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Abstract

Background: When studying genetic diseases in which genetic variations are passed on to offspring, the ability to
distinguish between paternal and maternal alleles is essential. Determining haplotypes from genotype data is called
haplotype inference. Most existing computational algorithms for haplotype inference have been designed to use
genotype data collected from individuals in the form of a pedigree. A haplotype is regarded as a hereditary unit
and therefore input pedigrees are preferred that are free of mutational events and have a minimum number of
genetic recombinational events. These ideas motivated the zero-recombinant haplotype configuration (ZRHC)
problem, which strictly follows the Mendelian law of inheritance, namely that one haplotype of each child is
inherited from the father and the other haplotype is inherited from the mother, both without any mutation. So far
no linear-time algorithm for ZRHC has been proposed for general pedigrees, even though the number of mating
loops in a human pedigree is usually very small and can be regarded as constant.

Results: Given a pedigree with n individuals, m marker loci, and k mating loops, we proposed an algorithm that
can provide a general solution to the zero-recombinant haplotype configuration problem in O(kmn + k’m) time. In
addition, this algorithm can be modified to detect inconsistencies within the genotype data without loss of
efficiency. The proposed algorithm was subject to 12000 experiments to verify its performance using different (n,
m) combinations. The value of k was uniformly distributed between zero and six throughout all experiments. The
experimental results show a great linearity in terms of execution time in relation to input size when both n and m
are larger than 100. For those experiments where n or m are less than 100, the proposed algorithm runs very fast,
in thousandth to hundredth of a second, on a personal desktop computer.

Conclusions: We have developed the first deterministic linear-time algorithm for the zero-recombinant haplotype
configuration problem. Our experimental results demonstrated the linearity of its execution time in relation to the
input size. The proposed algorithm can be modified to detect inconsistency within the genotype data without loss
of efficiency and is expected to be able to handle recombinant and missing data with further extension.
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Background

A genetic disease is caused by the abnormality in an indi-
vidual’s genome. Genetic diseases have been studied
extensively for decades by investigating the connection
between diseases and genetic variations. In the human
genome, chromosomes come in pairs; each gene consists
of two alleles that reside in different chromosomes at the
same locus. One of the two alleles comes from the father
and the other comes from the mother. To study heredi-
tary diseases in which the genetic variations are passed
on to offspring, the ability to distinguish between pater-
nal and maternal alleles is essential. Unfortunately, the
haplotype structure of a human genome is not available
directly from the genotyping and the unordered genotype
data does not tell us which allele comes from which par-
ent. A haplotype is a collection of alleles at multiple loci
on a chromosome that tend to be inherited as a unit. The
determination of haplotypes from genotype data is called
haplotype phasing or haplotype inference. Algorithms for
haplotype inference are indispensable and have been
intensively studied.

The existing computational algorithms for haplotype
inference can be classified into statistical and combina-
torial and most of which were designed for genotype data
collected from individuals in the form of a pedigree. A
pedigree is a hierarchical structure that describes the par-
ent-child relationship among members of a family. Indi-
viduals without parents are called founders. There may
be cycles in a pedigree, which are referred to as mating
loops. A mating loop arises from a couple if they have
children and both of them are offspring of certain family
ancestors. An example of a pedigree, coupled with geno-
type data, is depicted in Figure 1(a); each allele is denoted
as 0 or 1 to represent its form within a gene. If two alleles
of a gene are the same, the locus is homozygous; other-
wise, it is heterozygous. A haplotype is regarded as a her-
editary unit and therefore an input pedigree is preferred
to be free of mutational events and to have minimum
number of genetic recombinational events [1]. Haplotype
inference under this assumption is referred to as the
minimum-recombinant haplotype configuration (MRHC)
problem, which requires the solving of the haplotype
structure of the input pedigree with the minimum num-
ber of recombination events [1]. Several algorithms have
been proposed to solve the MRHC problem [1-8]. A spe-
cial case of MRHC is zero-recombinant haplotype config-
uration (ZRHC) problem, which strictly follows the
Mendelian law of inheritance, namely that one haplotype
of each child is inherited from the father and the other
haplotype is inherited from the mother, without any
mutation [9]. To reduce the complexity of the ZRHC,
some algorithms have been applied to pedigrees without
mating loops (called tree pedigrees) [10-12]. In contrast
to algorithms targeting tree pedigrees, so far no linear-
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time algorithm for ZRHC has been proposed for general
pedigrees, even though the number of mating loops in a
human pedigree is usually very small and can be regarded
as constant; the execution time of existing algorithms for
ZRHC using general pedigrees is polynomial [4,13-17].
Regardless of whether it is a MRHC or a ZRHC problem,
some algorithms have been extended to handle pedigrees
with mutations or missing data [5,8,11,15]. In addition to
haplotype inference from pedigree data, algorithms have
been proposed for population datasets that come from
unrelated individuals. Algorithms for population datasets
try to decode the haplotype structure of each individual
as well as the haplotype frequencies of a population
[18-22]. All the above mentioned algorithms are mainly
combinatorial. Readers who are interested in statistical
approaches for haplotype inference can consult a recent
review [23].

In this study, we have targeted the ZRHC problem for
pedigree data. If we assume we are given a pedigree with #
individuals and m marker loci. Then for general pedigrees,
Li and Jiang proposed an O(m°#®) time algorithm by con-
verting the inheritance process into an equivalent linear
system of O(mn) equations over Galois field GF(2) and
invoking Gaussian elimination [4]. Xiao et al. improved
the method to take O(mn* + n® log” n log log n) time by
removing redundant equations from the linear system
[16]. Doan et al. proposed an O(mno(m)) time algorithm
by exploring constraints among marker loci rather than
family members, where a(-) is the inverse of the Acker-
mann function [14]. For tree pedigrees, the execution time
of the algorithm proposed by Xiao can be reduced from
O(mn® + n® log® n log log n) to O(mn + n°) [16). Li and Li
proposed an O(mna(n)) time algorithm using disjoint-set
data structures [11]. Liu et al. further lowered the com-
plexity of Xiao’s algorithm to linear time O(mmn) [12].
Chan et al. also proposed a linear-time algorithm by main-
taining a graph structure [10]. Chan’s algorithm, however,
only produce a particular solution. A particular solution
assigns a numerical value to each system variable, while a
general solution describes all possible solutions of the sys-
tem by designating certain variables as free variables and
the others as linear combinations of these free variables.

