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Abstract

The definition of artificial immunity, realized through vaccinations, is nowadays a practice widely developed in
order to eliminate cancer disease. The present paper deals with an improved version of a mathematical model
recently analyzed and related to the competition between immune system cells and mammary carcinoma cells
under the action of a vaccine (Triplex). The model describes in detail both the humoral and cellular response of
the immune system to the tumor associate antigen and the recognition process between B cells, T cells and
antigen presenting cells. The control of the tumor cells growth occurs through the definition of different vaccine
protocols. The performed numerical simulations of the model are in agreement with in vivo experiments on
transgenic mice.

Background
The immune system (IS) is a complex system of organs,
cells and molecules whose main task is to protect living
organisms from external pathogens such as viruses and
bacteria. Nevertheless the effectiveness of the IS in tumors
disease is nowadays under discussion among biologists
and physicians. As stated by the immunosurveillance the-
ory [1,2], biotechnology engineered naked mice (mice
without immune system) show the developing of multiple
variants of malignant tumors that are not usually visible in
wild mice, thus suggesting that the immune system plays
an important role also against tumors. Indeed most
mutated malignant cells are recognized and eliminated by
immune system mechanisms right after their birth, and
tumors that usually arise are indeed poorly immunogenic
tumors, originating from malignant cells which escape
from immune surveillance. Some tumors are caused by
exogenous factors (e.g., smoke for lung cancer), and the
elimination of the exogenous cause would in theory pre-
vent the risk of developing the tumor. However many
other tumors are caused by endogenous factors and their

developing cannot be easily predicted and controlled.
Among human cancers, the mammary carcinoma repre-
sents a major cause of concerns in women, since it belongs
to the class of endogenous cancers which escape immuno-
surveillance of the IS.
The risk of appearance of mammary carcinoma is

usually estimated by analyzing the family history of can-
cer, and breast cancer screening in young women is
highly recommended since the achievement of earlier
diagnosis could greatly improve the outcomes of the
treatment. Strong family history of cancer usually entitles
higher risks of developing the tumor, thus suggesting
that tumor hereditary is encoded into the DNA. Some
gene tests such as the genetic screening for the BRCA
genes [3] are nowadays possible and may determine the
risk of cancer. Indeed the analysis of the genome of indi-
viduals will be useful to better estimate the risk of cancer.
Biologists and physicians are exploring novel immuno-

preventive treatments that can avoid the development of
breast cancer in patients with high risks of malignant cell
mutations. Among others, Lollini et al. [4] have devel-
oped a cellular vaccine, called Triplex, which is able to
elicit complete prevention of mammary carcinogenesis in
HER-2/neu transgenic mice. Triplex combines three dif-
ferent elements (the tumor antigen with two adjuvants)
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that stimulate the immune system response with different
actions [4]. Vaccine cells have been engineered to present
and release the tumor associated antigen p-185 (that is
also the oncogene of the tumor) with the addition of
Allogeneic MHC-class I molecules to easier recognizing
by cytotoxic T cells. Moreover, thanks to transduction of
interleukin-12 genes, they release interleukin-12 mole-
cules that have a broad range of costimulatory functions
in boosting the immune response against tumors.
It is worth stressing that differently from the vaccine for

virus or bacteria, cancer vaccines require repeated admin-
istration for the the entire life of the host. This is due to
the low antigenicity of the cancer cells, the capability to
escape the immune system surveillance. Moreover present
cancer immunoprevention research is unable to find better
vaccines able to assure complete, long-term protection.
The repeated administration of the vaccine, realized

with the aim to increase the antigenicity of the tumor
associated antigens, maintains the immune system
response ready against newborn cancer cells. However,
even if vaccines are usually less toxic than standard
drugs, uncontrolled administration of the vaccine can
induce undesirable effects such as autoimmune diseases.
Therefore the optimization of the vaccination protocol
constitutes a fundamental and open problem.
In the in vivo experiments it is not usually possible to

reach an optimum vaccination protocol that maximizes
the efficacy of the tumor depletion on the one hand and
minimizes the risk of side effects on the other hand,
because of the large variability cases. Indeed vaccination
protocols are usually determined heuristically basing on
best practice and previous experience. Moreover the cost
of in vivo experiments can be prohibitive.
In order to understand whether it was possible to gain

complete prevention of mammary carcinogenesis with
fewer injections, a (multi) agent-based model named Sim-
Triplex [5] has been developed. It is worth noticing that
SimTriplex has been also employed for other pathologies
[6-10]. However agent-based models do not allow the
development of asymptotic analysis of the competition
and an easy investigation of parameters’ space.
Different mathematical tools have been developed in

order to model complex biological systems and among
others, immune system-cancer competition. The most
famous approach is the ODE-based model where the over-
all system is decomposed in different cell populations
whose time evolution is depicted by solutions of a non-
linear ODE system (nonlinear terms take care of the inter-
actions among two or more cell populations), see paper
[11] for a review of ODE models available in the literature
and [12] for a comparison between ODE models with and
without delay.
Kinetic theory models have been also proposed for the

immune system-cancer competition. These models

consist in partial integro-differential equations and allow
both the modeling of proliferative/destructive events
and the modeling of mutations occurring in the onset of
tumor, [13]. Further modeling approaches for the
immune system-cancer competition include cellular
automata, agent-based models, see the recent expository
paper [14].
Most of the mathematical models of the IS summarize

the response of the immune system in a single popula-
tion of cells, named effector cells, which perform the
task of destroying cancer cells. This simplifying assump-
tion allows to reduce the complexity of the dynamics of
immune system but it neglects the recognition process
that occurs among the different cells that constitutes the
response of the IS to the tumor antigen.
The ODE-based model proposed in this paper has been

