
http://www.biomedcentral.com/1471-2105/13/517/513

Page 5 of 10

(A)
Amino acid compositions of nuclear and non-
nuclear gapped-dipeptide signatures
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Figure 1 Physicochemical analyses of gapped-dipeptide signatures. (A) Amino acid compositions and (B) grouped amino acid compositions
of gapped-dipeptide signatures for nuclear and non-nuclear proteins.

predictive performance compared to the state-of-the-art
system. Experiment results also suggest that, in addition

Table 5 Performance comparison using gapped-dipeptide
signatures

Training Set (by five-fold cross-validation)

tp tn fo fn Sens Spec Acc MCC
PSLNTS 2429 1978 628 413 0.855 0.759 0.809 0.618
PSLNuc 2413 1964 642 429 0815 0779 0797 059
NUCLEO 2,157 1924 682 685 0759 0760 0749 0497

Performance comparison of PSLNuc, PSLNTS, and NUCLEO.

to NLSs, which have been shown important for nuclear
proteins, NESs can also be an effective indicator to
detect non-nuclear proteins. Secondly, we apply only a
few proposed gapped-dipeptide signatures in PSLNTS
and further enhance the accuracy and MCC to 0.809
and 0.618, respectively. This demonstrates that gapped-
dipeptide signatures can better discriminate nuclear and
non-nuclear localization. Most notably, the proposed
gapped-dipeptide signatures could be biologically inter-
preted and used in further experiment studies of nuclear
translocation sequences, including NLSs and NESs.
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Methods

In this study, we extend our previously proposed
method for general localization site prediction [16] and
formulate the nuclear protein prediction as a document
classification problem. In our previous work, we incor-
porated gapped-dipeptides as feature representation and
PLSI as feature reduction for predicting protein localiza-
tion sites. The method was inspired by word representa-
tion and word vector reduction in the research of
document classification, where a document is assigned
to one or several categories according to its content.
Similarly, prediction of nuclear localization can be for-
mulated as a document classification problem, in which
a protein sequence is regarded as a document’s content
and its subcellular localization classes can be treated as
categories of the document. Classification of documents
is often solved in steps described as follows. First, for
feature representation, each document is represented by
a feature vector, where each word denotes a feature and
its feature value represents the weight of a word in the
document. Second, due to a high-dimensional feature
space of words in a document, features are further
reduced to enhance prediction accuracy and prevent
overestimation [17]. Finally, reduced features are incor-
porated as input vectors in machine learning approaches
for predicting document categories. To calculate the
weights of each word, a standard PSSM encoding was
incorporated to predict general protein localization in
our previous study [16]. However, it has been shown
that a smoothPSSM encoding scheme is more effective
to predict protein structure and function [18]. In this
study, we incorporate a new smoothPSSM encoding
scheme and extend our approach to predict nuclear
localization for bioinformatics analysis. The task is a
large-scale analysis of nuclear proteins, including predic-
tion of nuclear localization and analyses of nuclear
translocation signals. To solve these problems, we pro-
pose a prediction method in which proteins are repre-
sented by gapped-dipeptides from smoothPSSM and
PLSI is incorporated for feature reduction. Next, the fea-
ture representation, feature weighting, feature reduction,
system architecture, and evaluation measures are
described in the following sections.

