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Abstract

Statistical model checking techniques have been shown to be effective for approximate model checking on large
stochastic systems, where explicit representation of the state space is impractical. Importantly, these techniques
ensure the validity of results with statistical guarantees on errors. There is an increasing interest in these classes of
algorithms in computational systems biology since analysis using traditional model checking techniques does not
scale well. In this context, we present two improvements to existing statistical model checking algorithms. Firstly,
we construct an algorithm which removes the need of the user to define the indifference region, a critical
parameter in previous sequential hypothesis testing algorithms. Secondly, we extend the algorithm to account for
the case when there may be a limit on the computational resources that can be spent on verifying a property; i.e,
if the original algorithm is not able to make a decision even after consuming the available amount of resources,
we resort to a p-value based approach to make a decision. We demonstrate the improvements achieved by our
algorithms in comparison to current algorithms first with a straightforward yet representative example, followed by
a real biological model on cell fate of gustatory neurons with microRNAs.

Introduction
Model checking is an automated method to formally verify
a system’s behavior. It is a technique widely used to vali-
date logic circuits, communication protocols and software
drivers [1]. Usually, the system to be analyzed is encoded
in a specification language suitable for automated explora-
tion, and the properties to be verified are specified as for-
mulas in temporal logics. Given a model of the system and
a temporal logic formula, the model checker systematically
explores the state space of the model to check if the speci-
fied property is satisfied. If the property holds, the model
checker returns the value true; otherwise, the model
checker returns a false value, with a counter example of a
specific trace of the system where the property failed.
Recently there have been efforts to apply model check-

ing in computational systems biology [2-7]. In this context,
probabilistic models – such as Discrete Time Markov

Chain (DTMC) or Continuous Time Markov Chain
(CTMC) – are often used and, properties are expressed
with specialized probabilistic temporal logics that quantify
the properties with probability. We refer to this as
probabilistic model checking.
Usually probabilistic model checking is solved using

numerical solution techniques, and typically involves itera-
tively computing the exact probability of paths satisfying
appropriate sub-formulas. There are several efficient opti-
mizations to represent the state space of these models
compactly, and to traverse the state space efficiently. How-
ever, they are usually very memory intensive and do not
scale well to large stochastic models. Hence, approximate
methods for solving such problems are often used. One
such class of methods, known as statistical model checking,
relies on using, as the name suggests, statistical techniques
to perform model checking. It is based on simulating a
number of sample runs of the system and, subsequently,
deciding whether the samples provide enough evidence to
suggest the validity or invalidity of the property specified
as a probabilistic temporal logic formula [8].
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Statistical model checking is based on the crucial
observation that it may not be necessary to obtain an
absolute accurate estimate of a probability in order to
verify probabilistic properties. For example, to verify if
the probability of a random variable exhibiting a certain
behavior is greater than θ, it is not necessary to com-
pute the exact probability of the property (p) to hold;
instead, it is enough if we infer, by sufficiently sampling
the underlying model, that the probability is safely
above or below θ. Approaches based on statistical model
checking are proven to be scalable, since they are not
dependent on constructing and traversing the full state
space of the model. Additionally, they have a low time
complexity, require low memory, and are tunable to the
desired accuracy. These factors make them ideal for per-
forming analysis on large complex stochastic systems.
Since computational pathway models are typically

large complex stochastic models, our focus in this paper
is on the statistical model checking problem. A standard
version of statistical model checking, which is the one
we focus on in this paper, is called sequential hypothesis
testing [9,10]. The success of this approach depends lar-
gely on a user-defined parameter called the indifference
region. The choice of the indifference region dictates
the number of samples necessary to verify the property
and the outcome of the verification task. Consequently,
it will be helpful to have a method of specifying the
indifference region that does not solely depend on the
user-input.
Furthermore, when the true probability of the property

is very close to the probability specified in the formulas, a
large number of simulations is needed to validate or invali-
date the property. Maintaining an optimal balance
between computational effort and precision is important.
It may well be the case with existing algorithms that, to
satisfy the specified error bounds, a large number of sam-
ples are drawn. In such cases, it will be useful to return a
reasonable answer once a pre-specified amount of compu-
tational resources have been consumed while the statistical
test required is unable to make a decision yet.
To address these issues, we propose optimized

sequential hypothesis testing algorithms which 1) do not
need the user to provide the indifference region para-
meter; 2) adjusts to the difficulty of the problem, i.e. the
distance between p (the true probability) and θ (prob-
ability dictated by the property) dynamically; 3) always
provides a definite true or false result, i.e, does not
return the undesirable undecided result (or “I do not
know” response).