derived from a biological conceptual model that is a good
representation of the biological scenario (see Figure 1).
The model takes into account both the humoral and cel-
lular response of the immune system and the recognition
process that involves the following entities: vaccine cells
(VC), cancer cells (CC), tumor associated antigens
(TAA), Plasma B cells (B), thymus cytotoxic lymphocytes
(TC), thymus helper (TH) lymphocytes, antibodies (AB),
interleukins 2 and 12 (IL2 and IL12), and antigen pre-
senting cells (APC). A simplified version of the mathema-
tical model proposed in the present paper has been
analytically investigated in [15,16]. The simplified model
does not include the role of the associated antigens,
plasma B cells, interleukins 2 and 12 and the antigen pre-
senting cells. Therefore the mathematical model of the
present paper is a robust extension, from the biological
viewpoint, of the model analyzed in [16]. In the present
paper we restrict our attention to the comparison of
numerical solutions of the model with in vivo experi-
ments and sensitivity analysis of the model parameters.
The model described in this paper can be also developed
in order to take into account many biological phenom-
ena, like chemotaxis, spatial cell dynamics or cluster for-
mation. If spatial cells dynamics needs to be included,
one can use the mathematical framework of the kinetic
theory for active particles, see [17] and the reference
therein. According to the latter framework, cells are
grouped in functional subsystems which express a speci-
fic strategy (called activity) and the time evolution of the
subsystem is represented by a distribution function over
the cells microscopic state (position, velocity and activ-
ity). In this framework the mathematical modeling of the
chemotaxis phenomenon and the formation of tumor at
tissue scale can be included as shown in [18] and [19,20].
The present paper is organized as follows: Section “The

Triplex vaccine in vivo experiments” briefly deals with the
phenomenological analysis of the biological system. Sec-
tion “The ODE-based model” is devoted to the description
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of the ODE-based model. Section “Sensitivity analysis”
introduces the sensitivity analysis technique. Section
“Results and discussion” compares, by means of numerical
simulations, the mathematical model with the computa-
tional model SimTriplex. Finally Section “Conclusions”
concludes the paper with a critical analysis and research
perspective of the model. For interested readers Additional
File 1 presents a simplified version of the model by cou-
pling the differential model with an algebraic model.

Materials and methods
The Triplex vaccine in vivo experiments
This section briefly deals with the in vivo experiment car-
ried on BALB-neuT neu virgin female mice groups which

over-express the activated rat HER-2/neu oncogene. The
description does not pretend to be exhaustive from the
biological point of view but highlights the essentials of
the experiments in order to motivate our study.
The Triplex vaccine has been obtained from a mam-

mary carcinoma of a FVBneuN #202 (H-2q) mouse,
transgenic for the rat protooncogene c-neu, and com-
bines different stimuli:

• The p185neu oncoantigen;
• The H-2q MHC molecules (allogeneic for H-2d

BALBneuT mice);
• The interleukin-12 (vaccine cells are engineered
with the genes coding for murine IL-12).

Figure 1 Conceptual model of the in vivo experiment. On top vaccine cells (VC) are administered through intravenous injections, and then
recognized by Cytotoxic T cells (TC) and Antibodies (AB) that kill them. Killed VC release both Interleukin-12 (IL12) and Tumor associated
antigens (TAA). TAA are captured by antigen presenting cells (APC) and then presented to T helper cells (TH). IL12 stimulates both TH and TC
actions. TH release interleukin-2 (IL2) which boosts TH, TC, and B actions and stimulates B cells to differentiate into plasma B cells (B). B release
AB, and both AB and stimulated TC kill cancer cells (CC), which further release TAA.
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The experiment starts at the sixth week of age, where
BALB-neuT mice start the vaccination protocol. Mice
are divided in different groups, one for control
untreated group, and one for each protocol tested. All
vaccine protocols that have been tested are built upon
the same 4-week cycle which consists in twice-weekly
intra peritoneum vaccinations (Tuesday and Friday) for
the first 2 weeks followed by 2 weeks of rest.
The Prophylactic, lifelong Chronic vaccination proto-

col of cancer-prone HER-2/neu transgenic mice with
cells expressing HER-2, allogeneic MHC antigens and
IL-12 demonstrated able to completely prevent the
onset of mammary carcinoma. The Early vaccination
protocol (which counts only three 4-week cycles at the
beginning of the experiment) produces a significant
delay in the onset of tumors, but all mice eventually
succumbe to mammary carcinoma. Other tested proto-
cols demonstrated much less effective, with little or no
gain in efficacy when compared to untreated control
mice.
It is worth stressing that maximal prevention against

mammary carcinoma required all the three vaccine com-
ponents (HER-2/neu, allogeneic MHC antigens, and
IL-12) and was due to the induction of both cellular and
humoral immune responses. Although cellular and
humoral immune responses are taken into account in the
vaccine administration, the relative importance of antibody

subclasses for successful cancer prevention indicates that
humoral immune responses is more important than cellu-
lar responses driven by cytotoxic T cells [4].
Recent investigations [21] show that the Triplex vaccine

progressively looses its efficacy with the advancement of
tumor progression, both in terms of tumor incidence and
multiplicity (see Figure 2). In particular, tumor develop-
ment is remarkably delayed in mice receiving the early
protocol with respect to untreated mice, whereas protocols
started later have produced only a negligible delay.
Furthermore in vivo tests show that the Triplex vaccine is
ineffective against larger tumor targets. Thus, the triplex
vaccine demonstrates very effective at preventing mam-
mary carcinoma onset in tumor-free mice but is ineffective
against established local tumors.
It should be therefore clear that any vaccination proto-

col should be started early enough to avoid carcinoma in
situ formation. On the other hand it should be advisable
to minimize the number of administrations in order to
both maintain complete efficacy and reduce the risk of
any undesirable effect. In order to help biologists in find-
ing better vaccination protocols, a (multi) agent model
named SimTriplex has been developed in [5]. The model
has been inspired by the work of Celada and Seiden [22]
and uses an approach that models ab initio the interac-
tion and diffusion kinetics of each relevant biological
entity. SimTriplex has been tuned with the in vivo