Feature representation - gapped-dipeptides as words of
proteins

When proteins are considered as documents, several types
of word representation have been used, such as amino
acid compositions [19] and k-peptide compositions [20].
Specifically, a dipeptide (k = 2) composition can be consid-
ered as a bi-gram word representation. However, peptides
with gaps cannot be represented by a k-peptide composi-
tion. In addition, feature vectors with high dimensions
could be generated if k-peptide compositions are used to
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represent remote sequence information. For instance,
the dimension of a feature vector reaches up to 8,000 if a
tri-peptide composition is considered. To distinguish
nuclear and non-nuclear proteins, we incorporate gapped-
dipeptide representation used in our previous work [16] to
represent sequence features in proteins. A gapped-dipep-
tide AdB represents the sequence patterns that two amino
acids A and B are divided by d residues. When we con-
sider gapped-dipeptides up to u# gapped distance, the fea-
ture dimension of gapped-dipeptides in a protein is the
total number of probable combinations, that is 20 x 20 x
(#+1). For instance, when u = 16, a feature vector of 6,400
(= 20 x 20 x 16) dimension is used to represent a protein
sequence. Due to computational and time complexity, tri-
peptides or other k-peptides are not considered in this
study.

Feature weighting - homology information from
position-specific scoring matrix

Standard position-specific scoring matrix

As shown in Figure 2(A), a standard PSSM in a protein P
of n amino acids is denoted as an # x 20 matrix, where #
denotes the residues in protein P and 20 represents the
twenty amino acids. The elements in the standard PSSM
denote the amino acid substitution log-likelihood of differ-
ent residues in the protein P [21]. We incorporate PSI-
BLAST to generate homology information from PSSM.
The parameters in PSI-BLAST are set to j = 3 (three itera-
tions), e = 1073, and the searched database is NCBI nr.
Smoothed position-specific scoring matrix

In this study, we incorporate a smoothPSSM encoding
scheme, which has been shown effective for protein-
RNA binding site prediction by considering the depen-
dency or correlation among neighboring residues [18].
In a standard PSSM profile, the log-likelihood at each
position is calculated based on an assumption that each
position is independent from the others. Inspired by the
consideration of adjacent pixels used in the spatial
domain method from the research field of image proces-
sing, a new encoding scheme is proposed to consider
the dependency among surrounding neighbors. We use
a sliding window of size w to incorporate the homology
information from upstream and downstream residues.
In the construction of a smoothPSSM, each row vector
of a residue ¢; is represented and smoothed by the sum-
mation of w surrounding row vectors (Vsmoothea i =
Viw-ny2 + oo + Vi+ oo + Visp-1),2). For the N-terminal
and C-terminal of a protein, (w-1)/2 zero vectors are
appended to the hand or tail of a smoothPSSM profile.
Using the smoothPSSM encoding scheme, the feature
vector of a residue ¢; is represented by (Viuoothed i-w-1)/
27 o0y Vsmoothed_i’ eer Vsmoothed_H(w—])/Z)' Here, we adopt
gapped-distance as 13 and smoothing window sizes as 7
according to our previous studies [16,18]. Figure 2(B)
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Figure 2 Construction of a smoothed PSSM profile. Transformation of (A) a standard PSSM profile into (B) a smoothed PSSM profile using w
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illustrates an example of a smoothPSSM profile. At posi-
tion 9, the corresponding value of amino acid ‘A’ repre-
sented by a smoothPSSM encoding is the sum of [(-2) +
(-2) + (-3) + 5 + (-2) + 3 + 0]. The log-likelihoods in a
smoothPSSM are normalized to 0~1 based on a logistic
function [22]:

1
1+e

flx) = @
where x is a log-likelihood in a smoothPSSM.

TFsmoothPSSM weighting scheme

Using smoothPSSM, a TFsmoothPSSM encoding is cal-
culated in the following steps. For a protein sequence P
of length #, a gapped-dipeptide AdB of P contains
smoothPSSM elements that corresponds to sequence
pattern P,dP;, 4, ; for 15iSn-(d+1), in which P; represents
the ith amino acid of P. Take a protein sequence
MKGIKSKMLS as an example. The gapped-dipeptide
M2I only shows one occurrence in the protein. However,
the weighting of M2I can be contributed from different
gapped-dipeptides of the protein in a smoothPSSM (i.e.,
M2I, K2K, G2S, 12K, K2M, S2L, and K2S). The word
weighting of a gapped-dipeptide AdB in P is calculated by

