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Abstract

Background: Ancestral recombinations graph (ARG) is a topological structure that captures the relationship
between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that
estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these
individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome
of a collection of human populations using relatively dense, bi-allelic SNP data.

Results: While the ARG is a natural model for capturing the inter-relationship between a single chromosome of
the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across
chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph
visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple
chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the
reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the
ARG.
As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao.
The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a
principled approach to understanding the inter-relationships between the different populations must take the
shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats
(STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic
location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this
plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only
96 loci from a genome of approximately 400 megabases. The results are visualized both as MDS plots and as
classification trees. To evaluate the accuracy of the ARG approach, we compare the results with those available in
literature.

Conclusions: We have extended the ARG model to incorporate genome-wide (ensemble of multiple
chromosomes) data in a natural way. We present a simple scheme to implement this in practice. Finally, this is the
first time that a plant population data set is being studied by estimating its underlying ARG. We demonstrate an
overall precision of 0.92 and an overall recall of 0.93 of the ARG-based classification, with respect to the gold
standard. While we have corroborated the classification of the samples with that in literature, this opens the door
to other potential studies that can be made on the ARG.
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Background
In this paper we apply an interesting population geno-
mics tool to an equally fascinating plant. While the con-
sumption of chocolate is very high in Europe and North
America, interestingly, Cacao provides a livelihood for
over six million farmers in Africa, South America and
Asia. It ranks as one of the top ten agriculture commod-
ities in the world. An understanding of the classification
is important since breeders capitalize on the heterosis
between distinct genetic groups to increase yield. The
cacao’s mating system renders cultivars to be self-
compatible while the varieties in the wild are not. Thus
understanding the genetic relationship between the vari-
eties is a problem of great interest. To give a historical
perspective, the problem of classification of Cacao,
based on morphological data, has been difficult since
the evolution of the cacao diversity took place over the
entire primary distribution area in the Amazonian
region and was also affected by the arrival of the Eur-
opeans into the Amazon region [1]. However, more
recently, molecular markers have been used to classify
cacao varieties [2-4]. The most thorough classification is
provided by Motamayor et al. [5] where the authors sug-
gest 10 genetic groups based on genome-wide STR data.
We use this data set to apply the ARG approach to test
it against their classification.
A principled approach to understanding the inter-rela-

tionships between populations must take the shuffling of
the genomic segments into account. IRiS studies the dif-
ferent samples from different populations/varieties by
constructing an underlying ARG, at genomic scales [6].
Here we use the data set that is used in [5] to obtain an
ARG-based classification, in 10 genetic groups, of about a
thousand cacao samples, each with about a hundred STR
polymorphic loci, originally collected from different geo-
graphic regions in the Americas. In this paper, we extend
the IRiS model to handle this sparse, multi-allelic data
over multiple chromosomes.
The advantage of the ARG approach is that it attempts

to precisely model the underlying genetic events, the
most plausible reasons offered by biology, to explain par-
simoniously the observed genetic differences in the sam-
ples. This level of directness -of cause and effect- in the
approach is quite appealing but the complexity of the
resulting ARG is quite often overwhelming. Hence, we
summarize the ARG as classification trees for both easy
consumption as well as comparison with other known
results. We demonstrate an overall precision of 0.92 and
an overall recall of 0.93 of the ARG-based clusters, with
respect to the classification suggested in [5].

Methods
The germplasm samples are derived from twelve different
American countries: Belize, Brazil, Colombia, Costa Rica,

Ecuador, French Guiana, Ghana, Mexico, Nicaragua,
Panama, Perú and Venezuela. After accounting for incon-
sistencies and other errors, 952 samples, each with 96
STR polymorphisms across the 10 chromosomes are sub-
ject to the classification process via computational meth-
ods [5]. The distribution of the polymorphic loci is not
uniform and only half the chromosomes have about ten
STR loci. The data is n-allelic (as opposed to bi-allelic)
with number of distinct values at a locus varying from
3 to 30.
Additionally, a total of 2562 values are missing, spread