Figure 2 Triplex vaccine efficacy measured in in vivo experiments with respect to the advancement of the tumor. The abscissa
represents the main temporal stages of tumor progression: from atypical hyperplasia up to mammary carcinoma. The ordinate shows the rate of
inhibition of tumor burden entitled with the use of the vaccine. The red line represents the achievable efficacy of the Triplex vaccine in
preventing the tumor burden whether the first protocol administration is delayed at successive stages of tumor progression.
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experiments and demonstrated able to coherently repro-
duce the behaviors of the entities involved in the in vivo
immunoprevention experiment. In addition the use of
SimTriplex as a predictive tool yielded to encouraging
results [23].

The ODE-based model
The competition between immune system cells and can-
cer cells reminds the well known Predator-Prey (PP)
model described by Lotka-Volterra equations. There is a
population of prey, represented by the cancer cells, with
an infinite set of food resources (nutrients coming from
the host blood) and, differently from the classical PP,
multiple populations of predators (the effectors cells)
cooperate through cell-cell and cell-molecule interactions
to neutralize the prey. Differently from the classical pre-
dator-prey models, predator survival does not depends
on the number of prey, since predator populations exist
normally and, in absence of the prey, their number oscil-
late around given equilibrium levels.
If cancer cells are able to escape immunosurveillance,

the cancer takes over, tends to compete with the healthy
cells for nutrients, and could be able to kill the host. How-
ever the immune system response can be helped in recog-
nizing harmful cells by an external agent represented in
our case by a vaccine. The induced immune response is
the result of a complex network of interactions between IS
cells which mainly depends from cells receptors. IS cells
which present, through their receptors, specific tumor
antigens can trigger a complex process whose final result
is the eradication of the tumor. Specific interactions,
which involve cell receptors, cannot be described with an
ODE population model, see [5], however if we assume that
the vaccine cells activate IS cells at given ratios we can
model the subsequent immune response of activated cells.
The network of organs, cells and molecules involved

in the immune system is very large. In the model of the
present paper we include only the entities recognized as
fundamental for the biological process. We also assume
that the IS-cancer competition occurs only in one
hybrid organ which includes all the physical involved
compartments (peritoneum, mammary gland, lymph
nodes and so on).
Both the humoral and cellular responses of the immune

system are taken into account with their main entities,
plasma B cells (B), cytotoxic and helper T lymphocytes
(TC and TH), antibodies (AB), antigen presenting cells
(APC) and interleukins 2 and 12 (IL2 and IL12), while the
pathogens are represented by the cancer cells (CC), the
vaccine cells (VC) and the P-185 tumor associated anti-
gens (TAA). The interactions among the various entities
of the immune system network, the external stimulus of
the vaccine and the cancer cells are modelled by a system
of ten nonlinear ordinary differential equations whose

variables are summarized in table 1; In Figure 1 we show
the conceptual model for the biological problem.
Model parameters
The model contains 44 parameters which have a specific
biological meaning. These parameters, assumed as con-
stants, modify the rate of variations of the populations
due to natural death, interactions with other population
and release of new quantities. Accordingly: parameters
referring to natural death of entities are denoted by μi,
where i identifies the population under consideration;
parameters referring to the interaction between popula-
tions i and j are identified by ai j; finally parameters
referring to releasing processes are identified by gi j,
where i refers to the released entity and j to the releas-
ing entity.
Vaccine cells
The vaccine cells dynamics is described by equation (1).
Vaccine cells (VC) are injected into the host through
intraperitoneal vaccination with a predefined dosage.
The inoculation of the vaccine cells is modeled by a
function kin(t, q) which adds q vaccine cells to the cells
in the host at time t whether a that time an injection
was scheduled. Since vaccine cells come from the exter-
nal, this term represents the only source element in the
equation. Vaccine cells die for multiple causes, such as
natural death (term -μ1VC), are inhibited by cytotoxic T
cells that recognize vaccine cells thanks to their allo-
genic-MHC class II molecules (term -a19TCVC), or by
specific antibodies that are able to directly kill vaccine
cells by complement mechanism (term -a17ABVC).

dVC
dt

= kin(t, q) − μ1VC − (α19TC + α17AB)VC (1)

P-185 tumor associated antigens
Equation(2) models tumor associated antigens dynamics.
Tumor associated antigens (TAA) can be released by
dead or killed vaccine or cancer cells. Accordingly we
suppose that the number of released antigens is propor-
tional to both the number of vaccine cells and the

Table 1 Model variables

Variable Description Short name

x1 Number of injected vaccine cells VC

x2 Number of P-185 tumor associated antigens TAA

x3 Number of activated B cells B

x4 Number of activated T helper cells TH

x5 Number of interleukin 12 molecules IL12

x6 Number of interleukin 2 molecules IL2

x7 Number of released antibodies AB

x8 Number of cancer cells CC

x9 Number of activated cytotoxic cells TC

x0 Number of activated antigen presenting cells APC
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number of cancer cells (VC and TAA respectively) that
are inhibited (terms g21(a19TC+ a17AB+μ1)VC and g28
(a88+a89TC)VC). These two terms represent the source
elements of the equation. Antigens are subjected to nat-
ural degradation (term μ2TAA) and phagocytosis by
antigen presenting cells (-a20APCTAA), such as dendri-
tic cells, macrophages and B cells. Moreover antibodies
can bind to free antigens producing immune complexes
(term -a27ABTAA).