Related work
Existing works on statistical model checking can be clas-
sified based on whether the probabilistic system is a

black-box or a white-box system. A white-box system
allows generation of as many trajectories of the system
as desired. In a black-box system, only a fixed number
of trajectories is available and, using which a decision
has to be made. We establish the basic concepts and
terminologies to be used in the rest of the paper in this
section. Formally, probabilistic model checking refers to
the problem of verifying if M = PrΔθ{ψ}, Δ Î {≤, ≥, >, <};
i.e, given a probabilistic model M, and a property ψ
encoded in a probabilistic temporal logic formalism,
check whether ψ holds in M with probability dictated by
Δ w.r.t to θ.

Black-box systems
Statistical model checking on black-box systems is based
on calculating a p-value that quantifies the statistical evi-
dence of satisfaction or rejection of a hypothesis using
the set of samples given [11,12]. Sen et al gives an algo-
rithm for black box systems which quantifies the evi-
dence of satisfaction of the formula by a p-value [11].
The problem is formulated as solving two separate
hypothesis tests (H0: p <θ against H1: p ≥ θ). If ∑ xi/n ≥ θ
(where xi is 1 if the ith sample satisfies ψ and 0 if it does
not), H0 is rejected, the formula is declared to hold, and
the p-value is calculated. If the test does not reject H0
then a second experiment is conducted, with H0: p ≥ θ
against H1: p < θ. If ∑ xi/n < θ, H0 is rejected, the for-
mula is declared false, and the corresponding p-value is
calculated. The smaller the p-value, the greater is the
confidence in the decision.
Younes also discusses an algorithm for black box sys-

tems using a modified version of single-sampling plan
with p-value [13]. Younes proposes the single-sampling-
based hypothesis testing algorithm where the number of
samples n is decided upfront. The model checking pro-
blem is formulated as a hypothesis test with the null
hypothesis H0: p ≥ θ against the alternate hypothesis H1: p
< θ, a constant c is also specified that decides the number
of samples that should evaluate to true to accept the null
hypotheses. Let Xi be a Bernoulli random variable with
parameter p such that Pr[Xi = 1] = p and Pr[Xi = 0] = 1 -
p. An observation/sample of Xi, represented as xi, states
whether the specified temporal logic formula is true or
false for a particular observation. For example, in this case,
xi is 1 if the ith sample satisfies ψ and 0 if it does not. The
strength of the hypothesis test is decided by parameters a
and b, which represent the probability of false negatives
(Type-1 error) and false positives (Type-2 error) respec-
tively. If

∑n
i=1 xi > c then the hypothesis H0 is accepted;

else H1 is accepted. The main challenge is to find the pair
〈n, c〉 which obey the error bounds 〈a, b〉. Younes
describes an algorithm based on binary search to find the
pair 〈n, c〉 that obeys the bounds [13].
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White-box systems
Model checking on white-box systems can be classified
into those which are based on either statistical estima-
tion or hypothesis testing. Statistical estimation based
methods rely on getting an estimate of the true prob-
ability, p, and comparing it with θ (dictated by the tem-
poral logic formula) to make a decision [14]. Algorithms
based on hypothesis testing formulate the model check-
ing problem into a standard hypothesis test between a
null and alternate hypothesis. Using techniques devel-
oped for solving hypothesis testing problems, a decision
is made about the satisfiability of the property. Methods
based on hypothesis testing can be further subdivided
into two different approaches – those that rely on
Frequentist statistical procedures [9,10]; and those that
use Bayesian statistical procedures [15,16].
Bayesian methods have the advantages of smaller

expected sample sizes and ability to incorporate prior
information. However, Bayesian methods are generally
more computationally expensive than their frequentist
counterpart due to the requirement to produce a poster-
ior distribution [17]. In Bayesian methods, the degree of

confidence is indicated via a parameter called, Bayes fac-
tor threshold, whereas frequentist methods use error
bounds (Type-1 (a) and Type-2 (b) error). To say one is
better than the other would be going into the old debate
between Frequentist and Bayesian statistics. However,
we prefer the frequentist approach since it allow us to
explicitly state the error bounds, which is more intuitive
to us.