In this paper, we presented an O(kmn + k*m) time
algorithm that provides a general solution for ZRHC for
general pedigrees, where k is the number of mating
loops. In human pedigrees, k is usually very small and
can be regarded as constant. Our algorithm therefore
turns out to be linear for most of the practical cases. The
proposed algorithm was subject to 12000 experiments to
verify its performance using different (», m) combina-
tions. The value of k was uniformly distributed between
zero and six throughout all experiments. The experimen-
tal results show a great linearity of the execution time in
relation to the input size when both # and m are larger
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locus 1

with thick borders are predetermined.

Figure 1 A pedigree of 11 members. (a) A pedigree of 11 members coupled with genotype data. The paternal haplotype of an individual is
listed left while its maternal haplotype is listed right, even though the haplotype information is not available from genotyping. For example, the
paternal and maternal haplotypes of individual ng are 0100 and 1110, respectively; the genotype of ng, however, is specified as {0, 1H1, 1}{0, 140,
0}. Circles represent females and boxes represent males. Children are listed below their parents with line connections. For example, the couple
n; and ng have two children ng and nyo. There is a mating loop in the pedigree due to the common ancestor n, of the couple ns and ne. (b) A
pedigree graph with a spanning tree. Tree edges are solid lines and non-tree edges are dotted lines. The genotype data are represented as
vectors of g-constant. There is a local cycle of length 4 due to the couple n; and ng and their children ng and nyo. There is a global cycle of
length 6 due to the mating loop. (c) There are four locus graphs for the different loci. Edges in locus forests are depicted as solid lines. Nodes

locus 3

than 100. For those experiments where # or m are less
than 100, the proposed algorithm runs very fast, from
thousandth to hundredth of a second on a personal desk-
top computer. We also showed that the proposed algo-
rithm can be easily modified to detect inconsistencies
among genotype data without loss of efficiency.

Methods

To apply computational techniques, we transformed the
input pedigree into a pedigree graph by connecting each
parent directly to its children (Figure 1(b)). A pedigree
graph is an undirected graph G = (V, E), where V'is a
set of nodes and E a set of edges. Each node in V repre-
sents an individual in the pedigree; each pair of nodes is
connected with an edge in E if and only if the two indi-
viduals have a parent-child relationship. G is defined to
be undirected because the computational property of
each edge is symmetric in our algorithm, even if the
parent-child relationship is asymmetric. G may contain
cycles. We only pay attention to two types of cycles: a
cycle due to a mating loop, which is called a global cycle
and a cycle due to a couple and two of their children,
which is called a local cycle. Global cycles and local
cycles are referred to as basic cycles. For ease of cycle
processing, we construct a spanning tree 7 (G) on G. A
basic cycle can be obtained by adding a non-tree edge

into T (G). The set of non-tree edges is denoted by E*.
Non-tree edges are further divided into two disjoint sub-

sets EX and EX; members in E} induce local cycles and
members in EJ induce global cycles. Mating loops sel-

dom appear in human pedigrees and therefore |Ej| =k

is regarded as a small constant.

In the rest of this paper, we are assuming that G has »
nodes and m loci, all alleles are bi-allelic (denoted by 0
or 1), and the input dataset is free of genotyping errors.
Under this assumption, the input size of ZRHC is O
(mn). The genotype data of a node #; are represented as
a vector & of size m. The genotype of n; at locus /,
where 1 </ < m, is defined as follows:

0 if locus I is homozygous and both alleles are 0’s
1 if locus I is homozygous and both alleles are 1’s
2 if locus [ is heterozygous

sulll =

Genotype data are available, thus all g-variables can be
regarded as constant (Figure 1(b)). We introduce a vector
pn; of size m to describe the haplotype information of #;
the paternal allele of #; at locus /, where 1 <[ < m, is
defined as follows:

0 if paternal allele is 0
1 if paternal allele is 1.

pulil- |
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The vector pr; is regarded as unknown even though
we know that py,[I] = gn,[!] if #; is homozygous at locus
[ (i.e. &n (1] = 2).

We formulated the ZRHC problem as follows.

ZRHC Given a pedigree graph G(V, E) with full
g-constants, determine pn; of each node n; in V.

The haplotype configuration of the input pedigree is
identified by specifying the paternal haplotype of each
family member.

A system of linear equations over GF(2)

In this section, we introduce a system of linear equa-
tions based on G and g-constants; this system was first
proposed in [16] and will be reduced to determine all
p-variables. Since p-variables carry binary values, all
equations in the linear system are defined over GF(2)
whose operations addition (+) and multiplication (-) are
shown in Table 1.

The building block of the system: inheritance

“Inheritance” is the building block of the system. What
parents pass to their children must be the same as what
children receive from their parents. For a parent #; and
a locus [, n; passes pn; [[] + 1 to its children if and only
if the genotype of n; at locus [/ is heterozygous and #;
passes its maternal allele; otherwise n; passes pn, [/] to
its children. We introduce two auxiliary variables
Wh, [l] and hy,»; to formally state the above argument.
The variable wy, [l] indicates if locus [ of #; is heterozy-
gous.

0 if g, [I] # 2 (i.e. homozygous at locus [)
1if g, [!1] = 2 (i.e. heterozygous at locus ) .

- |

The variable h,, ,, indicates which allele of #; is passed
to its child #;.

P 0 if n; passes its paternal allele to n;
ity 1 if n; passes its maternal allele to n;.

Therefore, Pn,[l] + wp,[1] - hn,-,n] represents the allele at
locus / that #; passes to #;.