somewhat randomly through the data. Since the data set is
quite sparse (i.e. only 96 markers genome-wide), we use a
simple approach to impute the missing values: we estimate
the missing values by using the most common haplotype
seen across the 952 samples, breaking ties arbitrarily. The
essential characteristics of this data set, from an analysis
perspective, is summarized in Figure 1. Notice the large
number of distinct alleles at most of the loci. However, the
data is rather complete with only about 3% missing values.
We also noticed that results did not vary much when no
imputation was carried out (with the missing values being
assigned an arbitrary distinct value). However, all the
results reported here have used the imputed version of the
data set. Additionally, in [5] a careful subsample of only
559 (out of the 952) have been used to construct the clas-
sification tree. We have also used this subsample to test
the efficacy of both the subsampling and that of our
methods.

Can a classification be done on the raw STR data?
Is it possible for a framework, that does not model evolu-
tion in any form, to discern structure in this data set? To
answer this question we first tried various classical clus-
tering algorithms on the data at hand. These clustering
algorithms are not aware of the data domain and simply
work on the observed values. We selected a set of five
clustering algorithms for this experiment. For methods
that required the number of clusters, we tried values
from seven to fifteen. The methods are: Average Linkage,
Complete Linkage, Single Linkage and K-means with ran-
dom initialization [7]. The classification methods are
dominated by hierarchical clustering algorithms and this
is also reflected in our choice of the algorithms. Note
that the first three are hierarchical clustering algorithms.
We also used the nearest neighbor joining (NNJ) algo-
rithm which has been frequently used on genomic data.
For completeness, we describe the methods in broad
strokes below and the interested reader is directed to
[7-10] for details.
The hierarchical clustering algorithms produces a parti-

tion by a nested sequence of partitions which give a nat-
ural classification tree. These algorithms can be either
agglomerative (bottom-up), in which one starts at the
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leaves and successively merges clusters together; or divi-
sive (top-down) in which one starts at the root and recur-
sively splits the clusters. NNJ is a bottom-up hierarchical
clustering method, based on the minimum-evolution cri-
terion, for the creation of phenetic trees. K-means cluster-
ing algorithms decompose the data set directly into a set
of disjoint clusters. Intuitively, the aim is to minimize the
dissimilarity between items in the same cluster and to
maximize the dissimilarity between items of different
clusters.
These general methods were used in conjunction with

classical distance/similiarity measures (i.e. Euclidean).
They gave poor results such as a single large cluster and
many small, including singleton, clusters. We do not
report these results here, since no consistent classifications
could be extracted from them. The interested reader can
find the relevant results in Additional File 1. We conclude
that most of the methods used on the raw STR data, does
not yield robust classifications of the cacao samples.

An ARG-based approach
Recall that an ARG is a topological structure that captures
the relationship between the extant genomic sequences in
terms of genetic events including recombinations. Graphi-
cally, it is a directed acyclic graph where each node corre-
sponds to a unit, at some generation, and the edges
denote the transmission of genetic materials between the
units. The extant units are at the leaf level, i.e., they have
no outgoing edges. The nodes can have single incoming
edges or multiple incoming edges. The former is called a
coalescent node and the latter a genetic exchange node.
The reader is directed to [11] for details. The ARG is
defined over the same locus for multiple given samples or

extant units and IRiS is a system that reconstructs this
ARG given the sequences/markers on the samples [6].
In principle, an ARG can be constructed only on a seg-

ment or the whole chromosome. Since the data at hand is
very poor in terms of density, we employ two methods to
work across multiple chromosomes. In both the methods,
the analysis is done in two stages. At the first stage, the
chromosomes are presented in some coherent fashion to
the IRiS pipeline. This is iterated multiple times. In the
second stage, the results from the multiple iterations are
consolidated.
For both the methods we use the complete (952) data

set and the subsample (559) data. Since the subsample
has been carefully curated, we check the robustness of
this curation using the ARG approach.
1. The Solo Method
In this method, some Z’ chromosomes are picked and
then staged separately to the IRiS pipeline. In our
experiments we use (i) the first three longest chromo-
somes and (ii) all ten chromosomes.
While this is the most natural mode of using the ARG

approach, it appears that there is more information in the
multiple chromosomes that is not exploited here. Since
the data is so sparse (only about a hundred loci genome-
wide), it is important to use all possible signatures. The
intra-chromosome commonalities are captured by the use
of the chromosome for the ARG. The following method
aims to additionally capture the inter-chromosome
commonalities.
2. The Ensemble Method
Here G ’chromosomes are used to produce a single
sequence that is staged as input to the IRiS pipeline. This
single ensemble is produced from the G’ chromosomes in