2

1<i<n—(d+1)

W(AdB, P) = sf(i, A) x sf(i+d+1,B)

()

in which sf(i, A) represents a normalized log-likelihood
in the smoothPSSM element of the ith row and the Ath
column. From the sample sequence, the weighting of M21I
using a smoothPSSM profile is calculated as sf{i1, M) x sf

4, 1) + sf12, M) x sfi5, 1) + ... + s(7, M) x sf(10, I). A pro-
tein is denoted as a feature vector consisting of gapped-
dipeptides, where each gapped-dipeptide is weighted by
TFsmoothPSSM encoding scheme. Finally, the feature vec-
tor is normalized to a range of 0 to 1.

Feature reduction - probabilistic latent semantic indexing
Probabilistic latent semantic indexing

Hofmann proposed PLSI based on an aspect model for
feature reduction [17]. PLSI aims at identifying and dis-
criminating between different contexts of word usage
without the help from a thesaurus or dictionary. It can
identify semantic similarities by classifying together
words with identical or similar meanings. Latent topic
variables t € T = {ty, ..., £z} for co-occurrence data are
incorporated to associate each observation in the aspect
model. We use a latent topic variable ¢ to model the
weight of a word w in a document d, which is regarded
as a joint probability P(w, d) between w and d. There-
fore, P(w, d) is calculated by

P(w, d) = P(d)P(wld), P(w|d) = Y P(wlt)P(t|d)

teT

3)

in which P(w|t) represents the conditional probability
of a word w conditioned on a topic t, and P(t|d) repre-
sents the weighting of a topic variable ¢ in a document
d. It is assumed that the word distribution given a topic
class is conditionally independent of the document d, i.
e., P(w|t, d) = P(w|t). Therefore, the original feature
dimension |W| of the word vector is greatly reduced to
the number of latent topic variables | 7.
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Probabilistic latent semantic indexing training and testing
We incorporate the same procedure as described in our
previous work [16] to train and test PLSI model. First,
for PLSI training, the parameters P(w|t) and P(f|d) are
fitted by an iterative expectation-maximization algo-
rithm, in which P(¢|d) is estimated in the expectation
(E) step and P(w|¢) is recalculated in the maximization
(M) step. Then, after training, the calculated probability
of a word conditioned on a topic P(w|f) is used to esti-
mate the P(t|d’) for new documents d’ through a fold-
ing-in process [17] in PLSI testing.

Feature reduction by probabilistic latent semantic indexing
The application of PLSI can not only reduce feature
dimension, but also extract semantic relationships of
gapped-dipeptides. During PLSI feature reduction pro-
cess, gapped-dipeptides with similar meanings or prefer-
ences are grouped together in a semantic topic, and
then the topic preferences to nuclear or non-nuclear
localization can be identified. If we can select an appro-
priate topic size in feature reduction, the mappings of
feature vectors from the gapped-dipeptide space to
latent semantic topic space can greatly increase the
learning efficiency and performance. One way to
approximate the reduced feature size is based on latent
semantic indexing (LSI). First, singular values of LSI are
calculated and sorted in a decreasing order. After that,
we select t as the reduced feature size of LSI if the ¢-th
largest singular value is close to zero. Although PLSI is
not identical to LSI, the number of singular values larger
than zero is reasonably estimated by the number of the
PLSI reduced dimensions. We take the reduced number
of topics as 80 according to our previous study [16].