On the other hand, assume that #; receives an allele
from n;. If n; is n/’s father, what n; passes to #; is the
paternal allele of #; In this case, we have
P (1] + wn (I - hym; = pu 1] If m; is m/'s mother, there are
two sub-cases. If locus / of #; is homozygous, what #;
passes to #; must be the same as the paternal allele of

Table 1 Addition (+) and multiplication (-) in GF(2)

+ 0 1 : 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Page 4 of 14

n;. In this case, we have pull] +wn[l] - hu,n = pull].
If locus [ of n; is heterozygous, what n; passes to #;
is the maternal allele of #; and is different from the
paternal allele of #; In this case, we have

Pril] + wn [I] - hnymy = pu (1] + 1. The variable wy, [l] can
be used to indicate if locus / of n; is homozygous or
heterozygous, the two sub-cases can therefore be combined
into a single equation P, [I] + W, [1] - Ky = P [1] + wi [1].
Moreover, if we introduce another auxiliary variable
dni,nj[l] as follows,

do o 1] = 0 if n; is nj's father

HHELT | wy [1] if 0y is nj’s mother,

the inheritance relationship can be unified into the
following equation:

pni [l] + w‘fli[l] ' hni/nj = pn‘][l] + d”i/nj[l] (1)

Note that the w- and d-variables are constant by defini-
tion, and the p- and /-variables are unknowns. Equation
(1) formulates the property of edge (n; #,) in G: p-variables
and w-constants are attributes of the nodes #; and #;, and
h-variables and d-constants describe the inheritance rela-
tion associated with the edge (1, #;). With the information
provided by Equation (1), various constraints on /4-vari-
ables can be generated by traversing different paths in G.
Our algorithm was designed to first determine /-variables
based on these constraints and then the solution to the
ZRHC problem can be obtained by determining all p-vari-
ables based on the solved /-values and Equation (1). One

point needs special care: if #; is a child of 7, hy,n, and
dy;,n; are undefined. In our algorithm, we make the /-vari-

ables and d-constants symmetrical such that hu,n, =

and dn,/ni = dn,v,n,v.

Linear constraints on h-variables

To reduce the computational complexity of our algo-
rithm, we try to make the number of unknowns in the
coming linear system as small as possible. In the pedigree
graph G, we have mn p-variables and at most 2# k-vari-
ables (since each individual has two parents and there are
at most # individuals). Observe that if a node #; itself or
one of its parents is homozygous at locus /, py, [l] is
determined by definition and Equation (1). In this case »;
is referred to as predetermined at locus [ and the number
of unknown p-variables is reduced by one. Moreover, for
an edge (n; n;) € E, where n; is a parent of 1, b, is
cancelled from Equation (1) if wy[l] =0 at locus [. If
wy,[1] = 0 holds for all 1 </ < m, no constraints are
imposed on hy,, and it becomes a free variable (or its
value will finally depend on other free variables). In this
case the number of h-variables to be determined is
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reduced by one, which is equipotent to the removal of
edge (n; n;) from G. Accordingly, w-constants can be
viewed as the weight of edges in G; we only pay attention
to edges with weight one (parent nodes that are heterozy-
gous). To consider only the edges with weight one at
locus [, we construct the [th locus graph G, = (V, E;),
where E; = {(n; n)) | n; is a parent of n;, wy, [l] =1}.
Moreover, the spanning forest T(G) n G, is denoted by
T(G)) and is referred to as the Ith locus forest (Figure 1(c)).

We define constraints on /-variables by traversing
paths in the locus graphs. Consider a path p = ny, ny, ...,
n; in G;. Assume that ny and n; are predetermined and
all other in-between nodes are non-predetermined. Add-
ing up all s-variables on the path will produce the fol-
lowing equation by Equation (1):

i—1

i—1
D s = Pl + [+ D 11 = 0. @)
j=0

j=0

Since ny and n; are predetermined and all d-constants
are known, b is a constant. The constant b is said to be
the constraint of path p. Note that the constraint b does
not depend on the direction that path p is read because
the h-variables and d-constants are symmetric. More-
over, if the path is a cycle ¢ = ng, ny, ..., n;, ng in G;, we
would have the following equation:

i i
Z h"]"njﬂmnd i1 = Z dnj’nj+lmnd i [Z] = b/. (3)
0 =

Again, since all d-constants are known, &’ is also a
constant. The constant b’ is said to be the constraint of
cycle c. On the basis of Equations (2) and (3), we can
generate constraint equations with only /s-variables for
cycles or for paths that connect predetermined nodes in
G,. Constraints can be classified into two categories with
respect to the spanning tree T(G): cycle and path con-
straints derived from paths containing non-tree edges,
and tree constraints derived from paths containing only
tree edges.

Cycle and Path constraints

Adding a non-tree edge e into the spanning tree T (G)
generates a basic cycle c. If G, contains e, there are two
cases of ¢ in G,.

Case 1 c is in G;. A cycle constraint b, of cycle ¢ can
be obtained by Equation (3). The constraint is denoted
interchangeably by b, or (b,, e), which is also said to be
the cycle constraint of e.

Case 2 c is broken into several disjoint paths in G; by
predetermined nodes. Since these paths are disjoint,
there is exactly one path p’ of them containing e. Along
the path p) we identify a subpath p = #; ...n; containing
e such that #; and #; are predetermined and all other in-
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between nodes are non-predetermined. A path
constraint b, of the subpath p can be obtained by Equa-
tion (2). The constraint is denoted interchangeably by b,
or (n, ny by, e), which is also said to be the path con-
straint of e. Path constraints are symmetric because
(ny ny by, e) = (n; ny by, e).

Tree constraints

For each connected component of T (G;), we arbitrarily
pick a predetermined node #; as the seed. For the unique
tree path p that connects #; and another predetermined
node 7, in the same connected component, a tree con-
straint b, of path p can be obtained by Equation (2). The
constraint is denoted interchangeably by b, or (1, ny, b,).
Tree constraints are symmetric because (1, 1z by) = (1,
ng b,). Note that if there exists a component that has no
predetermined nodes, locus / must be heterozygous
across the entire pedigree and no tree constraints will be
generated.

Our algorithm in relation to the ZRHC problem

Our algorithm consists of four steps. We begin by initia-
lizing required data structures in the preprocessing step.
The initialized data structures are subject to the con-
straint generation step to construct a system of linear
constraints on /-variables. There are two issues should
be addressed. First, since all constraints are derived from
locus graphs that come from the same pedigree graph,
there is usually redundancy in the system. Second, we
actually do not need to know all /-values to solve the
ZRHC problem. For a child node #;, there are two /-vari-
ables related to it and its parents. However, from Equa-
tion (1) we know that one of the two hk-values is
sufficient to determine py,. So it is easy to see that the (n
- 1) h-variables in T (G) form a minimal sufficient set to
solve the ZRHC problem. In the third step, constraint
reduction and transformation, we therefore try to elimi-
nate redundancy in the system and transform as many
path constraints into tree constraints as possible. Finally,
in the haplotype determination step, we introduce an effi-
cient way to solve /i-variables and further p-variables
based on the reduced system.