Figure 1 The essential characteristics of the data set. (a) A summary of the distribution of the polymorphic sites over the chromosomes and
the missing values. (b) Number of distinct allelic values per polymorphic site (which ranges from 3 to 30). The red vertical lines are the
boundaries of the chromosomes.
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the following three steps (see Figure 2). First, the G’ chro-
mosomes are placed in some random order in the 5’ to 3’
order in a circle. Then a random subset of these are
flipped (to be in 3’ to 5’ order). Finally, the circle is cut by
introducing a break at a random position. Then this lin-
ear string is staged as input to the IRiS pipeline. This is
repeated some N times and the results are consolidated.
As discussed before, the rationale for the ensemble

method is that, indeed the signature generated by multiple
chromosomes following a single chromosome or vice-
versa, does capture essential commonalities across indivi-
duals. The same can be said of flipping the direction of
each individual chromosome. Indeed, the best results are
seen in the Ensemble method, as discussed later.
Consolidation of the multiple iterations
The consolidation of the results from the multiple runs of
the IRiS pipeline is carried out as follows (see Figure 3).
Extending the notion of estimating the age of the most
recent common ancestor (MRCA) by combining that of
the non-mixing segments carried by it, we take the average
of the distances between samples observed in multiple
ARGs corresponding to the different instances of the
input staged to the IRiS pipeline. This consolidation
results in a matrix of pairwise distances of the samples.
This matrix is visualized as multidimensional scaling
(MDS) plot as well as a classification tree (see Figures 4
and 5). For the Ensemble method, it is worth pointing out
that we observed that the number of iterations N = 25 is
adequate, and no substantial improvement in the classifi-
cation is obtained for N > 25.

Experimental Setup
IRiS pipeline
We first briefly review the IRiS pipeline [6]. Given the
genetic information of the extant units, IRiS constructs
the ARG that explains the variations. This reconstructed
ARG of the samples is necessarily a subgraph of the true

ARG, hence is also called a subARG. IRiS constructs the
subARG in two phases. A combinatorial algorithm called
the DSR [12] is a model-based approach to detecting
recombinations in data (with a guaranteed approximation
factor [13]). This is based on allelic patterns and thus
extends naturally to multi-allelic STRs. In the first phase
DSR is run multiple times with different sets of para-
meters and a statistical consensus [14] is derived from
them to produce a matrix of recombination information
called the recomatrix. This encodes the local topology
information of only the high confidence recombination
events detected in the first phase. The subARG is con-
structed from the recomatrix in the second phase. IRiS,
the software tool that implements both the phases is pre-
sented in [6].
The validation of the IRiS parameters had earlier been

done using population simulations for the human data
[6]. However, there is no accessible simulation system
that uses STR events, under bilateral transmission, in
plant data. Hence we validate our final results against
published literature [5]. The IRiS parameter values that
we used were the default ones except for the following
three. We used grain sizes 1, peak distance 2, and thresh-
old value of 5. The reader is referred to [6] for a detailed
description of the parameters and their default values.
Note that the very small number of STR polymorphisms
does not lend itself to larger grain size values. We
demonstrate that these parameter values yield an overall
precision rate of 0.92 and recall rate of 0.93 in the classi-
fication when the complete data set was used. See the
section Results and discussion for details.
Age estimation
IRiS estimates the age of the internal nodes in the ARG
[6]. Note that this is not straightforward due to the pre-
sence of mixing segments in the ARG. The estimation is
done by first identifying the non-mixing segments being
carried at the node and then estimating the depth of the

