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Abstract

Background: The relationships between the gene functional similarity and gene expression profile, and between
gene function annotation and gene sequence have been studied extensively. However, not much work has
considered the connection between gene functions and location of a gene's expression in the mammalian tissues.
On the other hand, although unsupervised learning methods have been commonly used in functional genomics,
supervised learning cannot be directly applied to a set of normal genes without having a target (class) attribute.

Results: Here, we propose a supervised learning methodology to predict pair-wise gene functional similarity from
multiplex gene expression maps that provide information about the location of gene expression. The features are
extracted from expression maps and the labels denote the functional similarities of pairs of genes. We make use of
wavelet features, original expression values, difference and average values of neighboring voxels and other features
to perform boosting analysis. The experimental results show that with increasing similarities of gene expression
maps, the functional similarities are increased too. The model predicts the functional similarities between genes to
a certain degree. The weights of the features in the model indicate the features that are more significant for this
prediction.

Conclusions: By considering pairs of genes, we propose a supervised learning methodology to predict pair-wise

and is not restricted to gene expressions.

gene functional similarity from multiplex gene expression maps. We also explore the relationship between
similarities of gene maps and gene functions. By using AdaBoost coupled with our proposed weak classifier we
analyze a large-scale gene expression dataset and predict gene functional similarities. We also detect the most
significant single voxels and pairs of neighboring voxels and visualize them in the expression map image of a
mouse brain. This work is very important for predicting functions of unknown genes. It also has broader
applicability since the methodology can be applied to analyze any large-scale dataset without a target attribute

Background

Functional genomics studies gene functions on a large
scale by conducting parallel analysis of gene expression
for a large number of genes [1]. The Gene Ontology
(GO) represents an important knowledge resource for
describing the function of genes [2] and has been widely
used for identifying functional similarities [3,4]. A lot of
research has been done to explore the relationship
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between the GO-based similarity and gene expression
profiles [5-8], and also the relationship between gene
function annotation and gene sequence [9]. All these stu-
dies are based on the assumption that genes with similar
functions have similar expression profiles in cells [10] or
have similar gene sequences. However, little research
considers the relationship between the gene functions
and the location of a gene’s expressions in the mamma-
lian tissues. Voxelation is a new approach that involves
dicing the brain into spatially registered voxels (cubes)
and performing microarray experiments in each voxel to
detect expression values of a large number of genes.
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Combining voxelation with microarray analysis produces
multiple volumetric maps of gene expression values of
the mice brain. The expression maps are analogous to
the images reconstructed in biomedical imaging systems
[11-13] and show good agreement with known expres-
sion patterns [14].

Different machine learning methods have been proposed
to analyze gene expression data and predict gene functions.
The most popular methodologies in functional genomics
are unsupervised learning methods such as clustering algo-
rithms, which use a similarity measure to cluster genes
with similar expression profiles [15]. Previously we identi-
fied the similarity of gene expression maps using the wave-
let transform and the similarity between gene functions
based on the GO structure and appropriate distance mea-
sures [14]. We also performed unsupervised learning
methods, like clustering analysis, on the voxelation dataset
to detect gene clusters that have both similar gene expres-
sion maps and similar gene functions [14]. However, by
only having the gene expression patterns of normal genes,
it is hard to directly use supervised learning methods for
mining biological rules from gene expression maps. In this
study, we build a new dataset of pair-wise genes, so that
the supervised learning methods, like classification and
regression, can be applied. We extract more features
besides the wavelet features, and further study the relation-
ship between the gene maps and functions based on the
new dataset. Although there are similar studies which use
pairs of genes to predict gene functions [16,17], these stu-
dies are based on a small number of genes, while our
methods are good at analyzing a huge number of genes
and identifying the significant voxels in the mice brain.

In this paper we introduce an approach to identify pair-
wise gene functional similarities from gene expression
maps employing supervised learning techniques. A new
dataset is formed by considering pairs of genes from the
voxelation dataset as samples. For each sample gene pair,
the similarities or distances between the corresponding
gene expression maps are used as features to describe it.
The labels for gene pairs are their functional similarities.
Consequently, we formulate the problem of identifying
the functional similarity between genes as a supervised
learning problem. We use AdaBoost as the basic frame-
work for our learning and prediction task. In order to fit
the dataset which has huge number of samples and lim-
ited number of features, we propose a novel weak classi-
fier that efficiently captures the distribution of individual
features. We further restrict the dataset to the genes
which are associated with previously detected functional
expression profiles to strengthen the relationship
between gene functions and gene maps. The experimen-
tal results show that the pair-wise gene functional simila-
rities are increased with increasing similarities of gene
expression maps. In addition, the boosting analysis
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classifies, with a high accuracy, the gene pair samples
into two classes: pairs of genes with similar functions and
those without. The analysis of feature selection in the
learning process indicates which features are significant
for identifying the functional similarity from gene expres-
sion maps. Those features can be located and visualized
in the expression map image of a mouse brain. These
findings can be potentially used for predicting gene func-
tions and providing helpful clues to biologists. This
manuscript significantly adds to the preliminary results
reported in [18] by investigating new image features, per-
forming new experiments to select the most significant of
the 455 features, analyzing more gene ontologies, and
performing regression in addition to classification used
earlier [18]. The most significant features detected are
different and more effective from those obtained in [18]
resulting in increased prediction accuracy.