Frequentist statistical model checking
Younes and Simmons formulate the probabilistic model-
checking problem as a sequential hypothesis-testing pro-
blem. Here, we call their algorithm Younes A [9], which
is as follows: To verify a formula of the form Pr≥θ {ψ}, a
hypothesis test is setup between a null hypothesis H0:
p ≥ θ + δ against the alternative hypothesis H1: p < θ -
δ. The factor δ represents the indifference region around
the threshold θ. This is represented in Figure 1. Algo-
rithms based on sequential hypothesis testing need
input parameters a, b, δ which specify the Type-1,
Type-2 error bounds and the indifference region respec-
tively. These parameters help in controlling the number

Figure 1 Probability of accepting H0 : p ≥ θ + δ vs the actual probability of the formula holding (adapted from [13]).
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of samples and guaranteeing the desired error rates. For
a fixed value of a and b, δ decides the number of sam-
ples needed to verify a property. It is inversely propor-
tional to the number of samples required; i.e., the
smaller δ is, the more samples are needed. Also, the
smaller δ is, the lesser is the probability of p being in
the region [θ - δ, θ + δ]. δ is a user-defined parameter
whose choice is problem specific and usually involves
iterative tuning. Hence, deciding the optimal value of δ
affects the practical applicability of these algorithms. A
sequential sampling algorithm based on Wald’s sequen-
tial probability test is used to solve the hypothesis test-
ing problem. After taking the nth sample from the
model, the factor fn is calculated as,

fn =
n∏
i=1

Pr
[
Xi = xi|p = θ − δ

]
Pr

[
Xi = xi|p = θ + δ

] =
[θ − δ](

∑n
i=1 xi)[1 − [θ − δ]](n−

∑n
i=1 xi)

[θ + δ](
∑n

i=1 xi)[1 − [θ + δ]](n−
∑n

i=1 xi)
(1)

Hypothesis H0 is accepted if fn ≤ B; Hypothesis H1 is
accepted if fn ≥ A; and if B < fn < A, another sample is
drawn. The constants A and B are chosen so that they
result in a test of strength 〈a, b〉. In practice, to satisfy the

strength dictated by 〈a, b〉 choose A =
1 − β

α
and

B =
β

1 − α
. The algorithm satisfies the error bounds 〈a, b〉

only when the true probability does not lie in the indiffer-
ence region, which is an issue.
To address this issue, Younes discusses a modified algo-

rithm (Algorithm 1), which we call Younes B here, that
bounds the error for cases when the true probability lies in
the indifference region by introducing a factor (g), which
allows and controls the probability of undecided results
(when the true probability is within the indifference
region) [10]. Younes B uses two acceptance sampling tests:

H0 : p ≥ θ against H1 : p < θ − δ with strength 〈α, γ 〉
H0′ : p ≥ θ + δ against H1′ : p < θ with strength 〈γ ,β〉

Pr≥θ{ψ} is reported as true when both H0 and H0’ are
accepted. It is reported as false when both H1 and H1’ are
accepted. Otherwise, the results is reported as undecided.
It is not meaningful to distinguish between Pr>θ{ψ} and
Pr≥θ{ψ}; and Pr>θ{ψ} can essentially be written as Pr≥θ{ψ}.
Therefore, it is sufficient to present on this case, Pr≥θ{ψ}.
Algorithm 1 ORIGINAL YOUNES B (θ, δ, a, b, g)

n ← 0, d ← 0;

A1 ← log
1 − γ

α
;
{
Accept H1 if fn > A1

}
B1 ← log

γ

1 − α

{
Accept H0 if fn < B1

}
A2 ← log

1 − β

γ
;
{
Accept H1′ if f ′

n > A2
}

B2 ← log
β

1 − γ
;
{
Accept H0′ if f ′

n < B2
}

repeat
n ¬ n + 1; {Generates a new sample}
if (xn = = 1) then
d ¬ d +1;

end if

fn ← d log
θ − δ

θ
+ (n − d) log

1 − (θ − δ)