Figure 2 The Ensemble Method. The Ensemble Method: An example with 4 chromosomes each with an orientation and a distinct color
above. (i) The chromosomes are first arranged as a circular ring. (ii) Then they are randomly permuted and randomly flipped. Then a random cut
is placed on the ring, shown as a dashed line. (iii) Then the ring is flattened out and is staged as input to the IRiS pipeline.
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node at each of the non-mixing segment, based on the
number of samples carrying the material at that segment.
This age is used to compute the pairwise distance of the
leaf nodes or the samples.
Assessing the results
Let M be a 10 × 10 contingency table where each row and
each column label is a Cacao genotype as defined in [5].
Thus the [i,j] of M is an index that compares the popula-
tion represented by row i in [5] to the population repre-
sented by column j by the ARG method. Next we quantify
the agreement seen in M by using a suitable index. For
this we use the F-index [15]. It combines both precision
and recall in order to evaluate the agreement of the parti-
tioning solution with respect to the reference clusters.
Each entry of the contingency table M is written as

mi,j,1 ≤ i,j≤ 10. mi,j denotes number of elements that
belong to the ith reference cluster and jth computed
partition. For each pair i, j, the F-index, Fi,j is defined
as a weighted harmonic mean of precision (Preci,j) and
recall (Reci,j) values, with weight a2:

Fi,j =
1 + α2

1/Preci,j + α2/Reci,j
=
(α2 + 1) · Preci,j · Reci,j

α2 · Preci,j + Reci,j
, (1)

where

Preci,j =
mi,j

pj
, and Reci,j =

mi,j

ci
, with pj =

∑
i

mi,j and ci =
∑
j

mi,j.

Let n =
∑

i

∑
j mi,j . Here n is the total number of sam-

ples. Finally, the overall F-index for the contingency
table is given as [15]:

F =
∑
i

( ci
n
·maxj{Fi,j}

)
. (2)

Equal weighting for precision and recall is obtained by
setting a2 =1.0.
Computing the classification trees and the Agreement index
A relaxed version of the NNJ method is used on the
pairwise distances of the individuals, derived from the
ARG, to obtain the classification tree. The partitions are
obtained by pruning the tree and merging the subtrees
based on distance until ten clusters are produced. It is
worth pointing out that other clustering algorithms
could be applied to the distance matrix produced by the
solo/esamble method. For instance, when we computed
a partition via the Average Linkage and Complete Link-
age based on the Ensemble Method, we obtained an F-
index ≈ 0.8 (data shown in Additional File 1). Note that
in [5], only the subsample data set has been used to
compute the classification tree. Hence, there exists a
gold standard in our setup, only for the latter case based
on the results available in literature [5].
The partition metric, dp [16] is used to quantify the

agreement between the classification tree T1 computed
by the ARG method and T2 proposed in [5]:

dp(T1,T2) = E(T1) + E(T2)− 2v(T1,T2), (3)

where E(T) denotes the number of edges of T that are
not incident on a leaf and v(T1, T2) denotes the number
of identical splits of the taxon induced by deleting an
internal edge from each T1 and T2. Note that, by

Figure 3 The work flow for multiple chromosomes. Work flow for multiple (G’) chromosomes. (a) IRiS pipeline: In Phase 1, we use two
different parameter settings to obtain an intermediate matrix (called recomatrix) for Phase 2. The second phase constructs the ARG. (b) Some
Z’ ≤ G’ chromosomes are used through the IRiS pipeline and the Z’ results are consolidated to obtain the final analysis. (c) The IRiS pipeline is
used on an ensemble sequence (see Fig. 2) of the G’ chromosomes some N times and the results are consolidated.
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definition, 0 ≤ dp(T1,T2) ≤ E(T1) + E(T2). To make this
value comparable across different trees, we define an
agreement index based on Eqn 3 as follows:

A = 1− dp(T1,T2)

E(T1) + E(T2)
. (4)

In the classification trees some cultivars are split in
two or more subtrees. Hence in order to compute the
agreement between the two classifications we consider
only the class with larger number of samples in order to
compute dp and ignore the smaller subsets.