dTAA
dt

= γ21(α19TC + α17AB + μ1)VC + γ28(α88 + α89TC + α87AB)CC+

− (μ2 + α20APC + α27AB)TAA
(2)

T helper cells
The key role of T helper cells is to stimulate both the
humoral and cellular branches of the immune response
by direct receptor binding or the releasing of specific
cytokines that boost the immune response, such as
interleukin 2. T helper cells are activated by specialized
APC such as dendritic cells, macrophages or presenting
B cells which present major histocompatibility class II/
peptide complexes.
Since we are dealing with a monoclonal model, pre-

sentation is not directly modeled, so the percentage of
activated T helper cells is estimated from the number of
antigen presenting cells (APC) existing in the system
(term g40APC). Interleukins 12 and 2 (IL12 and IL2)
contribute to stimulate T helper cells priming and dupli-

cation (terms α46 ( IL2
IL2+s1

)TH andα45( IL12
IL12+s2

)TH) . It is

worth noting that, since interleukin 2 is released by T
helper cells, these cells are able to self-stimulate their
activities. The death factor is modeled by -μ4TH term.

dTH
dt

= γ40APC + α46

(
IL2

IL2 + s1

)
TH + α45

(
IL12

IL12 + s2

)
TH − μ4TH (3)

Plasma B cells
Plasma B lymphocytes may absolve to multiple functions
in building the immune response chain against patho-
gens. In a first stage they can act as specialized antigen
presenting cells, by recognizing pathogens through their
specialized “Y-shaped” receptors, and can then present
peptidic sequences to T helper cells. As a consequence
of a successful interaction with T helper cells, they can
be stimulated to differentiate into plasma B cells, which
release antibodies with the same receptors shape, or B
memory cells, which readily act against new appearance
of previously encountered pathogens. Since there is no
in vivo experimental evidence of B memory cells, as also
suggested by the need of a chronic vaccination to
achieve complete protection against tumor onset, we
decided to do not include for now memory B cells into
the model [4].
In equation(4) we only consider the behavior of the B

cells population (B) that has been activated by T helper

cells (TH) positive feedback (term g34TH) and is there-
fore able to release specific antibodies against cancer
cells. We include the B as APC function in equation
(10). Interleukin 2 (IL2) released by T helper cells plays
an adjuvant role in stimulating B cells duplication

(term α36( IL2
IL2+s3

)B) . Death is modeled by -μ3B term.

dB
dt

= γ34TH + α36

(
IL2

IL2 + s3

)
B − μ3B (4)

Interleukin 12
Interleukin 12 (IL12) is mainly introduced through vaccine
administrations, so it depends on the vaccine dosage. In
previous in vivo experiments [24] interleukin 12 was intro-
duced separately, but after transduction of IL2 genes
inside vaccine cells [4], it is released by killed vaccine cells,
so it is proportional to the number of killed vaccine cells
(term g51(a19TC + a17AB + μ1)VC). IL2 is subjected to
normal degradation (-μ6IL12) and it is partially absorbed
for mitotic and stimulation signals by cytotoxic and helper
T cells priming (terms -a59TCIL12 and -a54THIL12).

dIL12
dt

= γ51(α19TC + α17AB + μ1)VC − (α54TH + α59TC + μ5)IL12 (5)

Interleukin 2
Interleukin 2 is mainly released by T helper cells (term
g64TH). As previously stated, interleukin 2 stimulates T
helper priming, and primed T helper cells produce
further interleukin 2. It is subjected to normal degrada-
tion (-μ6IL2) and it is partially absorbed for mitotic and
stimulation signals in cytotoxic T cells priming (term
-a69TCIL2) and B cells duplication (term -a63BIL2).

dIL2
dt

= γ64TH − (α63B + α69TC)IL2 − μ6IL2 (6)

Antibodies
Antibodies represent the main result of the humoral
immune response. Antibodies (AB) are released by plasma
B (B) cells (term g73B) and are subjected to normal degra-
dation (modeled by -μ7AB term). More-over they disap-
pear in absolving their functions: binding to specific
targets, i.e. antigens (term a72TAAAB), cancer and vaccine
cells (terms a78CCAB and a71VCAB, respectively).

dAB
dt

= γ73B − [α78CC + α71VC + α72TAA]AB − μ7AB (7)

Cancer cells
Cancer cells growth (CC) is modeled through the term[(

1 − CC
cmax

)
k − α88

]
CC . The term -a88CC is used to

take into account CC killing by other immune system cells
that are considered of minor importance for the process
and are consequently not explicitly modeled, such as
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Natural Killer cells which can kill cancer cells that under-
express the major histocompatibility class I complex. The
term p models the continuous production of newborn
cancer cells. Due to transgenic nature of HER-2/neu mice
new cancer cells are in fact continuously introduced into
the host. The other terms describe cancer cells death
mainly due to antibodies (term -a87ABCC) and cytotoxic
T cells (term -a89TCCC) actions. As matter of a fact acti-
vated cytotoxic T cells can kill cancer cells by direct cyto-
toxicity and specific immunoglobulins can kill cancer cells
by complement and other mechanisms.

dCC
dt

=
[(

1 − CC
cmax

)
k − α88

]
CC − (α89TC + α87AB)CC + p (8)

Cytotoxic T cells
Cytotoxic T cells priming (TC) depends mainly on vac-
cine cells (VC). Vaccine cells are engineered with allo-
geneic major histocompatibility class I complex in order
to easier presentation (term g91VC). Duplication is
instead indirectly stimulated by T helper cells through

the release of interleukin 2 (term α96( IL2
IL2+s96

)TC)) . Nat-

ural death is modeled with the term -μ9TC.