1 − θ
;

f ′
n ← d log

θ

θ + δ
+ (n − d) log

1 − θ

1 − (θ + δ)
;

until!
((
B1 < fn < A1

) || (B2 < f ′
n < A2

))
if

((
fn < B1

)
&&

(
f ′
n < B2

))
then

Return TRUE; {p ≥ θ}
else if

((
fn > A1

)
&&

(
f ′
n > A2

))
then

Return FALSE; {p ≱ θ}
else
Return UNDECIDED;

end if
xn is the outcome of the nth sample, 1 if true else 0

a is the Type I error
b is the Type II error

Optimized Statistical Model checking algorithm (OSM)
As discussed earlier, we aim to remove the manual selec-
tion of the indifference region parameter. The rationale
behind this is because, while the parameter is critical to
the success of previous sequential hypothesis testing algo-
rithms, it is very difficult for the user to select a suitable
value. We combine ideas from the realms of verifying
white box and black box to produce an algorithm that is
practically superior. The essence of our proposed algo-
rithms is similar to Younes B’s two-acceptance-sampling-
tests approach but, we make several critical changes which
enhance them significantly. We describe our algorithm in
the following subsections.

Adjusting δ automatically
Instead of having to specify a difficult-to-determine
indifference region (explained in detail later), we first
assume it to be 1:0, which is the largest possible value.
We start with a large δ because, the larger δ is, the
fewer samples we need. We then proceed with using
two simultaneous acceptance-sampling tests just like
[10]. However, the crucial difference is that, whenever
an undecided result is returned by the algorithm, we
reduce δ by half and check whether 1) a definite result
can be given, 2) another sample is needed, or 3) a
further reduction is required. We continue this process
until a definite result is produced. The details are given
in Algorithm 2.
Algorithm 2 OSM A (θ, a, b)
δ ¬ 1, g ¬ min (a, b), n ¬ 0, d ¬ 0;
while (true) do
(n, d, y) ¬ Incremental Younes B(θ, δ, a, b, g, n, d);
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if ((y = = TRUE) || (y = = FALSE)) then
Return y;

else
δ ¬ δ/2; {Undecided with current δ, halve it}

end if
end while
FunctionIncremental Younes B(θ, δ, a, b, g, n, d);

A1 ← log
1 − γ

α
;
{
Accept H1 if fn > A1

}
B1 ← log

γ

1 − α

{
Accept H0 if fn < B1

}
A2 ← log

1 − β

γ
;
{
AcceptH1′ if f ′

n > A2
}

B2 ← log
β

1 − γ
;
{
Accept H0′ if f ′

n < B2
}

repeat
n ¬ n + 1; {Generates a new sample}
if (xn = = 1) then
d ¬ d +1;

end if

fn ← d log
θ − δ

θ
+ (n − d) log

1 − (θ − δ)

1 − θ
;

f ′
n ← d log

θ

θ + δ
+ (n − d) log

1 − θ

1 − (θ + δ)
;

until!
((
B1 < fn < A1

) || (B2 < f ′
n < A2

))
if

((
fn < B1

)
&&

(
f ′
n < B2

))
then

Return (n, d, TRUE); {p ≥ θ}
else if

((
fn > A1

)
&&

(
f ′
n > A2

))
then

Return (n, d, FALSE); {p ≱ θ}
else
Return (n, d, UNDECIDED);

end if
xn is the outcome of the nth sample, 1 if true else 0
a is the Type I error
b is the Type I error
n is the number of samples
d is the number of samples satisfying ψ

Our algorithm (OSM A) has three advantages over
previous works. First, a predetermined user-defined
indifference region δ is not required. Secondly, the num-
ber of samples required adjusts automatically to the dif-
ficulty of the problem, i.e., depending on how close p is
to θ, by starting with the largest possible indifference
region. Finally, our algorithm always gives a definite
result if sufficient samples are given and, that result is
guaranteed to be error bounded.
However, if p is very close to θ, the indifference region

needs to be reduced to a very small value such that δ <
|p - θ|. If δ is very small, the sample size required to
determine a result will be very large or, in the worst
case where p = θ, this algorithm will not terminate.