The rest of this paper is organized as follows. In the
methods section, after describing the pair-wise samples
of multiple gene expression maps and briefly discussing
how to extract features from the original gene expres-
sion maps and identify gene function distance, we pre-
sent approaches for identifying functional similarities of
pair-wise samples by Boosting and our proposed weak
classifier. In the results section, we present the experi-
mental results of identifying the relationship between
similarity of gene expression maps and their functions,
as well as the results from boosting analysis. The discus-
sion section provides an analysis of the obtained results
and ideas for future applications of this methodology.

Methods

Gene expression maps

Voxelation has been used in combination with microar-
rays for acquisition of genome-wide atlases of expression
patterns in the mouse brain [13]. For this study multi-
plex gene expression maps for 20,847 genes have been
acquired using the procedure below. After obtaining a 1
mm coronal slice of the brain at the level of striatum
the slice is cut by a matrix of blades resulting in cubes
(voxels) that are 1 mm3. The locations of these voxels
on the slice are recorded as Figure 1 shows. Voxels Al,
A2, Bl... are in gray because they correspond to empty
cubes that are assigned to maintain a rectangular. So,
each gene is represented by the gene expression values
of 68 voxels that compose a gene expression map of a
mouse brain. By using different colors to show different
values of gene expression, the expression map of the
genes can be visualized as in Figure 2.

The dataset we consider in this study forms a 20,847
by 68 matrix, where each row represents the log2 ratio
68 expression values of a particular gene, and each col-
umn represents the expression values for all the probes
(genes) at a given voxel. To reduce the effects of noise
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Figure 1 Voxels of the coronal slice.
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in the original dataset, we discard genes whose gene
expression values fall in the range [-1,1]. The remaining
13,576 genes’ IDs are imported into the SOURCE [19]
database [20] to retrieve their Gene Ontology (GO)
annotation information. Out of the 13,576 genes, 7,883
genes are known genes and are annotated with at least
one GO term. Our analysis is based on these genes.

We denote the set of genes as G={g;, go,..., gn}, where
N = 7,883.

Pair-wise samples

Gene expression maps can be viewed as samples that can
be analyzed using data mining techniques. However, the
targets or labels associated with each sample are not

2 4 6 8 10
Figure 2 Visualized gene expression maps.
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always available, as is the case in our study. Therefore, we
form a new dataset by considering each pair of gene
expression maps as a sample, and calculating the func-
tional similarity of the gene pair i.e., the distance between
the functions of its two genes, which becomes the label
for that sample. As a result, the problem of identifying
the relationship between gene expression maps and gene
functions is formulated as a regression problem. That is,
a sample is defined as

(81, 8,) with a "label” d(g;, 8,),

where (g;,82) is a pair of genes, and dg(g;,g>) is the
desired function distance for this pair of genes which we
intend to approximate.

Suppose g1, g2, g3,... are gene maps and dp(gy, ), dr
(g2, g3), de(g1, g3) are gene function distances between
the pairs (g1, g2), (82, g3), (g1, g3) respectively, we have
samples for all the gene pairs:

g1 8 di(g 8)
g1 8 dr(g 8)
8 8 dr(gy 8)

Given this dataset, the problem boils down to finding
the relation between the pair-wise gene expression map
similarity and the pair-wise gene functional similarity. In
our previous analysis of gene expression maps [14], we
have defined the similarity between two gene expression
maps as the Euclidean distance between their wavelet
representations, and calculated the similarity (distance)
between two gene functions based on gene ontology
structures using Lin’s method [21]. We have shown that
the similarity between gene expression maps is positively
correlated to the similarity between gene functions,
which encourages the study of the relationship between
pairs of gene maps and their functional similarity.