System architecture

Prediction of protein nuclear localization can be
regarded as a two-class classification problem. For a
two-class classification problem, the SVM classifier has
been demonstrated effective in classification [23]. Our
prediction method consists of a one-versus-one SVM
classifier corresponding to nuclear and non-nuclear pro-
teins. For the SVM classifier in our system, we incorpo-
rate libsvm [23], where probability estimation values are
shown to determine the classification confidences [24].
In libsvm, we use the Radial Basis Function (RBF) kernel
and tune cost (¢) and gamma (y) parameters based on
five-fold cross-validation. Here we propose PSLNuc for
predicting nuclear proteins using smoothPSSM and
PLSI. Our method applies gapped-dipeptides weighted
by TFsmoothPSSM scheme to represent features of a
protein. After that, the feature vectors are reduced by
PLSI and incorporated as input vectors for an SVM
classifier. The system architecture of PSLNuc is illu-
strated in Figure 3. For each protein, PSLNuc predicts
its localization according to these steps:
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1. Perform PSI-BLAST to calculate a standard PSSM
for the protein.

2. Construct a smoothPSSM profile based on the stan-
dard PSSM.

3. Use gapped-dipeptides to represent the protein and
incorporate TFsmoothPSSM encoding scheme to deter-
mine the weights in a feature vector.

4. Apply PLSI to reduce the feature vector.

5. Use the reduced feature vector as input and run the
one-versus-one (nuclear and non-nuclear) SVM classifier.

Nuclear protein prediction based on proposed
translocation signals

For localization-topic preference identification, we divide
the training data sets into nuclear and non-nuclear pro-
teins to examine preferred topics. The localization-topic
preference of a topic is computed as the average of topic
weights from the proteins in a localization site. A topic is
identified as showing preference to a localization site if
its localization-topic preference is larger than the other
site. For nuclear localization prediction, we divide the
proteins into two categories, and select 10 top preferred
topics for nuclear and non-nuclear proteins according to
localization-topic preference, respectively. To list
gapped-dipeptides of interest, for each topic, up to 20
(depending on the number gapped-dipeptides in the
topic) most frequent gapped-dipeptides are selected.
After that, we incorporate only the proposed gapped-
dipeptide signatures for nuclear and non-nuclear proteins
for predicting nuclear localization. We apply the pro-
posed gapped-dipeptide signatures to capture biological
properties and mimic translocation mechanisms of
nuclear translocation.

Evaluation measures

For predictive performance comparison, the same eva-
luation measures applied in other approaches [2-5] are
incorporated. Evaluation measures include sensitivity
(Sens), specificity (Spec), accuracy (Acc; also known as
success rate), and MCC defined in Equation (4), (5), (6),
and (7) below:

TP

Sensitivity = 4

ensitivity = o (4)
TN

Specificity = 5

pecificity IN 4+ FP (5)

Accuracy = (TP + TN) / N (6)

TP x TN — FP x FN

MCC =
V(TP + EN)(TP + FP)(TN + FP)(TN + FN)

7)
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ADA,

feature vectors.
A\

MPLDLYNTLT...
Smoothed PSSM encoding based on PSSM
generated fromh PSI-BLAST

ARNDCQEGHILKMFPSTWYV
1M -3-34-53-34-5-401-310-2-5-4-3-4-3-1
2P 2-3-3-1-3-1-1-14-24-225424-54-3
3L 4-5-6-6-4-3-5-6-535-540-5-5-3-4-3 2
4D -25-1-3-42-1-4 2-5-35-2-2-4-2 0-1 0-3
5L -4-5-6-6-4-5-6-6-444-501-5-5-3-4-3 3
8Y 4336634644332 4632284
7N 4-384-6-3-23-2-66-3-5-6-4-1-3-7-5-6
8T -2-3-1-3-1-3-3-4-3-4-4-1-4-4-4 4 6-5-4-2
9L 0-1-5-5-4-3-4-4-3-15-3 3 0-4-3-3-3-2-1
10T -1-3-1-1-4-2-3-2-1-4-3-1-3-4-4 3 6-5-4-3

Gapped-—Dipep@{epresentation
A1A, A2A, A3A, A4A, ABA, ---,

{0.81396, 0.78755, 0.788206, 0.799535, 0.784058, 0.742093,---,0.437457}

PLSI Reduction

e

{0.012103, 0.014095, 0.015480, 0.018894,---,0.003121}

=

Support Vector Machines (SVM)

=

Nuclear/ non-Nuclear Protein?