Therefore, while such an algorithm is superior in theory,
it may be limited in some situations in practice. Hence,
in sub-section, we further improve this algorithm by set-
ting a limit on the sample size. This will ensure that
the program completes in a user-acceptable runtime to
handle such unlikely but possible situations.
The ability of OSM A to control errors is obviously

dependent on Younes B algorithm’s ability to control
them. Therefore, interested readers are referred to [10]
where they provide proofs for the strength of two accep-
tance sampling tests. In this paper, we empirically
demonstrate in section that OSM A consistently has the
ability to control errors in various settings.
Based on Algorithm 2, as OSM A repeatedly calls Incre-

mental Younes B, it would require much more samples to
be generated than Younes B. However, that is not true.
This is because OSM A reuses samples from previous
iterations (with a different δ) instead of starting from
scratch with each call. Therefore, the number of samples
needed to be generated by OSM A is actually the same as
Younes B given the same θ, a, b, g and δ. It is possible to
reuse samples from different iterations because, given the
same θ, a, b, and g if the Younes B algorithm running at a
larger value of δ terminated at a value of n but returned
UNDECIDED, then the Younes B algorithm running at a
smaller value of δ would not terminate and return TRUE/
FALSE at that same value of n (though it would terminate
at a higher value of n and return a TRUE/FALSE/UNDE-
CIDED answer) (Figure 2).

Limiting the number of samples
By limiting the sample size, we can bound the runtime
of the program but we may not be able to bound the
error rates. Therefore, we compute a p-value to serve as
a measure of the confidence of the result. The modified
algorithm is as follows. As before, we first assume δ to
be the largest possible, i.e., 1:0. Then we proceed using
two simultaneous acceptance-sampling tests and, when-
ever an undecided result is given, we reduce δ by half
and check whether 1) a definite result can be given, 2)
another sample is needed, or 3) a further reduction is
required. We continue this process until a definite result
is given or when the sample size limit is reached. If a
definite result is reached before the sample size limit,
then the error rate is guaranteed to be bounded. Other-
wise, if the sample size limit is reached, we compute the
p-value for both hypotheses H0: p ≥ θ and H1: p < θ,
and accept the hypothesis with the lower p-value. The
p-values are computed using the method presented in
[12] – viz., the p-value for H0 is 1 - F(d; n, θ) and the
p-value for H1 is F(d; n, θ), where d is the number of
successes (or true), n is the total number of samples,
and F(d; n, θ) is the Binomial cumulative distribution
function,
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F (d;n, θ ) =
d∑
i=0

(
n

i

)
θ i(1 − θ)n−1 (2)

With this, we have developed an algorithm that 1)
does not require the user to predetermine a suitable
indifference region, 2) is guaranteed to bound specified
Type-1 and Type-2 errors if sufficient samples can be
generated, and 3) terminates and returns a confidence
measure even in the rare event when p is extremely
close to or equal to θ. We call the above algorithm
OSM B.
In the next section, we demonstrate the superiority of

our proposed algorithms against current state-of-art,
first with a straightforward yet representative example
followed by applying to a real biological model.

Results
For a fair comparison across different algorithms, we
need to define the performance measures of interest. In
model checking, simulation runs are typically the most
computationally expensive and obtaining accurate con-
clusions about the model is of paramount importance.
Therefore, the most desirable situation would be to
obtain accurate conclusions of the model’s behavior
with the minimum number of simulation runs. As such,
we use error rates and simulation runs (or samples)
required of each algorithm as the basis for judging
superiority in our comparison.

Simple model
Here, we use a simple uniform random generator that
produces real numbers in the range of [0, 1] as our
probabilistic simulation model. Suppose the property
that we are testing is whether p ≥ θ, and we fixed p (the
true probability) to 0.3. To generate a sample, we use
the uniform random generator to generate a random
number and, the sample is treated as a true sample if
and only if the generated value is lesser than p. We vary
θ from [0.01, 0.99] (except p which is 0.3) with an inter-
val of 0.01 and set δ to be 0.05 and 0.025 for Figure 3a, b
and 3c, d respectively. For each setting, the experiments
are repeated 1000 times with a (Type-1 error rate) and b
(Type-2 error rate) of 0.01. We also limit the sample size
for OSM B to be 3000.
Figure 3 shows how critical and difficult the selection

of δ is for Younes A and Younes B. Too large, the error
and undecided rates within the wide indifference region
are unbounded and high (Figure 3a). On the other hand,
if δ is too small, then the number of samples required
grows rapidly in the indifference region (Figure 3d).
Indeed, if a suitable δ can be chosen for Younes A and