Step 1: preprocessing

The data structures of our algorithm are initialized by
the following procedures:

1. Transform the pedigree into a pedigree graph G =
(V, E). Each node #; in V is equipped with its geno-
type vector & . Since each individual has two par-
ents, there are at most 2n edges in G, so we have
|V] = O(n) and | E | = O(n).
2. Construct a spanning tree 7 (G) on G.
3. For each locus /,

(a) generate a locus graph G,

(b) generate a locus forest T (G)), and
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(c) identify predetermined nodes as well as their
p-values, all d-constants, and all w-constants.

The operations applied in this step are graph traversal
and spanning tree construction, both operations can be
performed in time O(| V| + | E |) = O(n). The time
complexity of this step is therefore O(mmn).

Step 2: constraint generation

A system of linear equations on /-variables over GF(2)
will be constructed in this step. The system consists of
three sets C<, C*, and C” that contain different kinds of
constraints. C contains cycle constraints, if any, of all
non-tree edges at all loci. Similarly, C” contains path con-
straints, if any, of all non-tree edges at all loci. Finally, C*
contains tree constraints at all loci. To reduce computa-
tional complexity, repetitions of set members are forbid-
den in our algorithm; we do nothing if an existing
member is going to be added into the same set.

There are O(mn) trials to generate a constraint for a
non-tree edge since there are m locus graphs and each of
which contains O(n) non-tree edges; in each trial we per-
form a cycle detection procedure to generate a cycle con-
straint or a path constraint, so we have | C“ | + | C* | =
O(mn). The cycle detection procedure is usually imple-
mented by depth first graph traversal and its execution
time depends on the length of the cycle. Consequently, if
a non-tree edge induces a global cycle, the cycle detec-
tion procedure takes O(n) time; otherwise the procedure
takes constant time because each local cycle contains
only four edges. The time to generate O(mn) cycle and
path constraints is O(kmn) since there are at most km
trials to generate global cycle constraints. To generate
tree constraints within a locus graph, we perform tree
traversal on its locus forest. This procedure generates O
(n) tree constraints in O(x) time. So we require O(mn)
time to generate tree constraints at all loci. The time
complexity to generate our constraint system is therefore
O(kmn) + O(mn) = O(kmn).

Step 3: constraint reduction and transformation
Redundancy arises in the constraint system if a con-
straint can be represented as a linear combination of
other constraints. We are especially interested in the fol-
lowing two types of redundancies.

Type 1 Assume there is a basic cycle ¢ in G and it can
be decomposed into two edge-disjoint paths p; and p,
both connecting nodes #; and #;. There must be exactly a
non-tree edge e in ¢, and without loss of generality, we
assume that e belongs to path p;. If there is a cycle con-
straint (b, e) of ¢, a path constraint (n; n;, b, e) of py,
and a tree constraint (v, #; b,) of p,, we have b. = b, + b,
by Equations (2) and (3). That is, these three constraints
are linearly dependent and each of them can be repre-
sented as a linear combination of the other two con-
straints (Figure 2(a)). A path constraint can therefore be
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transformed into a tree constraint by the equation b, =
b, + b, which is the basis of the reduction of our con-
straint system.

Type 2 Assume there are three tree constraints (1, 7,
by1), (ny np by), and (nj, ny, bs) of paths py, py, and p3,
respectively. By definition we know that a tree con-
straint is the summation of all /-variables along a
unique path in T(G), so we have

bl = Z hnx,ny
(ny,ny)eps

bz = Z hnx,ny
("xr”y)eﬂz

by= Y .
(”x,”y)epii

Suppose that #; is the node closest to n; on the path
p3. We then have three paths p, between n; and n; ps
between n; and #;, and pe between n; and #; such that

P1 = Pa + Ps, Ppa = pa + Pe and p3 = ps + ps. The tree
constraints can therefore be rewritten as

br=" 3 han+ 2 g,
(nyny)€pa (ny,ny)eps

by = Z hnx,ny + Z hnx,ny
(nyny)€pa (ny,ny)eps

b3 = Z hn,,n,, + Z hnx,ny'
(ny,ny)eps (ny,ny)eps

Because all constraints are defined over GF(2), we
conclude that b; + b, = bs; the three tree constraints
are linearly dependent and each of them can be repre-
sented as a linear combination of the other two con-
straints (Figure 2(b)). The above argument implies the
following lemma.

Lemma 1 For any three nodes n;, n; and ny, the tree
constraint of the path between n; and ny is equal to the
total tree constraint of the path between n; and n; and
the path between n; and ny.

Lemma 1 still holds even if #; is on the path between
n; and ny (n; = n; in Figure 2(b)), which means that if a
tree path is partitioned into two disjoint sub-paths, the
tree constraint of this path is equal to the total con-
straint of the two sub-paths.

In this step, we remove the type 1 redundancy by
transforming as many path constraints to tree con-
straints as possible, and remove the type 2 redundancy
by reducing C” to an equivalent set whose cardinality is
at most (z - 1).

For each non-tree edge e € E¥, if cycle constraint (b,
e) exists, we remove all path constraints (1, n; by, e), if
any, from C? and add tree constraints (1, n, b, + by,)
into C”. Since the size of C” is O(mn), this procedure
can be carried out in time O(mn), and the new CT is of
size O(mn).
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(@)
path p,
—o-go
cycle ¢
g

path p,

Figure 2 Two types of redundancy arise from linearly dependence. (a) A cycle c is decomposed into a tree path p, and a path p; that contains
a non-tree edge e. So we have b. = b, + b, where b,, b, and b, are constraints of cycle ¢, path p; and path p,, respectively. The dotted line
represents the non-tree edge e. (b) n; is the node closest to n; on the path ps. Assume that the constraint of tree path p; is b, 1 < i < 6. We have

by = by + bg, by = by + bs, and bs = bs + b, which conclude that by = b, + bz due to the addition over GF(2).

(b)

To further remove the redundancy in C”, we construct
a constraint graph G* of G. The constraint graph G*
shares the same set of nodes V as G; for each tree con-
straint (n;, n;, b,) € CT, we introduce an edge connecting
nodes #; and #n; in G* with weight b, (Figure 3(a)). An
example of constraint graph is depicted in Figure 3(b).
The constraint graph is used to reduce the size of C”. As
shown in Figure 3(b), a constraint graph may not be con-
nected. Within each connected component in G* we
randomly choose a seed 7 and try to assign each node #;
a variable W[#n;] to represents the tree constraint of the
tree path between nodes #, and #; in the pedigree graph
G. The assignment is carried out by the following steps
in each connected component of G*.

