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Abstract

Background: The T box riboswitch controls bacterial transcription by structurally responding to tRNA
aminoacylation charging ratios. Knowledge of the thermodynamic stability difference between two competing
structural elements within the riboswitch, the terminator and the antiterminator, is critical for effective T box-
targeted drug discovery.

Methods: The ΔG of aminoacyl tRNA synthetase (aaRS) T box riboswitch terminators and antiterminators was
predicted using DINAMelt and the resulting ΔΔG (ΔGTerminator - ΔGAntiterminator) values were compared.

Results: Average ΔΔG values did not differ significantly between the bacterial species analyzed, but there were
significant differences based on the type of aaRS.

Conclusions: The data indicate that, of the bacteria studied, there is little potential for drug targeting based on
overall bacteria-specific thermodynamic differences of the T box antiterminator vs. terminator stability, but that
aaRS-specific thermodynamic differences could possibly be exploited for designing drug specificity.

Background
The T box riboswitch is an important regulatory
mechanism found in Gram-positive bacteria including
many pathogens [1-3]. The riboswitch responds to high
levels of uncharged (non-aminoacylated) tRNA to control
the transcription of cognate genes (e.g., aminoacyl tRNA
synthetase, aaRS, genes) [3]. Cognate, uncharged tRNA
binds the 5’-untranslated region of T box mRNA during
transcription and, when present in sufficient quantities,
results in antitermination (Figure 1a) [3]. The tRNA
anticodon binds a specifier sequence in Stem 1, thus pro-
viding the cognate specificity, while the uncharged tRNA
acceptor end nucleotides bind the first four bases in a
seven nucleotide bulge of the highly conserved antitermi-
nator structural element [4]. Aminoacylated-tRNA also
binds the specifier sequence, but does not bind the anti-
terminator element [5]. In the absence of uncharged

tRNA bound to the antiterminator element, a more ther-
modynamically stable stem-loop structure forms (the ter-
minator) followed by factor-independent transcription
termination a few nucleotides later [3]. The antitermina-
tor and the terminator are mutually exclusive structural
elements due to sharing common nucleotides (Figure
1b). Ligands that target and disrupt the T box riboswitch
function could be potential antibacterial agents in light of
the critical genes regulated by the T box mechanism
[1,2].
We have been investigating the structure-function

relationship of the T box antiterminator element and
the key recognition features necessary for ligands to spe-
cifically bind the antiterminator and disrupt its function.
There are few detailed medicinal chemistry studies of
ligands targeting RNA [6] and this project has required
an extensive multidisciplinary approach. The solution
structure of antiterminator model RNA AM1A [7] was
determined using molecular modelling with NMR-
derived constraints [8]. The structure indicated that the
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seven-nucleotide bulge of the antiterminator was not
pre-ordered for tRNA binding, but rather, that binding
of the tRNA acceptor end must require a certain extent
of tertiary-structure capture and/or an induced fit.
Fluorescence life-time studies confirmed that modest
antiterminator structural reorganization occurs upon
tRNA binding in a magnesium-dependent manner [9].
While some RNAs have specific divalent metal ion bind-
ing sites, for the antiterminator RNA, the Mg2+ binds
via a diffuse, outer-sphere interaction [10]. In vitro
selection studies of both the antiterminator [11] and
tRNA [12] indicate that there are likely no direct inter-
actions between the tRNA and the antiterminator other
than the known base pairing between the acceptor end
nucleotides and the first four nucleotides at the 5’-end
of the seven-nucleotide bulge. Given this antiterminator

structure-function information, ligands could potentially
disrupt tRNA binding simply by competing with the
base pairing between the tRNA acceptor end and the
antiterminator bulge nucleotides.
Aminoglycosides bind AM1A in a structure-specific

manner, most likely via electrostatics [13,14]. In contrast,
two novel classes of heterocyclic compounds, triazoles
and oxazolidinones, bind AM1A with structure-specifi-
city and high affinity, but without reliance on electro-
statics [15-18] and can alter T box transcription
antitermination [16]. A computational, quantitative
structure activity relationship analysis has shown that
hydrophobic interactions play a significant role in the
binding of these compounds to AM1A [19]. Furthermore,
the small molecule ligands disrupt tRNA binding to the
antiterminator in a structure-specific manner [20].