Younes B, the error rate is bounded and minimum sam-
ples are used. However, it is a difficult task to choose an
ideal δ that balances the samples required and the error
rates unless one has a good estimate of p (the true prob-
ability), which is unrealistic.
Furthermore, it should be noted that the Younes A

algorithm does not provide information on whether the

Figure 2 Log2 expected value of n at which the Younes B algorithm terminates and returns a TRUE/FALSE/UNDECIDED answer for
different values of δ (0.02, 0.05 and 0.1) at varying θ with a = 0.01, b = 0.01, g = 0.01 and p = 0.7. This figure demonstrates that with
decreasing δ, the expected n increases.
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error rate is bounded or not, i.e., whether p is within or
outside the indifference region. This implies that the
user may come to a false conclusion that the result is
bounded with a certain error rate when it is actually not
(Figure 3a and 3c).
While Younes B algorithm does indeed always bound

the error rate when a definite result is given, it comes at
the expense of a large number of undecided results
when p is inside the indifference region. This means the
algorithm uses up computational resources and, in the
end, returns an undecided result, which is undesirable.
Our proposed algorithm (OSM A) overcomes all these

problems. First, the tough decision of choosing the
indifference region is not required as the algorithm does
do so dynamically and error rates are always bounded
(Figure 3a and 3c). However, OSM A has a limitation in
that it requires rapidly increasing number of samples as
θ closes in on p (Figure 3b and 3d).
OSM B removes this limitation by limiting the number

of samples and ensures termination (Figure 3b and 3d).
We should note that whenever OSM B returns a definite

answer, the error is guaranteed to be bounded and, when
the sample limit is reached, a confidence measure
(p-value) is given. Therefore, it is clear to the user when a
result is guaranteed to be error bounded and when it is
not.

Cell fate model of gustatory neurons with microRNAs
Next, we perform model checking on the cell fate determi-
nation model of gustatory neurons of Caenorhabdities ele-
gans [18]. This model studies the regulatory aspects
mediated by miRNA’s on the ASE cell fate in C.elegans
and focuses on a double negative feedback loop which
determines the cell fate (Figure 4). A precursor cell state
have equivalent potential to transit into the stable ASEL
or ASER terminal state. While ASEL and ASER are physi-
cally asymmetric, they are morphologically bilaterally sym-
metric. It is believed that the cell fate (ASEL or ASER) is
controlled by miRNA (lsy-6 and mir-273) in the double
negative feedback loop. The computational model con-
tains 22 entities (RNA or protein) and 27 processes (biolo-
gical reactions). We first use a property from [7], where it

Figure 3 Plots a & b are with an indifference region of 0.05 whereas c & d are with an indifference region of 0.025 for the small
synthetic model.
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validates that the concentration of LSY-2 in the nucleus
will never increase if it has risen and fallen once pre-
viously, to illustrate the technical superiority of our pro-
posed algorithms even in real biological examples. We will
then discuss its practical implication in the next section.
As before, we vary θ from [0.01, 0.99] (except p which

is estimated to be 0.25) with an interval of 0.01 and set
δ to be 0.05 and 0.025 for Figure 5a, b and 5c, d respec-
tively. For each setting, the experiments are repeated
1000 times with fixed a (Type-1 error rate) and b
(Type-2 error rate) of 0.01. We again limit the sample
size for OSM B to be 3000. Using a separate experiment
of 10,000,000 simulation runs, we had estimated that
the true probability, p, of this property to be 0.25 (in the
10 million run results, approximately 25% of them satis-
fied the property).
Figure 5 again demonstrates the superiority of our

proposed algorithms over current state-of-the-art. To
give an even clearer picture of the advantages of our
algorithm, we shall look at the cross-section of a few
crucial data points (Table 1).
Firstly, when θ is distant from p, the problem is easy.