Figure 4 Results for the ensemble method on the complete data set. Visualization of the ARG results as a classification tree: The Ensemble
method on all ten chromosomes on the complete data set. (a) A classification tree. (b) The first two components of an MDS of the pairwise
distances.
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Results and discussion
Classification results
IRiS outputs an ARG for each run. The distance
between two samples (extant units) on the ARG is

defined to be the age of the MRCA of the two on the
ARG [6]. In practice, different non-mixing segments of
the extant samples could have distinct MRCAs, since
the structure is a subARG. In such cases, an average of

Figure 5 Results for the ensemble method on the subsample data set. Visualization of the ARG results as a classification tree and an MDS
plot: The Ensemble method on all ten chromosomes on the subsample data set. (a) A classification tree. Note that [5] presents a classification
tree for this subsample data set and the agreement index of this tree is 0.43. (b) The first two components of an MDS of the pairwise distances.
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age of the different nodes is computed as an estimate of
the “distance” between two samples. The procedure to
deduce the labels for the classification is discussed in
the following section.
Labeling the computed partition
We compare this classification, suggested by the ARGs of
our analysis, with that of [5] which we call the reference
clusters. These clusters are the following genetic groups
of cacao according to [5]: Amelonado, Contamana,
Criollo, Curaray, Guiana, Iquitos, Marañon, Nacional,
Nanay and Purús. We present our comparison results
where we cluster the samples into ten groups. To assign
names to our partitions, we compute a one-to-one map-
ping of our partition to that of the clusters of [5] as fol-
lows. We first carry out a pairwise intersection of the
reference clusters and our computed partitions and
populate a 10 × 10 matrix M’ with the cardinality of
these intersection sets, where the rows represent the
reference clusters. Then we permute the columns of M’
in such a manner that the highest values are along the
diagonal of this transformed matrix M. Such a configura-
tion is indeed possible and there exists a unique M for
this data. Indeed, the order of the labels of columns is
enforced to be the same as that of the rows, implicitly
defining the unique one-to-one mapping of the partitions
to the reference clusters. The classification trees with
these computed labels are displayed in Figures 4 and 5.

Assessing the results
Figure 6 summarizes the results of the two methods on
a variety of input configurations. The best results are
seen with the ensemble method over all ten chromo-
somes. Thus more information, in this sparse data set, is
indeed better. Using the subsample consistently yields
better index values than the complete data set. A
detailed discussion follows.
With a2 = 1 in Eqn 2 the results are summarized in

Tables 1 and 2 for the Ensemble methods on the complete
and subsample data set respectively. Note that F is an
index with value in the range [0,1], and the closer the
index is to one the better the agreement between the two
partitions. The precision and recall for each of the ten
computed partitions are shown in the tables. In particular,
an overall precision of 0.91 and a recall of 0.91 is obtained
for the complete data set (see Table 1), and an overall pre-
cision is 0.93 and a recall of 0.95 is obtained for the sub-
sample data set.

Discussion
Does more data do better ?
Notice that single chromosomes, do not give very good
results, nor did aggregating the three longest chromo-
somes. Hence, even if the number of markers were few on
a chromosome, their addition to the data set improved the

results across board. However, the subsample data set con-
sistently did better than the complete data set in terms of
agreement between their clustering solutions with that
one proposed in [5] (more experiments shown in the sup-
plementary material). Thus more markers, but a careful
subset of samples, is an optimal choice.
It is interesting to note the two classification trees from

the complete and the subsample data set. The two are
mostly similar, except for these distinctions. Purús splits
almost into two classes in the complete data set and is
close to Criollo. However, in the classification tree using
the subsample data set, Criollo is closer to Marañon.

Why does Ensemble Method do better than Solo ?
Cacao, as many other crops, is likely to have been domes-
ticated from a reduced number of individuals carrying a
limited amount of variation from the original population.
During the process of domestication of wild species, it is
reasonable that a strong reduction in the population size
and selection of particular traits would cause severe reduc-
tions in genetic diversity genome-wide and linkage dise-
quilibrium to increase among loci, maintaining longer
haplotypes in the population [17-20]. The bottleneck
involved in the domestication process and more impor-
tantly the selection of multi-genic traits encompassing
long haplotypes from different chromosomes could cause
linkage disequilibrium to arise between physically unlinked
loci (like those present in different chromosomes). This
could explain why the Ensemble Method, that uses the
joint information from the whole genome at once to infer
the ARG, could recover the demographic structure in
cacao more efficiently and accurately than the Solo
Method.