Figure 3 System architecture of PSLNuc. System architecture of PSLNuc based on support vector machines using reduced/transformed

J

where TP, TN, FP, FN, and N represent the number of
true positives, true negatives, false positives, false nega-
tives, and total number of protein sequences, respectively.

For an objective comparison with other approaches that
use five-fold cross-validation, we also apply five-fold
cross-validation to evaluate our predictive performance.
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Additional material

Additional file 1: Data sets. The protein sequences in the benchmark
data sets used for training and testing are listed as supplementary data.

Acknowledgements

We thank Hua-Sheng Chiu and Allan Lo for helpful suggestions and
computational assistance. The research was supported in part by Taipei
Medical University under grant TMU98-AE1-BO5 and National Science
Council under grant NSC99-2218-E-038-002 and NSC100-2221-E-038-012 to
Emily Chia-Yu Su. JMC is funded by “la Caixa" pre-dotocorl fellowship and
the Centre de Regulacio Genomica (CRG), the Plan Nacional (BFU2008-
00419) from the Spanish Ministry of Science.

This article has been published as part of BMC Bioinformatics Volume 13
Supplement 17, 2012: Eleventh International Conference on Bioinformatics
(InCoB2012): Bioinformatics. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/13/517.

Author details

'Graduate Institute of Biomedical Informatics, Taipei Medical University,
Taipei, Taiwan. “Comparative Bioinformatics, Bioinformatics and Genomics,
Centre for Genomic Regulation (CRG), Barcelona, 08003, Spain. 3Universitat
Pompeu Fabra (UPF), Barcelona, 08003, Spain. “Bioinformatics Lab,, Institute
of Information Science, Academia Sinica, Taipei, Taiwan.

Authors’ contributions

ECYS developed the method, carried out the computational predictions, and
drafted the manuscript. JMC and CWC participated in the experimental
design and supplied additional insights regarding the analyses. TYS and
WLH refined the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 13 December 2012

References

1. Macara IG: Transport into and out of the nucleus. Microbiol Mol Biol Rev
2001, 65(4):570-594, table of contents.

2. Cokol M, Nair R, Rost B: Finding nuclear localization signals. EMBO Rep
2000, 1(5):411-415.

3. Brameier M, Krings A, MacCallum RM: NucPred-predicting nuclear
localization of proteins. Bioinformatics 2007, 23(9):1159-1160.

4. Hawkins J, Davis L, Boden M: Predicting nuclear localization. J Proteome
Res 2007, 6(4):1402-1409.

5. Kumar M, Raghava GPS: Prediction of nuclear proteins using SVM and
HMM models. BMC Bioinformatics 2009, 10:22.

6. Guda C, Fahy E, Subramaniam S: MITOPRED: a genome-scale method for
prediction of nucleus-encoded mitochondrial proteins. Bioinformatics
2004, 20(11):1785-1794.

7. Nguyen Ba AN, Pogoutse A, Provart N, Moses AM: NLStradamus: a simple
Hidden Markov Model for nuclear localization signal prediction. BMC
Bioinformatics 2009, 10:202.

8. la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S: Analysis and
prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 2004,
17(6):527-536.

9. Scott MS, Troshin PV, Barton GJ: NoD: a nucleolar localization sequence
detector for eukaryotic and viral proteins. BMC Bioinformatics 2011,
12:317.

10.  Huang WL, Tung CW, Huang HL, Hwang SF, Ho SY: ProLoc: prediction of
protein subnuclear localization using SVM with automatic selection from
physicochemical composition features. Biosystems 2007, 90(2):573-581.