Ideally, algorithms should use minimum amount of
samples while maintaining the error bound. In Table 1,
at θ = 0.5, although all algorithms kept well within the
error bounds but Younes A and B both requires much
more samples than OSM A and B on average.
As θ approaches p, understandably more samples

would be required to make an accurate conclusion. In

these situations, the priority would typically still be to
ensure error rates are under control while not using an
exorbitant number of samples. Based on Table 1, at θ =
0.28, error rate of Younes A and B are dependent on
the choice of δ. If user is able to choose δ to be 0.025,
errors are low (Younes A made 2 errors while Younes B
made no error) but if user made a wrong choice, δ =
0:05, it would be disastrous (Younes A made 54 errors
while Younes B made 254 errors/undecided). Since δ is
not a parameter for OSM A and B, their performance
are consistent, with error rates within 1% (or 10 errors
in 1000 runs) and average sample size around 2000.
In the event where θ is extremely close to (or equal) p,

it is hard (or impossible) to accurately decide unless we
have huge (or infinite) samples. Therefore, one could
only choose between high accuracy or minimum sam-
ples. Our proposed algorithms are useful each in one
situation. If high accuracy is desired by the user, OSM
A is suitable. As shown in Table 1, θ = 0.26, OSM A is
constantly keeping errors close to 1% or 10 errors. If
computation limitation is of concern to the user, OSM
B could be used to maintain sample size limit. Younes
A seems to perform better than OSM B, since it uses
less samples and have relatively similar errors. However,
it is important to note that this is actually not true
because, when OSM B could not guarantee the error
rate, it returns a p-value (107 errors are made by
p-value), instead of the typical true or false conclusion,
which would alert the user to be cautious. In contrasts,

Figure 4 Summary of the ASE pathway model. Four regulatory factors lsy-6, cog-1, die-1 and mir-273 form a double-negative feedback loop
which determines whether the cells will be ASEL or ASER. In ASEL cells, flp-20, flp-4, gcy-6 and gcy-7 (coded in blue) are expressed, whereas in
ASER cells, gcy-5, gcy-22 and hen-1 (coded in red) are expressed [18].
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Younes A does not have such differentiation and might
mislead user to trust its decision. Furthermore, the
value of each resulting p-value can be used as another
red flag, as OSM B tends to be correct when the
p-value is small and incorrect when the p-value is large
(Figure 6). As for Younes B, it is even worse, it would
run thousands of simulations and give undecided con-
clusion, which is not very useful, up to 93.7% of the
time.

Practical implications
In the previous few sections, we have shown the super-
iority of our algorithms from a technical standpoint. In
this section, we discuss the practical implications of our
algorithms. In particular, we use model checking to ver-
ify two behaviors of the ASE pathway model.

Equivalent potential to transit into ASER or ASEL
One important application of model checking is using it
to ensure that the created simulation model exhibits
behaviors that are widely accepted. In literature, it is sta-
ted that a precursor ASE cell state should have equiva-
lent potential to transit into stable ASER or ASEL.
Therefore, we need to first ensure that the ASE pathway
model created exhibits this behavior before we can
deem the model to be correctly built and utilize it to
perform any downstream analysis.
Suppose we accept equivalent potential to be between

45% and 55%, which means the simulation model should
transit into ASER or ASEL with a probability of 0.45 to
0.55. Translating this to model checking language would
mean that ASER terminal cell fate markers (such as gcy5)
should be more abundant than ASEL terminal cell fate

Table 1 Cross-section of Figure 5

Average Sample Size Total Errors/Undecided

Θ δ Younes A Younes B OSM A OSM B Younes A Younes B OSM A OSM B (P-Value)

0.5 0.05 45.9 102.5 34.1 34.1 0 0 0 0

0.025 92.0 194.4 0 0

0.28 0.05 288.8 1560.7 2063.0 1807.6 54 254 5 5

0.025 614.5 2091.4 2 0

0.26 0.05 393.8 1176.2 18832.7 2784.7 324 937 7 7 (107)

0.025 1316.6 6179.6 129 738

Cross-section of Figure 5 where θ = (0.5, 0.28 and 0.26). At θ = 0.26, total errors made by OSM B is 114 out of which 107 is due to p-value (sample limit reached).