dTC
dt

= γ91VC + α96

(
IL2

IL2 + s96

)
TC − μ9TC (9)

Antigen presenting cells
With the term antigen presenting cells we indicate a class
of different types of cells, such as dendritic cells, macro-
phages, but also B cells, whose focal mission is to recognize,
capture, and process antigens in order to present small
antigenic sequences named peptides in conjunction with
MHC class molecules to both cytotoxic and helper T cells.
Antigen Presenting cells (APC) are then depending on

the quantity of the antigens that have been released
(term g02TAA), and can die (term -μ0APC).

dAPC
dt

= γ02TAA − μ0APC (10)

We thus designed the following set of ten non linear
ODEs that is able to model the considered system of
cell populations and interactions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dVC
dt = kin(t, q) − μ1VC − (α19TC + α17AB)VC
dTAA
dt = γ21(α19TC + α17AB + μ1)VC + γ28(α88 + α89TC + α87AB)CC+

−(μ2 + α20APC + α27AB)TAA
dB
dt = γ34TH + α36

(
IL2

IL2+s3

)
B − μ3B

dTH
dt = γ40APC + α46

(
IL2

IL2+s1

)
TH + α45

(
IL2

IL2+s2

)
TH − μ4TH

dIL12
dt = γ51(α19TC + α17AB + μ1)VC − (α54TH + α59TC + μ5)IL12

dIL2
dt = γ64TH − (α63B + α69TC)IL2 − μ6IL2

dAB
dt = γ73B − [α78CC + α71VC + α72TAA]AB − μ7AB
dCC
dt =

[(
1 − cc

cmax

)
k − α88

]
CC − (α89TC + α87AB)CC + p

dTC
dt = γ91VC + α96

(
IL2

IL2+s96

)
TC − μ9TC

dAPC
dt = γ02TAA − μ0APC

Since we consider populations that are activated by
vaccine administrations, we set the following initial con-
ditions:

VC (0) = TAA (0) = B (0) = TH (0) = IL12 (0) = IL2 (0) = AB (0) = CC (0) = TC (0) = APC (0) = 0

The parameters in the model have been derived from
literature, from measurements made during the in vivo
experiment and from the SimTriplex model. Some para-
meters which belong to the class of free parameters that
any model has, were chosen into reasonable rages in such
a way that the model was able to reproduce in vivo mean
survivals for the untreated, early, and chronic vaccina-
tions using a trial and error technique with mean-square
evaluation, see table 2.
During the in vivo experiment, biological dynamics is

observed in time slices that are not smaller than eight
hours. For this reason, we set the simulation time step
equal to (Δ(t) = 8 hrs). This biological motivation also
determined the SimTriplex time-step. The choice of the
physical time-step allows to compare the results of the
two models. Both models are supposed to simulate the
dynamics of entities inside a volume of 1μl, which corre-
sponds to a small portion of mammary gland of mice.

Sensitivity analysis
In order to understand which parameter may be consid-
ered fundamental in this process, it is significant to inves-
tigate the sensitivity of the model to the alteration of the
parameters. Choosing a parameter in a suitable range
while retaining fixed the others, represents the classical
way to do sensitivity analysis. This methodology clearly
owns limitations i.e., results are strongly bounded to the
values of fixed parameters, and different sets of values for
the fixed parameters may entitle completely different
results.
Partial rank correlated coefficients (PRCC) [25] is a sta-

tistical approach used to bypass the above mentioned
limitations. It works by calculating the partial correlation
on rank-transformed data between input (model para-
meters) and output (entities behaviors). Such a technique
does not depend on the values of fixed parameters and
permits to vary all the parameters at the same time,
allowing to study the influence of input parameters on
the model outcomes. Nevertheless the methodology can
be in principle easily applied and used with any kind of
continuous or discrete model.
The methodology we used to perform sensitivity analysis

(LHS-PRCC) is briefly described as follows. The interested
reader can found more information about the methodol-
ogy in [26]. Parameters space is initially sampled using a
Monte-Carlo technique. In this case we use a technique
named Latin-Hypercube-Sampling (LHS) [27]. The techni-
que divides the random parameter distributions into N
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(where N represents the chosen sample size) equal prob-
ability intervals that are then sampled. The choice for N
should be at least k + 1, where k is the number of para-
meters varied, but usually much larger to ensure accuracy.
In our trials we set N = 1000.

After sampling an LHS matrix X of sampled parameters
is built. Each row represents an unique set of variables
for the model sampled without replacement.
The model is then solved for each row of X, and the

model output values are stored into an output matrix Y.

Table 2 Model parameters

Param Description Value(estimate) Ref

μ1 VC (VC) death rate ln(2) = 9 In vivo

a19 VC killing rate by TC cells (TC) (killing) 0.001 Estimated

a17 VC killing rate by AB (AB) molecules (killing) 0.001 Estimated

q No. of cancer cells to inject at every vaccine administration 50 SimTriplex

g21 released TAA (TAA) rate by killed VC 3 Estimated

g28 released TAA rate by killed CC (CC) 3 Estimated

μ2 TAA natural degradation rate ln(2) = 9 In vivo

a20 Binding rate between TAA and APC cells 0.0005 Estimated

a27 Binding rate between TAA and AB (IC formation) 0.00001 Estimated

g34 plasma B cells (B) activation rate by TH cells (TH) 0.05 Estimated

a36 B stimulation rate by IL2 (IL2) 0.0035 Estimated

s3 B duplication stimulation threshold due to IL2 400 Estimated

μ3 B cells natural death rate (half life) ln(2) = 15 [32]