1. Wln,] of the seed n; is assigned the value zero,

2. start from n,, perform a breadth-first-search traver-
sal via tree constraints, i.e., we can traverse from node
n; to node ; if (1, n; b,) € Cc’or (n, ny b)) € c,

3. as we traverse from #; to u; through (n;, n;, b,) or
(1, 1, by), if n; is unvisited, we assign W[n;] + b, to
W1n;] based on Lemma 1; otherwise we do nothing.

Since W[n;] represents the tree constraint (n, n;, W
[1,]), it can be regarded as the summation of /-variables
along the unique path on 7(G) from the seed #; to node
n; which implies the following lemma:

Lemma 2 The h-value of a tree edge (n; n;) in T(G)
can be obtained by hnn = Wnil + Wnjl if n; and n;
reside in the same connected component of G*.

Therefore, if we can assign W-values to all nodes in V'
and make G* connected, G* would be equipotent to a
reduced CT of size (n - 1) that covers kh-variables of all
tree edges of T(G) and is sufficient to solve the ZRHC
problem. The construction of the constraint graph takes
O(|C™]) = O(mn) time.

The constraint graph G* however, may not be con-
nected with fully assigned W-values. We therefore intro-
duced an extension procedure to extend G* by adding
extra tree constraints, if any, into G* we would like to
reduce the number of connected component in G* as
much as possible. To explore more tree constraints to be
added into G* we examine those non-tree edges e € E*
that do not have cycle constraints in C<. The basic idea is
that if we can synthesize a new cycle whose constraint is

-

(a) pedigree graph G

constraint graph G* (b)

|
O OBNLINEO

Figure 3 The concept of a constraint graph. (a) A tree constraint (n; n; b,) of the path that connects n; and n; in a pedigree graph G will be
transformed into an edge between n; and n; with weight b, in the corresponding constraint graph G* (b) A constraint graph. There are three
edges (n3, nyy), (7, ns), and (ng, Ns) in the constraint graph, which means that there are three tree constraints in the linear system. Note that the
constraint graph is disconnected and contains several connected components.

@,\. n | (n)
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the same as the expected cycle constraint of e, we may
obtain new tree constraints by transforming known path
constraints of e.

For a non-tree edge e without cycle constraint, we try

to synthesize a cycle only if e € EX. We do nothing if
e € Ef because no extra tree constraints of e can be
obtained by cycle synthesis. To see this, suppose the local
cycle induced by e connects a couple 7, and n, and their
two children n, and n, without loss of generality, we
assume e = (n,, n,) (Figure 4). We can examine the possi-
ble constraints derived from this local cycle. Constraints
of a single edge with predetermined endpoints are not of
interest and can be ignored because the p-values of the
endpoints are known; we need only pay attention to con-
straints whose path lengths are longer than one. In the
Ith locus graph, if wy, [I] = wy,[l] = 1, a local cycle exists
and we have cycle constraint (b, e) (Figure 4(a)); if
wp,[!] =1 and wy,[l] = 0, we only have the path p; =
nenng with path constraint (n, 1y by, €) (Figure 4(b)); i
wp,[!] =0 and wy,[l] =1, we only have the path p, =
n.npng with tree constraint (n,, ny b,) (Figure 4(c)); if,
wy, [I] = wy,[I] = 0 all four nodes are predetermined and
we can determine their p-values directly (Figure 4(d)).
No useful constraints other than (b, e), (1., ns b, e),
and (n,, ny b;) can be derived from this local cycle. Here
we already know that (b,, e) does not exist. If (n,, ny b,)
is already in C7, it is the only useful tree constraint of e
and we are finished. If (1, #, b,) does not exist in C*, we
cannot obtain (n, 7, b;) by combining b, and b,, because
(b, e) does not exist, even if the path constraint (n,., 1,
b,, e) is available. If this case holds for all 1 </ < m, our
linear system actually provides no information to obtain
the tree constraint of p,; the h-variable of each edge on
p» will eventually be assigned a free variable, or its value
will depend on other free variables. Therefore we do

nothing if e € Ef .

s}

Assume that E is the set of non-tree edges in EX
without cycle constraint. Cycle synthesis is carried out
by concatenating paths with known path constraints or
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tree constraints. The extension procedure is applied to
ES as follows.

El. For each e € E°, we check if there is an odd num-
ber, say 2t + 1, of path constraints of e that link different
connected components in G* to form a synthetic cycle
(Figure 5(a)); a constraint is said to link two components
A and B if one of its endpoints resides in A and the other
resides in B. There is a special case whereby we can also
obtain a synthetic cycle if two endpoints of a single path
constraint reside in the same connected component (¢ =
0). If no such 2¢ + 1 path constraints are found, we can-
not synthesize a cycle of e and do nothing; otherwise we
perform the following tasks:

E1.1 assign the constraint (l;;, e) to the synthetic
cycle, where

>

(nin;,by,e)€S,

Wini] + Win;]| + by, (@)

in which S, is the set of the chosen 2¢ + 1 path con-
straints;

E1.2 for each path constraint (”xL\”Y’ b;,, e) in C%,
generate a tree constraint (ny, ny, bc +b,) and add
the new constraint into G%

E1.3 update G*%

E1.4 remove e from E>;

E2. If E° becomes empty (there has been a synthetic
cycle for every e in the original E°), or no synthetic
cycle is synthesized (E° stays unchanged), we stop the
extension procedure; otherwise we go back to E1 to
start the next iteration.

We thus try to synthesize a cycle for each non-tree
edge in E° to generate new tree constraints and update
G*. To update G*, if more than one connected compo-
nent is combined into a new one by new tree constraints,
we arbitrarily choose one of the old seeds from these
connected components as a new seed, and perform a

(b)

rd N ™ 7™ 7N

\Ina‘ |nb; :na :nb

R, / Nz N/
N 7N =N 7N
e ) w w3 w
R b 4 N\ 7 \__ B ¢

v‘/‘ By 7 L% 25N

wy ny \Na) ny,

L S R
RS s o\ R
wy w ne Ny
N Py N 4 \_ /

Figure 4 All possible appearances of a local cycle in a locus graph. The dotted line represents the non-tree edge e. (a) The local cycle
appears with cycle constraint (b, e). (b) There is only one path containing e with path constraint (n, ng by, €). () There is only one path with
tree constraint (n, ng by). (d) There are only four predetermined nodes without any constraint.
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(@)

constraint graph

o
X
&
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by

Figure 5 The concept of a synthetic cycle. (a) Five path constraints b;, b,, .., bs link five connected components A, B, C, D, and E to form a
synthetic cycle in a constraint graph. (b) The conceptual view of the synthetic cycle of (a) in a pedigree graph. The synthetic cycle is actually a
round trip through the tree edges and the non-tree edge e. The trip is composed of 10 different but connected paths in the pedigree graph.