Functional similarity of pairs of genes

We perform the analysis with respect to each one of the
three gene ontologies, i.e., cellular component, molecular
function and biological process. For example, in the cate-
gory of biological process, if gene g; has functions F(g;) =
{f11, fio..., fin} and gene g, has functions F(gy) = {foy, f2s,
f; m}, we define the function similarity (or distance) value
between these two genes as the averaged functional dis-
tance of pairs of functions between the two genes. This is
calculated using the following formula:

! Z Z dﬁmc(flrfz) lf =0

r 1€F(81) f2€F(8
dr(g1,22) = f1€F(81) f2€F(82) ’

0 ifT=0
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where

I' = #{dunc(f1, f2) > 0, Vfi € F(81),f> € F(82)}

provides a count of the number of function pairs with
non-zero distances and dj,,(.,.) is the gene function
distance.

Extracting features from the expression maps and
forming the feature vector

First, in order to reduce the noise in microarray experi-
ments and improve the signal, we average the left and
right hemispheres by taking advantage of the inherent
bilateral symmetry of the mice brain. For each row of the
map, we average the green cells, as shown in Figure 3,
replace Bl with B11, A2 with A10, and the averaged gene
expression map is obtained. In order to take into account
the spatial location of voxels in the brain map, we use the
wavelet transform to extract features from the averaged
gene expression map (right part of Figure 3). By employ-
ing multilevel 2-D wavelet decomposition at level 3, we
obtain 42 coefficients, i.e. wavelet features. More detailed
information on extracting the wavelet features is given in
[14].

In addition to the 42 wavelet features and the 68 ori-
ginal expression values, we introduce three new features:
the correlation coefficient, the p-value of the correlation
coefficients, and the Euclidean distance between pair-
wise gene maps for each sample. Each p-value is the
probability of getting by chance a correlation as large as
the observed value, when the true correlation is zero. If
P(i,j) is small, e.g., less than 0.05, then we consider the
correlation R(i,j) to be significant.

Moreover, we extract features from pairs of neighbor-
ing voxels in the gene expression maps. The neighboring
voxels, for example, in Figure 4, include the horizontal
pairs of cells (A, B) and (C, D), the vertical pairs of cells
(A, C) and (B, D), and the diagonal pairs of cells (A, D)
and (C, B). Among the 68 cells in Figure 1, there are 61
pairs of horizontal neighboring cells, 57 pairs of vertical
neighboring cells, and 53 pairs of diagonal neighboring
cells. So, we have a total of 171 (= 61 + 57 + 53) pairs
of neighboring voxels. For each pair, we average the
gene expression values and calculate the absolute value
of the difference of the two cells. For example, for the
pair of voxels (A, B), the average value is (A+B)/2 and
the absolute value of difference is |A-B|. Thus, we
totally extract 342 (= 171*2) features from the pairs of
neighboring voxels.

Therefore, for each gene map, we concatenate its 42
wavelet coefficients, the 68 gene expression values, the
three new features, and the 342 features of the neigh-
bouring voxels, resulting in a 455 dimensional descrip-
tor. Given two genes g; and g,, let W; and W, be their
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Figure 3 Averaging left and right hemispheres of the mouse brain.

feature vectors respectively. We derive the feature vector = There are in total 31,066,903(= 7883 x 7882/2) samples
V of the gene pair (g3, &) such that of gene pairs. Each sample has 110 features. The dataset
is too large to be handled by many popular machine
learning methods, such as the Support Vector Machine.
Boosting [22], however, solves this problem by loading
and computing samples and features (weak learners)
(V. dr(g1,£2))- sequentially. Another advantage of using boosting is that
it provides a way to investigate the roles of features in
the learned classifier/regressor. In our particular task,
Identifying functional similarities of pair-wise samples by this helps understanding the importance of each indivi-
boosting dual feature in predicting the gene similarities.
Having the features and the samples ready, we need to Since boosting is usually used to solve classification
choose a learning technique for our task. Here we face problems, we need to transform the regression problem
the challenge of dealing with a huge sample dataset. ¢4 5 classification problem by setting a threshold. The
threshold is used to classify the continuous values of
function distances into two classes: one that includes
the samples (pairs of genes) with similar functions, and
another that includes the samples with non-similar
functions. So the classification problem with the contin-

V(i) = [Wi(i) = Wa(i)|

Therefore, a gene pair sample can be represented as:

uous output in the range [-1,1] is transformed to a pro-
blem with two classes {-1, 1}, through a predefined
threshold.

There are several variants of boosting algorithms that
are widely used in the fields of data mining and pattern
recognition. We choose AdaBoost [23] due to its excel-
lent performance observed in many applications and its
flexibility in weak classifier design. Intuitively, AdaBoost
uses a weighted additive model to fit the training data.