g40 TH cells (TH) activation rate by APC (APC) cells 0.15 Estimated

a46 TH cells stimulation rate by IL2 (IL2) (duplication) 0.009 Estimated

s1 duplication stimulation threshold due to IL2 1000 Estimated

a45 TH cells cells stimulation rate by (IL12) IL12 (duplication) 0.009 Estimated

s2 duplication stimulation threshold due to IL12 1000 Estimated

μ4 TH cells natural death rate (half life) ln(2) = 15 Estimated

g51 IL12 molecules release rate by VC 10 SimTriplex

a54 absorbed IL12 rate by TH cells for mitotic signals 0.00009 Estimated

a59 absorbed IL12 rate by TC cells for mitotic signals 0.001 Estimated

μ5 IL12 molecules natural degradation rate ln(2) = 9 [33]

g64 IL2 release rate by TH 5 Estimated

a63 absorbed IL2 rate by B cells for mitotic signals 0.0001 Estimated

a69 absorbed IL2 rate by TC cells for mitotic signals 0.0001 Estimated

μ6 IL2 molecules natural degradation rate ln(2) = 3 Estimated

g73 Released AB molecules rate by B cells 3 SimTriplex

a78 AB - CC binding rate 0.0001 Estimated

a71 AB - VC binding rate 0.001 Estimated

a72 AB - TAA binding rate (IC formation) = a72 -

μ7 AB natural degradation rate ln(2) = 7 [34]

cmax CC (CC) growth saturation threshold 107 Estimated

k CC duplication rate 0.0226 SimTriplex

p No. of newborn CC due to transgenic nature of mice 3 SimTriplex

a88 CC death rate due to other IS entities 0.0000001176 Estimated

a89 CC killing rate by TC cells 0.00004 Estimated

a87 CC killing rate by AB 0.00004 Estimated

g91 TC cells activation rate by VC 0.2 Estimated

a96 TC cells duplication rate due to IL2 0.05 Estimated

s96 duplication stimulation threshold thanks to IL2 400 Estimated

μ9 TC cells natural death rate ln(2) = 21 [35]

g02 APC (APC) activation rate due to TAA (TAA) 0.07 Estimated

μ0 APC natural death rate ln(2)/15 [36]
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Each matrix is then rank-transformed (XR and YR).
X and Y can be used to calculate the Pearson correlation
coefficient. XR and YR can be used to calculate the
Spearman or rank correlation coefficient (RCC) and the
partial rank correlation coefficient (PRCC).
PRCC between an input parameter xj Î XR, j ≤ k and

output y Î YR is then computed by considering the resi-
duals xj − x̂j and y − ŷ where x̂j and ŷ are given by the
following regression models:

x̂j = c0 +
k∑

p=1,p �=j
cpxp and ŷ = b0 +

k∑
p=1,p �=j

bpxp

Results and discussion
The outcome of the in vivo experiment has been mainly
represented by the mice tumor-free survivals, and the
Kaplan Meier survival curves [4] for each mice group
treated with a given vaccination protocol have been
built accordingly (see Figure 3).
One of the first problems in modeling the process was

to determine how to translate the biological concept of
death in mathematical/computational terms. When
developing the SimTriplex model, it has been decided to

stop the simulation and, therefore, to consider a mouse
as dead if the total number of cancer cells reached 105

cells. Over such a threshold the formation of carcinoma
in situ can be considered an inevitable circumstance.
Since in vivo experiments demonstrated that the vaccine
progressively loses its efficacy when such an event
occurs [21], this threshold represents a point of no
return that halves between survival and death.
Carcinoma in situ formation entitles a lot of different

processes such as formation of physical barriers around
the tumor mass and vascularization processes that are
not described at this stage, even because this goes
beyond the scope of the model. This means that both
the ODE-based model and the SimTriplex models can-
not be considered accurate in describing the in vivo
experiment if the cancer cells threshold is overcome.
Therefore the numerical simulations presented here
refer to interactions where the number of cells do not
go beyond this threshold.
As previously stated, the success of failure of a treat-

ment has been determined mainly by the survival rates
of the mice involved in the experiment. Even if some
measurements were made during the in vivo experi-
ment, it was not possible to keep track of the time

Figure 3 Kaplan-Meier survival curves. Kaplan-Meier survival curves given by the in vivo experiment for the Untreated (red circles), Early
(purple triangles) and Chronic (blue squares) vaccination protocols.
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evolution of the involved entities. Such measurements
are not possible in vivo experiments, or can be achieved
just partially in vitro for multiple reasons, i.e. it is not
possible to do the measure too frequently due to wet-
lab requirements, it is not possible to take the measure
at present time with current technology, or simply
because the measure entitles the need to kill the host.
One of SimTriplex main features is represented by the

possibility of simulating different individuals. Tuning of
free parameters has been executed in order to reproduce
the same population survival curves for the vaccination
protocols tested in vivo [5]. Moreover, during its tuning
phase, SimTriplex entities behaviors have been accu-
rately checked by biologists in order to verify that they
were qualitatively in line with both biologists assump-
tions and last immunological knowledge. The use of
SimTriplex as a predictive tool, in conjunction with var-
ious optimization techniques [28-30], to find better vac-
cination protocols showed indeed that it represented a
good approximation of the in vivo experiment [23], and
therefore can be used to substitute missing in vivo data.
Bearing all the above in mind, we initially checked

that the mathematical model mice survivals for all the
tested vaccine protocols were in tune with mean survi-
vals showed in the in vivo experiment, obtaining a good
agreement between the two experiments. For the miss-
ing in vivo data, mainly represented by entities time-
behaviors, we compared ODE behaviors obtained
numerically with the ones obtained by SimTriplex, high-
lighting similarities and differences.
We would note here that, in order to compare the

results, we looked in SimTriplex for “mean virtual
mouse”, i.e. a mouse whose death occurs near the middle
of the Kaplan Meier curves for the tested protocols.
The ODE model demonstrated able to reproduce the

available in vivo experimental data, in particular the in

silico mice survivals for all vaccine protocols tested were
in good agreement with mean survivals showed in in
vivo experiment.
Since the biological behavior of the involved entities

may change in a consistent manner even from mouse to
mouse, we mainly focused in qualitatively analyzing can-
cer cells behaviors and the response times of the princi-
pal outcomes of immune response, i.e. antibodies and
cytotoxic T cells behaviors for the Chronic, Early and
Untreated protocols.
In Figure 4 we compare the number of cancer cells