In this example, e would be visited five times during the trip.

pedigree graph

PL b YISy

o/ WO\

e
-

graph traversal to update W-values within the new con-
nected component. A non-tree edge that fails to receive a
synthetic cycle in a trial of cycle synthesis may benefit
from a later updated G* and therefore our extension pro-
cedure is designed to operate in an iterative fashion; the
procedure terminates only if G*cannot be updated any-
more. In this procedure, a non-tree edge may be checked
many times (in different iterations) to form a synthetic
cycle. In the worst case scenario, only one cycle is synthe-
sized in each iteration, so we require k iterations to per-
form k + (k- 1) + ... + 1 = O(K?) trials of cycle synthesis.
To verify the correctness of the extension procedure,
we need first to explain the meaning of Equation (4).
Follow a similar argument to that of Lemma 1, for two
nodes 7, and 7, that reside in the same connected com-
ponent of G¥, we know that W[n,] + W[n,] is actually
the tree constraint of the path from n, to n, on T(G).
The synthetic cycle is conceptually a round trip through
tree edges and the non-tree edge e. The value j, in
Equation (4) is therefore the summation of /-variables
along the round trip (Figure 5(b)). Now we demonstrate
that j, is the same as the cycle constraint of e. We first
show that there is exactly one k-variable of e in p,.
According to Equation (4), we have 2¢ + 1 h-variables of
e in 1;; Since we perform additions over GF(2), 2t out
of the 2¢ + 1 h-variables will be cancelled and we finally
have only one /-variable of e in l’;: To verify if 17); is the
same as the cycle constraint of e in G, we assume that
the expected cycle constraint of e is b.. We generate a

set S, by converting path constraints (1, n; by, €) in S,
to tree constraints (1, n;, b, + b,). It is easy to see that
the converted 2¢ + 1 tree constraints also link connected
components in G* to form a new synthetic cycle, and
the corresponding round trip only contains tree edges in
T(G). T(G) has no cycle and therefore each edge of this
new round trip must be visited an even number of
times, which means that its s-variable will be cancelled
in the new cycle constraint. So the constraint of the
new synthetic cycle must be zero and we have the fol-
lowing equations:

ISel
> Winl+Wiln| +by+be =b.+» b =0.
(ninj,be+by) €S, i=1

Since there are 2t + 1 constraints in S,, we have

Zl_sel‘ b, = b.. We then obtain l}\c +b. = 0 and conclude
i=
that b, = b, -

For each e € E°, the time to determine if there are
odd number of path constraints that link connected
components in G* to form a cycle is O(m). This time
complexity can be achieved by regarding each connected
component as a single node and each path constraint of
e as a single edge, and following O(m) edges to perform
a depth-first traversal. Since there are O(k®) cycle synth-
eses throughout the extension procedure, we require
O(K*m) time to find synthetic cycles. Once we synthe-
sized a cycle for e, we require O(m) time to convert
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path constraints to tree constraints because there are at
most m path constraints of e in C*. There are O(k) non-
tree edges in E° and therefore the extension procedure
takes O(km) time to perform constraint conversion. To
update G* we require O(n) time to perform breadth-
first traversal on every connected component to modify
W-values similar to the way we initialize G* There are
at most k synthetic cycles and therefore G* is updated
O(k) times in O(kn) time. In summary, the Step 3, con-
straint reduction and transformation, takes O(k*m) +
O(km) + O(kn) = O(K%*m + kn) time.

Step 4: haplotype determination

To solve the h-values of the tree edges of T(G) by
Lemma 2, we try to make G* produced by Step 3 con-
nected. Firstly, we pay attention to the founders in the
pedigree. Founders cannot be predetermined endpoints
of paths with either path constraints or tree constraints
and therefore founders must be isolated nodes in G* It
is also impossible to know whether an allele of a foun-
der is paternal or maternal. We attach a founder 7, to
G* by assuming that it passed its paternal haplotype to
an arbitrary child #n.. The attachment can be done by
assigning weight zero to the edge (15 n.) of G* which
implies hn,n =0 (1, passes its paternal haplotype).
There are O(n) edges in G* and therefore the attach-
ment of founders to G* takes O(#n) time.

Secondly, we check if there is any non-tree edge that
can link any two connected components of G*. A non-
tree edge e = (n; ;) can link two connected compo-
nents A and B if we can find a path constraint (n n,
b,, e) of path p that, without loss of generality, satisfies
the following two conditions:

1. nx and n; reside in A and have available W [n,]
and W [n;] derived from the seed 1,4 of A,

2. n; and #; reside in B and have available W' [#;] and
W [n;] derived from the seed np of B.

If we can find such a non-tree edge e, we can
decompose p into three parts: a sub-path from n,
to u; the non-tree edge e, and the sub-path from #;
to n;. The constraints of these three parts are
Wine] + W(nil, hy . Wnj]l + Wi, respectively. This
turns out that by = W[ne] + W[mi] + hy, n, + Wn] + W[ny],
The non-tree edge e therefore can be used to
link components A and B with known #-value
hn,n; = by + W[ng] + Wni| + W[nj] + W[n]. Since there
are at most O(mn) path constraints to be checked, this
procedure requires O(mn) time.

Finally, assume that there remain ¢ connected compo-
nents of G*. We arbitrarily introduce (¢ -1) edges into G*
to make it connected. Our algorithm does not impose
any constraint on these (¢ - 1) edges and therefore the
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weights of these edges can be safely set as free variables.
We then update all W-values within the new connected
G* (new W-values may contain free variables), and apply
Lemma 2 to determine the /-values of all edges in T(G).
With these solved h-values as well as the w-constants
and d-constants, we can determine the p-values of all
nodes in the locus graphs by Equation (1).

The update of G* takes O(n) time. Moreover, we
require O(n) time to determine all sz-values of edges in
T(G). For a locus graph, the determined /-values are
used to solve all p-values in O(n) time. Since there are
m locus graphs, we require O(mn) time to determine
the p-vectors of all nodes in G. Consequently, the three
procedures of this step take O(n) + O(mn) + O(n) +
O(mn) = O(mn) time.