Figure 1 T box transcription antitermination mechanism. a) Uncharged, cognate tRNA binds the 5’ -untranslated region of the nascent
mRNA and stabilizes the antiterminator. b) In the absence of uncharged, cognate tRNA, the more stable terminator forms and transcription is
terminated before the translation start site.
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From a drug discovery perspective, a key factor to
determine is the range of ligand-induced stabilization
that can be accommodated without overly stabilizing the
antiterminator element and precluding terminator for-
mation. The goal of our T box drug discovery project is
to determine the key ligand features that lead to specific
antiterminator binding, but that do not result in exces-
sive stabilization of the antiterminator secondary struc-
ture. These ligands could then potentially compete with
tRNA for binding to the antiterminator, but still allow

terminator formation such that transcription of a T box
gene critical for bacterial survival would be terminated
(Figure 2). The predicted thermodynamic stability (ΔG)
of the terminator and antiterminator structural elements
have been compared for the B. subtilis tyrS T box [4].
However, there has been no systematic comparison of
predicted thermodynamic stability differences for a lar-
ger set of T box genes. Using a structural bioinformatics
approach, we have analyzed the differences in predicted
free energy (ΔΔG) between antiterminators and

Figure 2 T box drug discovery goal. As soon as the antiterminator is transcribed (a), a small molecule ligand competes with tRNA for binding
the antiterminator (b), but does not overly stabilize the antiterminator such that the terminator can form and transcription is terminated (c).
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terminators in a set of aaRS T box genes in order to
predict an upper limit of ligand-induced stabilization
that can potentially be accommodated.

Methods
The thermodynamic stability of T box antiterminator and
terminator structural elements was calculated using the
DINAMelt server [21]. The DINAMelt server computes
the secondary structure and free energy of the folded RNA
using a secondary structure folding algorithm and empiri-
cally-derived nearest neighbour coefficients [21]. The fold-
ing algorithm predicts the minimum energy RNA
secondary structure using the available thermodynamic
data for base pairing, base stacking and destabilizing ener-
gies [22,23]. The sequences analyzed were predicted to be
involved in aaRS T box antiterminator and terminator
structural elements from Bacillus cereus (BC), Bacillus
subtilis (BS), Clostridium botulinum (CB), Clostridium dif-
ficile (CDF), Clostridium perfringens (CPE), Staphylococcus
aureus Mu50 (SA), Streptococcus agalactiae (SAG), and,
Streptococcus pyogenes (SPY) [2]. The ΔG for each aaRS
T box antiterminator and terminator sequence was deter-
mined using the Quickfold (RNA 3.0) option on
the DINAMelt server and the predicted thermodynamic
stability difference calculated from ΔΔG = ΔGTerminator -
ΔGAntiterminator. The % suboptimal setting was adjusted as
necessary to obtain the lowest free energy antiterminator
fold that had the consensus secondary structure of the
core seven-nucleotide bulge containing the 5’ -UGGN-3’
nucleotides that are complementary to the tRNA acceptor
end nucleotides [4].

Results and discussion
The free energy values for the antiterminator and termi-
nator structural elements of the T box genes analyzed

were calculated using the DINAMelt webserver [21].
The predicted ΔG values are listed in Additional File 1
and the relative comparisons of terminator vs.antitermi-
nator stability (ΔΔG) are summarized in Figure 3. The
overall average ΔΔG for all aaRS studied was -12.8 kcal/
mol. The average ΔΔG values did not differ significantly
between bacteria when comparing between the patho-
genic bacteria nor between pathogenic vs. the non-
pathogenic bacteria studied (BS) (Figure 3a). In contrast,
there were significant differences in ΔΔG averages
between specific aaRS with alanyl aaRS having the smal-
lest average ΔG (-7.8 ± 3.5 kcal/mol) and glycyl aaRS
having the largest (-20.1 ± 4.6 kcal/mol) (Figure 3b).
Based on these results, the glycyl aaRS, on average, may
be best able to accommodate ligand-induced stabiliza-
tion of the antiterminator and still allow formation of
the terminator. An important factor to consider, how-
ever, is that the free energy calculations are based on
empirically-derived parameters for known RNA struc-
tural motifs [21]. Structural motifs, especially in loops
and bulges, that have not been previously characterized
might contribute to the stability of the RNA elements
and not be accounted for in the DINAMelt ΔG calcula-
tions. Since the loop of the antiterminator is not highly
conserved [4], most likely there is no structural motif
within it that might contribute to the antiterminator sta-
bility, however, the possibility cannot be excluded.
Further investigation of experimentally-derived free
energy values of individual antiterminators and termina-
tors is needed.

Conclusions
The free energy of T box riboswitch antiterminator and
terminator elements was predicted and compared for a
series of aaRS T box genes. The observed aaRS-specific

Figure 3 Average calculated ΔΔG. Average calculated aaRS ΔΔG values grouped by a) bacteria and b) aaRS. Standard deviation indicated by
bar and number of aaRS sequences averaged noted over the individual columns.
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stability differences between these key riboswitch struc-
tural elements could potentially be targeted to effect
ligand-specificity in future drug discovery efforts.

Additional material

Additional file 1: Predicted ΔG values for aaRS T box terminators
and antiterminators.
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