(CC) behavior for the three protocols. As the Figure 4
shows, there is a slight delay between SimTriplex and
the ODE model curves for both Chronic and Early
protocols, whereas the Untreated protocol exhibits
negligible difference, since both models use the same
parameters for the growth law. Such a delay remains
in line with in vivo experiment expectations. Indeed
the behaviors are qualitatively in agreement, suggesting
that the cancer cells dynamics is well described by the
ODE model. The Chronic protocol (see Figure 4, left
panel) plot suggests that after an initial growth phase,
cancer cells are kept under control from the immune
system thanks to the repeated administration of the
vaccine.
The above behavior does not happen in the Early case

(see Figure 4, center panel), where the vaccination pro-
tocol is only able to delay the development of the can-
cer, and the threshold on the number of cancer cells
that entitles high risks of carcinoma in situ is reached at
around at 44 weeks of age in SimTriplex, and at 47
weeks in the ODE model. In in vivo experiments the
middle of the Kaplan Meyer survival curve for the early
protocol is reached approximately at 52 weeks of age
[4], with carcinoma in situ formation between 5 to 9
weeks earlier.

Figure 4 Number of cancer cells (CC) behaviors for the Chronic, Early and Untreated protocols. Blue solid lines identify SimTriplex
simulations, red dashed lines the ODE model numerical results. Plots are presented on a log-scale to improve comparison.
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The number of cytotoxic T cells (TC) behavior is
shown in Figure 5. The untreated plot (see Figure 5,
right panel) is flat for both the models since in absence
of vaccination there is no cytotoxic T activation. Even in
this case we observe that the ODE model plots for the
Chronic and Early vaccine protocols are a little bit
delayed with respect to the SimTriplex plots, even if
they remain in the expected range of the in vivo experi-
ment. This could partially justify the delays observed in
the cancer cells plots for the ODE plots (see Figure 4,
left and center panels).
Moreover the cytotoxic T cells peaks observed in Sim-

Triplex for both the Chronic and Early protocols (see
Figure 5, left and center panels) are a lot higher than
those showed by the ODE model. In in vivo experiments
it was observed that antibodies covered a major role in
eradicating the tumor, whereas cytotoxic activity was
estimated to be of secondary importance [23]. So from
this point of view the ODE model may indeed be more
accurate in describing this aspect of the immune
response.
Finally we analyze the number of antibodies (AB)

behavior in Figure 6. The untreated plots (see Figure 6,
right panel) are practically flat for both the simulations
and show negligible difference. Only at the end of the
experiment SimTriplex plots show the appearing of anti-
bodies. This may be due to the presence in SimTriplex
of Natural killer cells that are able to kill cancer cells
which under-express the MHC molecules, giving rise to
a week response at late stages. For the Chronic and
Early protocols (Figure 6, left and center), the antibodies
time-behavior is very similar, but with higher AB peaks
in the ODE model than those observed in SimTriplex
simulations. This can be seen as a consequence of the
weaker cytotoxic immune response observed in the
ODE model which requires, in accord with in vivo

observations, a stronger humoral immune response in
order to deplete the tumor.
We used PRCC to analize the effects of the most

important input parameters which influence more the
behavior of Cancer Cells. We plotted for these entities
the PRCCs over the entire time course of the experiment
to how the parameters sensitivity varies as the process
behavior advances. The analysis has been executed by
supposing that the administration of the vaccine follows
the Chronic protocol. In this way it is possible to study
which mechanisms mainly drive the immune response
against cancer cells and which parameters should be
tweaked in vivo in order to obtain a strong immune
response with the minimal effort. To this end we kept
constant the parameter related to the quantity of injected
vaccine cells (q) and the parameters related to the tumor
growth (k, p, cmax).
From the LHS-PRCC analysis we found that 15 para-

meters that correlated significantly with the number of
cancer cells. For some parameters a negative or positive
correlation was somewhat expected, for example it is tri-
vial to observe that the dead rate and the activation rate
of APC (μ0 and g02) positively and negatively correlate
with cancer cells behavior, respectively (see Figure 7).
The time correlation of some parameters indeed brings
out some interesting findings we show as follows.
The first interesting finding is related to the mechanisms

driving the immune response against the tumor. The cyto-
toxic immune response against the tumor is influenced by
parameters such as g91 which represents the vaccine cells
killing rate and a89 which represents the cancer cells kill-
ing rate by cytotoxic T cells. By taking a look at g91 and
a89 (Figure 8) PRCC time plots it is possible to observe
that the two parameters show a strong negative correlation
just at the beginning of the experiment. The correlation
becomes weaker and weaker as time goes on, becoming