Results and discussion

An execution example

We use the pedigree given in Figure 6(a) as an example
to demonstrate how the proposed algorithm works.
There are 19 individuals in the pedigree; eight of them
are founders. Each individual is equipped with genotype
data collected from four marker loci. There is a mating
loop in the pedigree.

In the first step, we transform the input pedigree into
a pedigree graph G and construct a spanning tree T(G)
on G (Figure 6(b)). There are three local cycles A-H-B-
I-A, D-K-E-L-D, and P-R-Q-S-P and one global cycle B-
F-C-G-D-L-O-Q-N-I-B in G. Edges A-H, E-L, Q-R, and
B-F are chosen as non-tree edges within the four cycles.
From the pedigree graph G, we construct the four locus
graphs and forests that are depicted in Figure 6(c). The
p-values of predetermined nodes, w-constants of all
nodes, and d-constants of all edges within the four locus
graphs are also identified.

In the second step, we generate all cycle, path, and
tree constraints for each of the four locus graphs using
Equations (2) and (3). For example, cycle A-H-B-I-A in
the second locus graph has cycle constraint sy g +
hy, B +hp [ +hp 4 = da, 1 (2] + dy, 5 (2] +dp, [ [2] +
dr 421 =0+1+1+0=0, and path G-C-F-B-I-N-Q
in the third locus graph has path constraint of
the non-tree edge B-F hg ¢ + hc, r+ he p + hp, 1 +
hy N+ hn, o = p6l3] + dg, c[3] + dg, ¢ [3] + dE, 53] +
dB,1[3]+dI,N[3]+d]\[,Q[3]+pQ[3]:0+0+0+1
+1+0+0+0=0.

At the end of this step we receive CC = {(0, ex;), (0,
eQ-R)’ (Or eA-H)}’ CP = {(1) H, 0, eA-H)r (M G, 0, €B-F) (G’
Q 0, epp, (R Q, 0, erq) (N, Q 0, egp}, and Cr = {(],
N, 0), (G K, 0), (G, L, 0), (G, O, 0), (Q S, 0)}.

In the third step, we obtain two new tree constraints
(R, Q, 0) and (I, H, 0) by (0, eq.r) + (R, Q, 0, eg.) and
(0, ea-r) + (I, H, 0, e4_p), respectively. The set clis
therefore extended to {(/, N, 0), (G, K, 0), (G, L, 0), (G,
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locus 1 locus 2

(d) (e)
© [€]

Figure 6 An execution example. (a) A pedigree of 19 individuals with genotype data. (b) The corresponding pedigree graph G with a
spanning tree T(G). Tree edges are solid lines and non-tree edges are dotted lines. (c) Locus graphs and forests. Nodes with thick borders are
predetermined. (d) The corresponding constraint graph G*. Nodes and solid lines compose the initial constraint graph. The three dotted lines are
path constraints that form a synthetic cycle of the non-tree edge B-F. (e) The final G*. All edges except B-F have weight zero; hg £ is a free
variable.
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0,0), (Q S, 0), (R Q,0), (I, H, 0)}. We construct the
initial constraint graph G* based on the updated C*
(Figure 6(d)). In the initial G* we choose H, G, and Q
as component seeds to determine W-values. We can
further find that the three path constraints (N, G, 0, ep_p),
(G, Q, 0, e5.), and (N, Q, 0, eg_p link three connected
components to form a synthetic cycle of the non-tree
edge B-F with constraint zero. So we further obtain three
extra tree constraints (N, G, 0), (G, Q, 0), and (N, Q, 0)
derived from the synthetic cycle and add them to G*.

In the final step, we try to make G* connected to solve
all /i-values. We first arbitrarily introduce eight edges A-
H, B-1, C-G, D-G, E-L, J-N, M-O, and P-R to attach the
eight founders to G*; all the eight edges are of weight
zero to imply that founders passes their paternal haplo-
types to one of their children. Now there are only two
connected components in G*, one of which is an isolated
node, F. we attach F to G* by set g r as a free variable.
This final connected G* is depicted in Figure 6(e). After
the final update of G* all #-values other than /g r are
zero, and hp ris free to be either zero or one. Given
these known /-values, all p-values over the four locus
graphs can be solved by Equation (1).

Time complexity and experimental result

According to the analyses at the end of each step in
Section 3, the time complexity of our algorithm is O
(mn) (step 1: preprocessing) + O(kmn) (step 2: con-
straint generation) + O(K2m + kn) (step 3: constraint
reduction and transformation) + O(mn) (step 4: haplo-
type determination) = O(kmn + k*m). Because k is
regarded as a constant, our algorithm is linear.

To verify the efficiency and the correctness of our algo-
rithm, we conducted some experiments using the pro-
posed method. Our algorithm was implemented in C and
was evaluated on a desktop computer equipped with
Intel Core i7-2600 3.4 GHz CPU and 8 GB of RAM. The
desktop ran Ubuntu Release 11.10 operating system with
Linux kernel 3.0.0-16-generic and GNOME 3.2.1 graphi-
cal user interface.

In the experiments, we generated test cases by setting
different number of individuals (#) and markers (). We
applied the algorithm developed by Thomas et al. [24] to
generate 12 tree pedigrees with different # values ranging
from 30 to 400. To observe how the number of mating
loops (k) affects our algorithm, each tree pedigree was
preprocessed to produce four variants with zero, two,
four, and six mating loops. For each pedigree, we exam-
ined 10 different m values ranging from 10 to 300. Each
(n, m) combination was tested 100 times. Each time we
generated new genotypes and randomly selected one
pedigree from the four variants of the given #n. The haplo-
type configurations of all the 12000 trials were correctly
identified. The experimental results are listed in Table 2.
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Table 2(a) shows that unknown p-variables were cor-
rectly solved without assigning any free variable if the
number of marker loci was not less than 30, which covers
most practical cases in regular genotyping. Free variables
were required only when the number of marker loci was
far less than the number of individuals. In this experi-
ment, free variables were used only when m = 10, and
they were used at most five times out of 100 trials. The
result is reasonable because the dimension of the solution
space of a pedigree with a limited number of marker loci
is probable less than the number of unknown p-variables.