The model, which is named a strong classifier, is a

weighted summation of a set of weak classifiers. The
weight and weak classifiers are iteratively estimated or
selected until convergence.

In our task, for an input feature vector V, a strong

classifier denoted as H(V) is formulated as a combina-
Figure 4 Examples of pairs of neighbouring voxels. tion of weak classifiers h;(V), hy(V),..., hg(V):
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K
H(V) = ah(V),

k=1

where ¢y is the weight for the k-th weak classifier hy.
The task of the learning process is, in the k-th iteration
where k = 1,...K, to either fit hy or to pick hy from a
candidate set of weak classifiers. The fitting or selection
is based on the classification performance achieved on
the training samples weighted by the current weights.

Designing the weak classifiers

One popular way of designing weak classifiers is to
associate with each weak classifier a threshold in order
to create a binary classifier, i.e., a stump function. In
particular, for the i-th feature V(i) in our feature vector
V and a threshold 1, a weak classifier has the form

hi,r(v) — { 1 lf V(l) =T .
-1 ifV(@) <t

The learning process is to find i, 1, and ¢y for each
one of the weak classifiers. In this case, a weak classifier
is associated with only one feature. As a result, the
weight ¢, can be used to evaluate the importance of the
feature in the strong classifier, i.e., the ultimate model
used for prediction.

The binary classifier is very simple and easy to imple-
ment. However, for a complex learning task such as the
one we are dealing with, having weak classifiers that are
more effective often helps improving the learning and
predicting efficiency while reducing the number of weak
classifiers needed. In addition, in our study we have a
huge set of training samples, which enables us to use
better but more complex weak classifiers. Motivated by
this observation, we extend the simple stump classifier
by modeling the weak classifier with uniformly spaced
bins. Specifically, our weak classifier for the i-th feature
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contains an indicating vector Le {-1,1}™, where M is a
predefined number of bins. A classifier has the following
form

W (V) = L(index(V (i) ,

where index(V(i)) is the index of the bin V(i) falls into.
In the learning stage, the task at each iteration is to
select the feature i that best estimates the indicating
vector L. This is done by building a cumulated weight
followed by a voting. The stump weak classifier can be
viewed as a simplified case where M = 2.

Figure 5 shows an example of a weak classifier
learned from one of the features of the training data. It
shows that the range of features is divided into small
regions. The intervals of weak classifiers depend on
the range of each feature (i.e. the max and min values
of the feature). We divide the range uniformly with
fixed sizes. The label for each region is the sum of
weighted labels of samples within the region. When
the weak classifier is used in prediction, the sample is
assigned the label of the region in which this specific
feature falls.

Applying the learning method to the MFEP specific
subset

The relationship between the gene functions and gene
expression maps does not hold for all genes but only
for a certain set of genes. For this reason, we take
advantage of previous results obtained [24] using multi-
ple functional expression profiles (MFEPs) to perform
the boosting analysis. For a given gene function or a set
of gene functions, there might be a specific gene expres-
sion map (profile) associated with it. Genes that have
similar gene expression maps to a specific profile may
hold similar gene functions. We call this specific gene
expression profile for a set of functions, Multiple Func-
tional Expression Profile (MFEP). Genes associated to

A Weak Classifier

+ =

0.1 0.2 0.3

Figure 5 An example of a proposed weak classifier.

Range of a feature




An et al. BMC Bioinformatics 2012, 13(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/13/53/51

an MFEP have the same set of gene functions and also
have very similar gene expression maps. The detected
MEFEPs can be used to predict gene functions with high
accuracy [24]. In order to explore the strong relation-
ship between gene functions and expression maps, we
use a subset of genes instead of the whole dataset. This
subset is created by calculating the expression features
and labels of pairs of genes that are associated with the
detected MFEPs, so we call it MFEP specific subset.
Using this subset, we aim to discover a regression rela-
tionship between the gene expression similarity (expres-
sion features) and gene function similarity (labels).

Performing regression using boosting on the MFEP
specific subset

For the regression, the label of each sample is taken as
the functional similarity between a pair of genes which
is a continuous number in the range of 0 to 1. The
regression is performed by the AdaBoost algorithm. To
create the weak classifier, a threshold is again used to
divide the dataset into two classes, with each sample
having a label of -1 or 1. As the weighted summation of
weak classifiers, the outputs of the strong classifier are
fed into logistic transformation to produce regression
results in the range of 0[1]. The modified AdaBoost
algorithm to do the regression is given below [23]:

Given: (x1,1)-(*,5Y,m), where xge X ye Y = {-1, +1}

1

Initialize Dy(i)= ,i=1,..,m
m

For ¢t =1,.,T:

Find the classifier /1, X—{-1,+1} that minimizes the
error with respect to the distribution D,

m

h = agMINe where 5 = ) Dy(i)ly # hi(x:)]
i=1

if &, > = 0.5 then stop.