Figure 5 Number of cytotoxic T cells (TC) behaviors for the Chronic, Early and Untreated protocols. Blue solid lines identify SimTriplex
simulations, red dashed lines the ODE model numerical results.
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totally not significative starting from (around) day 160.
The humoral immune response instead is driven by para-
meters such as g73 which represents the antibodies release
rate and a87 which represents the cancer cells killing rate
by antibodies. These parameters show a strong negative
correlation which grows fast and lasts up to the end of the
experiment (see Figure 9). This means that after an initial
stage needed to start the immune response, variations of
cytotoxic T cells related parameters do not influence can-
cer cells behavior, thus suggesting how cytotoxic T cells
are not fundamental for the complete eradication of the
Tumor, which is instead strongly correlated with humoral
immune response related parameters for all the time
length of the experiment. This fact confirms the observa-
tion made by Palladini et. Al. [23], where in vivo

observations showed that the immune response against
the tumor was mainly driven by antibodies.
Another interesting finding can be derived by taking a

look at g21 and a72 PRCC time plots (see Figure 10). The
g21 parameter represents the antigens release rate by vac-
cine cells whereas the a72 parameter represents the rate
of interaction between antibodies and antigens which
brings to the formation of immune-complexes. The g21
plot clearly shows a negative correlation with the number
of cancer cells. However it is interesting to observe that
this correlation becomes weaker at the end of the experi-
ment when the vaccine protocol is used to maintain
under control the number of cancer cells, thus suggesting
that the role of antigens becomes less important at the
end of the experiment. In addition the a72 PRCC plot

Figure 6 Number of antibodies (AB) behaviors for the Chronic, Early and Untreated protocols. Blue solid lines identify SimTriplex
simulations, red dashed lines the ODE model numerical results.

Figure 7 μ0 and g02 PRCC time plots. Partial Rank Correlated Coefficients are computed on the number of cancer cells (CC), and are plotted
over time (blue lines). PRCC plot of Dummy parameter (red lines) is presented for comparison. The plot portions where the correlation becomes
significant (p <0.01) are shown in gray.

Bianca et al. BMC Bioinformatics 2012, 13(Suppl 17):S21
http://www.biomedcentral.com/1471-2105/13/S17/S21

Page 12 of 15



shows a positive correlation with the number of cancer
cells, suggesting that a higher interaction rate between
antibodies and antigens negatively influences the effects
of the treatment. This becomes more evident at the end
of the experiment (just around day 300) when the last 4
vaccination cycles are administered. Every vaccination
cycle seems to reinforce the correlation between the
input and the output parameters, affecting negatively the
immune response. This can be explained by the fact an
higher interaction rate between antibodies and antigens
would entitle that more antibodies are recruited in bind-
ing antigens, and then fewer antibodies (which as

discussed earlier play a major role in the immune system
response against the tumor) are employed in killing can-
cer cells. When the number of cancer cells is kept under
control, antigens may enter in competition with cancer
cells and may negatively influencing the immune
response. From the sensitivity analysis we can conclude
that the antigenic administration should be then stronger
during the first phases of the immune response, and then
reduced once the humoral immune response is well
established in order to reduce the risk that too many
antibodies are involved in binding antigens instead can-
cer cells. This model speculation is in line with the

Figure 8 g91 and a89 PRCC time plots. Partial Rank Correlated Coefficients are computed on the number of cancer cells (CC), and are plotted
over time (blue lines). PRCC plot of Dummy parameter (red lines) is presented for comparison. The plot portions where the correlation becomes
significant (p <0.01) are shown in gray.

Figure 9 g73 and a87 PRCC time plots. Partial Rank Correlated Coefficients are computed on the number of cancer cells (CC), and are plotted
over time (blue lines). PRCC plot of Dummy parameter (red lines) is presented for comparison. The plot portions where the correlation becomes
significant (p <0.01) are shown in gray.

Bianca et al. BMC Bioinformatics 2012, 13(Suppl 17):S21
http://www.biomedcentral.com/1471-2105/13/S17/S21

Page 13 of 15



biological effect of high antigen stimulation that usually
suppresses the immune response [31].

Conclusions
The mathematical model proposed in this paper is based
on nonlinear ordinary differential equations. The model
simulates the competition between the immune system
and the mammary carcinoma under the action of an
external force field (the vaccine). Three different proto-
cols of the vaccine have been taken into account:
Untreated, Early, and Chronic. The biological role of vac-
cine cells, cancer cells, tumor associated antigens, plasma
B cells, thymus cytotoxic lymphocytes, thymus helper
lymphocytes, antibodies, interleukins 2 and 12, and anti-
gen presenting cells has been taken into account.
Numerical simulations of the model have been per-

formed for different vaccination protocols and results
were compared with a previously developed multi-agent
model, called SimTriplex. For the tested vaccination pro-
tocols, the ODE-based model is able to qualitatively repro-
duce the time evolution not only for the number of cancer
cells, but also for antibodies and cytotoxic T cells, main
outcomes of humoral and cell mediated immune
responses. From a quantitative point of view the mathema-
tical model showed, respectively, a weaker and a stronger
immune response of cytotoxic T cells and antibodies with
respect to the SimTripex model, showing indeed better
agreement with the in vivo observations and speculations.
The sensitivity analysis gave two major results. First it

confirmed the major role of humoral immune response
also observed in in vivo experiments [23], then showed
that during later stages of the experiment antigens loose
their role of activating the immune response and in

some cases may negatively influence the immune
response. It is then possible to conclude that a reduction
of the intensity of vaccine administrations in later stages,
when the immune response is already set, is advisable.
This has been also highlighted in [8], where an ABM
model developed to illustrate the effects of the same
vaccine in cancer immunotherapy, suggested to apply
the golden standard vaccination procedure (initial boost
followed by sparse recalls) also to cancer vaccines.
These results are certainly useful to research activity in

immunology addressed to improve the efficacy of the treat-
ment and to modulate the activation of the immune system
in order to prevent side effects such as autoimmune dis-
eases. Of course, different choices of initial conditions and
of the parameters may modify the competition dynamics.
We plan to investigate the optimal protocol using

mathematical tecniques which are currently under inves-
tigation. Results will be pubblished in due course.
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and algebraic models.
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