Table 2(b) shows the cumulative execution time of 100
trials of each (n, m) combination. We received a fluctua-
tion in execution time if n or m were less than 100. We
conjecture that, because the algorithm executes very fast
for small values of #n or m, the cumulative execution time
might be dramatically affected by the context switches
within the operating system that ran many background
services. Furthermore, we believe that when both # and
m were larger than 100, the execution time of the algo-
rithm became more significant than that of the context
switches. From the table it is apparent that the execution
time is linear for the larger #» and m values.

Finally, Table 2(c) shows that mating loops existed
evenly throughout all 12000 trials, with the number ran-
ging from zero to six per pedigree, and the number did
not affect the linearity of the execution time of our algo-
rithm in relation to the input size of # and m.

Issue of spanning tree and seed node selection
In the first step, preprocessing, a spanning tree T(G) is con-
structed on the pedigree graph G. As mentioned above,
T(G) is constructed for the ease of cycle processing; it is
merely an auxiliary data structure used to generate linear
constraints of all cycles and paths between predetermined
nodes in G. We do not impose any constraint on the con-
struction of T(G) because predetermined nodes are
defined by genotype data. Once the input pedigree is
given, all the cycles and paths as well as their constraints
are bound, no matter which spanning tree is constructed
on the pedigree graph. Different spanning trees assign dif-
ferent edges as the non-tree edge in a cycle, and only affect
the type of a constraint; a constraint may be a path con-
straint with respective to one spanning tree and a tree
constraint with respect to another spanning tree. Since dif-
ferent spanning trees are used to generate the same set of
constraints, without considering their type, the construc-
tion of the spanning tree can be arbitrary. In our imple-
mentation, 7(G) was constructed by depth-first traversal.
In the second step, constraint generation, a seed
node is arbitrarily selected from T(G) to generate tree
constraints. To see why the seed node can be selected
arbitrarily, assume that there are two possible seeds #;
and #;. For any other predetermined node #;, we have
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Table 2 Experimental results
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Number of individuals (n)

Number of loci (m) 30 60 100 130 160 200 230 260 300 330 360 400
10 0.02 0.00 0.00 0.02 0.05 0.01 0.02 0.01 0.04 003 0.02 0.02
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
130 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(a) 160 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
230 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
260 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
300 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.10 040 0.55 0.50 0.51 061 0.99 0.52 141 1.77 1.28 041
30 0.1 0.50 0.90 048 0.66 0.55 2.28 1.22 1.06 294 1.16 2.71
60 0.21 1.66 1.09 0.68 2.19 2.77 1.63 3.26 3.08 2.76 2.20 4.38
100 049 1.03 1.79 163 1.93 2.66 321 342 363 465 342 373
130 1.74 1.55 239 1.24 1.84 357 307 349 4.81 338 501 5.26
(b) 160 0.57 1.53 2.17 1.53 299 3.76 3.71 481 6.44 452 599 6.45
200 1.20 1.82 202 2.10 518 4.31 4.89 449 537 6.16 6.77 8.87
230 0.70 259 2.34 2.71 552 3.79 5.28 6.19 6.63 7.89 787 9.77
260 1.15 2.29 262 372 5.10 599 597 6.45 712 8.34 10.11 10.77
300 167 231 333 4.27 527 6.49 6.35 711 8.70 9.12 11.40 13.22
10 352 336 292 318 302 318 336 3.08 298 242 3.06 314
30 296 3.00 298 314 318 290 296 3.04 318 302 322 294
60 3.08 3.08 3.02 266 336 292 3.24 302 3.10 2.86 290 2.86
100 3.00 290 2.78 336 3.00 3.28 338 272 3.30 266 298 2.74
130 2.80 3.00 324 3.50 372 330 290 3.04 3.08 294 3.68 3.20
(0) 160 302 3.18 346 292 3.10 2.86 332 340 2.88 340 3.16 262
200 2.84 318 3.06 2.76 278 282 314 312 312 2.86 3.00 3.14
230 3.24 322 2.90 2.74 332 2.86 294 334 3.08 2.70 284 342
260 2.72 2.70 266 3.00 322 342 3.10 332 3.24 2.86 2.66 292
300 3.24 302 2.70 2.76 292 2.74 294 298 262 3.02 334 344

(a) Average number of free variables. (b) Execution time (seconds) to generate solutions. Each entry in the table is the cumulative execution time of 100

replicates. (c) Average number of mating loops.

(nj, ng by) = (ny ny by) + (ny ng by) by Lemma 1,
which means that a tree constraint seeded with one
predetermined node is a linear combination of two
tree constraints seeded with another predetermined
node. Hence, tree constraints seeded with different
predetermined nodes are mathematical equivalent; we
can safely choose any predetermined node as seed.
Similarily, the seed nodes within a constraint graph
can also be selected arbitrarily based on the above
argument.

Consistency checking

Although we assume that the input pedigree is free of
genotyping errors, our algorithm can be easily modified
to detect inconsistencies within the genotype data with-
out loss of efficiency. No recombination is allowed in
the input pedigree and therefore inconsistencies will

arise if there are different assignments of an /4-value,
that results in incompatible linear constraints. We may
designate the following two checkpoints to detect incon-
sistencies within our linear system:

1. The generation of constraints. The constraint of a
path or a cycle may be computed more than one
time across all locus graphs; all these computations
should arrive at the same value. So each time we
compute a constraint, we check if it is the same as
the current value, if any.

2. The initialization/update of G*. There may be loops
in the constraint graph G* and therefore it is possible
that there are more than one path from the seed #; to
a node n;. It turns out that W [n;] may be assigned
more than once in the initialization or update proce-
dures of G*. By the definition of W-variables, however,
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all the assignments to W[n,] are actually associated
with the same path from 7, to #; on T (G) and there-
fore should be identical. So each time we compute a
W-value, we check if it agrees with the current value, if
any.

Conclusions

In this study, we proposed and implemented an algo-
rithm to solve the zero-recombinant haplotype config-
uration (ZRHC) problem for a general pedigree in
O(kmn + K*m) time. With the aid of free variables, our
method provides a general solution to describe possible
haplotype structures within a pedigree rather than a par-
ticular solution that only assigns a specific numerical
setting to haplotypes. To the best of our knowledge, this
algorithm is the first deterministic one to provide a gen-
eral solution in linear time for pedigrees having small
number of mating loops. Moreover, the algorithm can
be easily modified to detect inconsistency among geno-
type data without loss of efficiency. Our experimental
results confirm its linearity. In the future, we will try to
extend the proposed algorithm to handle recombination
and missing data in linear time for general pedigrees.
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