Individual populations
When the complete data set is taken into account (see
Table 1), Curaray gives the strongest agreement, with a
precision and recall of 0.97. Since, most of the precision
and recall results are higher than 0.80 in what follows we
discuss only the poorest values. The Amelonado gives a
recall of only 0.72 (but a high precision of 0.94), due to
the assignment of some samples to the Guiana and Purús
cultivars. It is worth pointing out that the Amelonado
and Guiana cultivars are very close in the classification
trees. Finally, the Nacional cultivars, due to the assign-
ment of few Purús sample, shown a precision value of
0.78 (but a high recall of 0.88). Since the two computa-
tional approaches, one based on ARG and the other on
the statistics of allelic frequencies, are somewhat ortho-
gonal, it is not immediately clear if this group has been
accurately labeled.
When we consider the subsample data set (see Table 2),

Amelonado, Marañon and Purús give the strongest agree-
ment, with a precision of 1.0 and recall values greater than
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Figure 6 Summary of the results. Application of the two methods -Solo and Ensemble- to a variety of data configurations: The results from
each case is compared with the gold standard in [5] and the table summarizes the F-index and the Agreement metric. The 3 longest
chromosomes are Chr 1, Chr 3 and Chr 5. The ‘-’ values are either extremely low or too poor for any classification. The F-Index (Eqn 2) and the
Agreement index (Eqn 4) are each real positive values between 0.0 and 1.0 inclusive, with the theoretical best at 1.0.

Table 1 Contingency table for the ensemble method on all ten chromosomes on the complete data set

Ame. Con. Cri. Cur. Gui. Iqu. Mar. Nac. Nan. Pur. ci Recall

Amelonado 68 1 0 0 6 1 4 0 1 13 94 0.72

Contamana 0 63 0 0 0 0 0 3 1 2 69 0.93

Criollo 0 0 39 0 0 0 0 0 0 0 39 1.0

Curaray 0 1 0 114 0 0 0 2 0 0 117 0.97

Guiana 0 0 0 0 58 0 1 0 0 0 59 0.98

Iquitos 0 0 0 0 0 99 2 1 6 9 117 0.85

Marañon 2 1 0 0 0 0 138 0 0 2 143 0.96

Nacional 2 0 1 2 0 1 0 46 0 0 52 0.88

Nanay 0 0 0 0 0 1 0 0 151 0 152 0.99

Purùs 0 1 2 1 0 0 0 7 0 99 110 0.90

pj 72 67 42 117 64 102 145 59 159 125 952

Precision 0.94 0.94 0.93 0.97 0.91 0.97 0.95 0.78 0.95 0.79

The Ensemble method on all ten chromosomes on the complete data set: The 10 × 10 contingency table M for comparing the two partitions is shown above.
The reference cluster (ci) along the rows is from [5]. Our computed partition (pj) into 10 groups is along the columns. The F-index for this matrix is 0.92 (where a

perfect agreement has a value of 1). Also the precision

(
TP

TP + FP

)
and recall

(
TP

TP + FN

)
for each computed partition is shown along the last row and

the last column respectively.
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0.80. Criollo and Guiana cultivars shown a precision less
then 0.90 (but a high recall of 1.0).

Conclusions
We demonstrate that IRiS is effective on sparse, multi-
allelic, genome-wide STR data. We introduce the
ensemble method that naturally extends the ARG
model to incorporate multiple chromosomes. This is
the first time that a plant population data set is being
studied by estimating its underlying ARG. While we
have verified the classification of the samples with that
in literature, this opens the door to other potential stu-
dies that can be made on the ARG. Finally, we corro-
borate the majority of the groups classified in [5] based
on an orthogonal computational approach on the very
same data set. We suggest a few candidate groups,
whose agreement across the two approaches were not
extremely strong, that could benefit from additional
molecular markers.

Additional material

Additional file 1: Supplementary Material. The complete set of results
for the: (a) the classical clustering algorithms in conjunction with the
Euclidean distance; (b) the hiarchical clustering algorithms in conjunction
with the distance matrix obtained from the Ensemble method; (c) all the
results not included in the main manuscript for the Solo and Ensemble
Methods.
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