11. Lei Z Dai Y: An SVM-based system for predicting protein subnuclear
localizations. BMC Bioinformatics 2005, 6:291.

12. Lei Z, Dai Y: Assessing protein similarity with Gene Ontology and its use
in subnuclear localization prediction. BMC Bioinformatics 2006, 7:491.

Page 10 of 10

13. Shen HB, Chou KC: Nuc-PLoc: a new web-server for predicting protein
subnuclear localization by fusing PseAA composition and PsePSSM.
Protein Eng Des Sel 2007, 20(11):561-567.

14.  Su EC, Chiu HS, Lo A, Hwang JK, Sung TY, Hsu WL: Protein subcellular
localization prediction based on compartment-specific features and
structure conservation. BMC Bioinformatics 2007, 8:330.

15.  Christophe D, Christophe-Hobertus C, Pichon B: Nuclear targeting of
proteins: how many different signals? Cell Signal 2000, 12(5):337-341.

16.  Chang JM, Su EC, Lo A, Chiu HS, Sung TY, Hsu WL: PSLDoc: Protein
subcellular localization prediction based on gapped-dipeptides and
probabilistic latent semantic analysis. Proteins 2008, 72(2):693-710.

17. Hofmann T: Unsupervised learning by probabilistic latent semantic
analysis. Mach Learn 2001, 42(1-2):177-196.

18. Cheng CW, Su EC, Hwang JK Sung TY, Hsu WL: Predicting RNA-binding
sites of proteins using support vector machines and evolutionary
information. BMC Bioinformatics 2008, 9(Suppl 12):S6.

19. Hua S, Sun Z: Support vector machine approach for protein subcellular
localization prediction. Bioinformatics 2001, 17(8):721-728.

20. Yu CS, Lin CJ, Hwang JK: Predicting subcellular localization of proteins for
Gram-negative bacteria by support vector machines based on n-peptide
compositions. Protein Sci 2004, 13(5):1402-1406.

21, Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W,

Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research 1997, 25(17):3389-3402.

22, Jones DT: Protein secondary structure prediction based on position-
specific scoring matrices. J Mol Biol 1999, 292(2):195-202.

23, Chang CC, Lin CJ: LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2011, 2(27).

24. Wu TF, Lin CJ, Weng RC: Probability estimates for multi-class classification
by pairwise coupling. J Mach Learn Res 2004, 5:975-1005.

doi:10.1186/1471-2105-13-517-S13

Cite this article as: Su et al.. Prediction of nuclear proteins using nuclear
translocation signals proposed by probabilistic latent semantic
indexing. BMC Bioinformatics 2012 13(Suppl 17):513.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BioMed Central



http://www.biomedcentral.com/content/supplementary/1471-2105-13-S17-S13-S1.rar
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S17
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S17
http://www.ncbi.nlm.nih.gov/pubmed/11729264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11258480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17332022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17332022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17319708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19152693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19152693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19563654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19563654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15314210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15314210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21812952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21812952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17291684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17291684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17291684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16336650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16336650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17993650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17993650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17825110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17825110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17825110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10822175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10822175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18260102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18260102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18260102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11524373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11524373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493868?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Introduction
	Previous works
	Challenges
	Our contributions

	Results and discussion
	Data sets
	Predictive performance on benchmark data sets
	Proposed gapped-dipeptide signatures correspond well with known nuclear translocation signals
	Gapped-dipeptide signatures better discriminate nuclear and non-nuclear proteins

	Conclusions
	Methods
	Feature representation - gapped-dipeptides as words of proteins
	Feature weighting - homology information from position-specific scoring matrix
	Standard position-specific scoring matrix
	Smoothed position-specific scoring matrix
	TFsmoothPSSM weighting scheme

	Feature reduction - probabilistic latent semantic indexing
	Probabilistic latent semantic indexing
	Probabilistic latent semantic indexing training and testing
	Feature reduction by probabilistic latent semantic indexing

	System architecture
	Nuclear protein prediction based on proposed translocation signals
	Evaluation measures

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