Figure 5 Plots a & b are with indifference region of 0.05 whereas c & d are with indifference region of 0.025 for the cell fate model.
As expected, this figure looks identical to Figure 3 as these algorithms do not make assumptions on the underlying stochastic model.
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markers (such as gcy6) after some simulation time with a
probability of 0.45 to 0.55. More formally, the PLTLs for-
mat would be P ≥ 0.45G([gcy5] > [gcy6]) {[time] > 300}
AND P ≤ 0.55G([gcy5] > [gcy6]) {[time] > 300}. Readers
unfamiliar with temporal logics and model checking in
systems biology can find the relevant background materi-
als in [19-21].
By using a separate, computationally expensive experi-

ment of 10,000,000 simulation runs, we found that the
ASE model transits into ASER and ASEL with approxi-
mately 46% and 54% probability respectively. Therefore,
the correct conclusion to be given by the algorithms
should be to accept that the model as correct.
Assuming that a user wants the error rate to be

around 1% (a = 0.01 b = 0.01), and has chosen δ to be
0.025. Table 2 shows that there is a 13.1% probability
that Younes A incorrectly rejects the model while there
is a 70.3% probability that Younes B replies with an
undecided response.
On the other hand, as shown in Table 2, OSM A only

gives a wrong conclusion with 1.2% probability. How-
ever, OSM A requires, on average, ≥ 23,000 simulation
runs to make a decision, which could be much more
than the available computational resources to the user.
In such cases, the user can still depend on OSM B
where it needs only about 2,800 simulation runs on
average, with only 1.2% probability of giving a wrong
conclusion. The rest of the 11.4% wrong decisions given

by OSM B is when computational resources are maxed
out and OSM B returns a p-value instead of the true or
false response. This should alert the user to be more
cautious of the conclusion.
lsy-2 in the nucleus will never increase if it has risen and
fallen once previously
Suppose that after validating the model, we are now
interested in investigating whether the ASE model exhi-
bits the following behavior: There is more than 28%
probability that the concentration of lsy-2 in the nucleus
will never increase if it has risen and fallen once pre-
viously. Translating this to PLTLs would be P ≥ 0.28((d
([lsy2N ]) > 0) U(G(d([lsy2N]) ≤ 0))).
Once again, by using a computationally expensive,

separate experiment of 10,000,000 simulation runs, we
have found that the model only exhibits this behavior
approximately 25% of the time. Therefore, the correct
conclusion to be drawn by the algorithms should be the
model does not exhibit this behavior more than 28% of
the time.
Assume a user wants the error rate to be around 1%

(a = 0.01 b = 0.01) and has chosen δ to be 0.05. This time,
there is a 5.4% probability that Younes A gives a wrong
conclusion while there is a 25.4% probability that Younes
B gives a wrong or undecided conclusion, whereas there is
only a 0.5% probability that OSM A and OSM B make a
wrong conclusion (Table 1). On the other hand, if the user
had chosen a smaller δ ( = 0.025), they would have been

Figure 6 P-value distribution of OSM B (from Figure 5) when θ = 0.26. Average p-value for OSM B_Correct is 0.147 whereas average p-
value for OSM B_Incorrect is 0.357.
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able to control the error rates (Table 1). Therefore, one
naive strategy would be to always choose an extremely
small δ that is close to 0. However, since the expected
number of samples of Younes A and Younes B are inver-
sely proportional to δ2 [13], such a strategy would have
required an exorbitant number of simulation runs.
In the two scenarios above, we have chosen different

values of δ for Younes A and Younes B. Unfortunately, it
was insufficient in both cases, causing Younes A and
Younes B to not perform well (i.e. keeping error rates
under control). This clearly shows that their success or fail-
ure depends heavily upon the value of δ and, in practice, it
is unrealistic to expect users to be able to provide a suitable
δ for every scenario. Therefore, eliminating the need for
users to decide on the value δ, and dynamically selecting
the optimal value depending on the situation, is a useful
practical solution as proposed in OSM A and OSM B.

Discussion
In this paper, we have presented two algorithms (OSM A
and OSM B) that are similar but serve different purposes.
OSM A is recommended when computational resources
are plentiful and/or bounding the error rates is a priority.
In the situation where computational resources are lim-
ited, OSM B is useful. While these algorithms are founded
upon a simple idea, the improvements over current state-
of-the-art algorithms are significant and practically useful.
Firstly, our algorithms do not require the critical, yet diffi-
cult to determine indifference region as an input para-
meter. Secondly, our algorithms adjust automatically to
the difficulty of the problem by dynamically halving the
indifference region, leading to using fewer samples when p
is far away from θ. Lastly, it always returns a definite
response to the user, which is either guaranteed to be
error bounded given sufficient samples or comes with a
confidence measure if computational resources are
limited.
Therefore, we foresee the usage of these algorithms to

be wide as there is no assumption or requirement of the
simulation model, allowing them to be applied to any
stochastic system analysis.
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