11—
Choose o€ R, typically «; = ) In gt, where ¢, is
&t
the weighted error rate of classifier 4,.
Update:
D, (i —a, v - hy(x
Dy (i) = (i) exp(—a; - yi - he(xi))

Z

where Z, is a normalization factor (chosen so that D,
+ 1 becomes a probability distribution, i.e. sum one
over all elements).

Output the final classifier:

o)

Prly = +18 = 4 s
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Where f(x) is the weighted average of base classifiers
produced by AdaBoost

flx) = Zt achy(x)

Results

Based on the proposed methodologies, we study the
relationship between similarities of gene expression
maps and their functions. We also perform boosting
analysis on the MFEP specific and restricted subsets and
built models. Using the boosting models, we predict
pair-wise functional similarities and calculate the predic-
tion accuracies. At last, we perform regression analysis
using the modified Adaboost on the MFEP specific and
restricted subsets. The detailed experimental results are
presented and analyzed in the following sections.

Identifying the relationship between similarity of gene
expression maps and their functions

First, we analyze the MFEP specific subset which consists
of genes associated with the MFEPs. We use the correla-
tion coefficients R and associated p-values P among the
42 wavelet features to identify the similarity between
gene expression maps. Specifically, R contains the corre-
lation coefficients between genes and P contains the p-
values for the hypothesis of no correlation. R is taken as
the similarity between gene maps to analyze the subset of
genes within MFEPs. Given an interval of R, for example
[0.1, 0.2], we select the set of samples falling within this
interval and average their functional similarities.

All 345 genes associated to the MFEPs are used in the
experiment, resulting in the number of combinations of
2 elements from a total of 345 elements, i.e., C(345, 2)
(= 59,340) samples. The distribution of the correlation
coefficients and the corresponding averaged functional
similarities of samples are shown in Figure 6. The figure
shows that when the similarities of gene maps are
increasing, the function similarities are also increasing.
The trend is very obvious for the samples with high cor-
relation coefficients (larger than 0.6).

Boosting analysis on the MFEP specific subset

We conducted the boosting analysis on the MFEP speci-
fic subset of the 59,340 samples using our proposed
weak classifiers and AdaBoost. The dataset was ran-
domly split into two disjoint dataset: a training set
(29,670 samples) and a test set (29,670 samples). The
functional similarities between two genes are continuous
values in the range 0[1], where “0” indicates no func-
tional similarity and “1” indicates that the two genes
have exactly the same functions. In the experiment, we
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set the threshold 0.3 as a cut-off value for the similarity.
If the value was larger than 0.3, we set the label to 1,
otherwise we set the label to -1. With this threshold,
there were 33.5% training samples that were assigned
label 1, and 33.3% control (test) samples that were
assigned label 1. The model was learned based on the
training set, and was then used to predict the labels of
samples in the test set.

For the weak classifier, we chose the value 20 for the
number of bins. For the AdaBoost algorithm, the boost-
ing was repeated for 6000 iterations to reach a stable
performance on the prediction. Using these settings, we

calculated the prediction error on the training and con-
trol samples.

With respect to cellular component, the minimum
error on training data was 25.05%, and the minimum
error on control data was 29.79%. For the number of
iterations performed, the error converged to a certain
value. By changing the number of regions and the num-
ber of iterations, the error rate varied. The prediction
errors with respect to other gene ontologies are shown
in Table 1.

Boosting selects the best feature (weak classifier) at
each iteration and gives a weight to the feature. Figure 7

Table 1 Minimum prediction errors on the MFEP specific and restricted subset with respect to gene ontologies

Ontology

Minimum error on specific subset

Minimum error on restricted subset

Training data

Control data

Training data Control data

Cellular Component 25.05% 29.79% 0 16.9%
Molecular Function 32.09% 37.36% 0 25.14%
Biological Process 27.72% 28.84% 0 2047%
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shows the cumulated weight of the 455 features over the
6000 iterations with respect to cellular component. The
histogram bar corresponding to a certain feature is the
sum of the weights of the feature which are selected
during the 4000 iterations. For example, if a feature is
selected m times with weights wy, wy,..., wy,, the sum of
weights of the feature is ¥; - ;™ w;. Among the 455 fea-
tures, the top 10 selected features were the 7204 g5th
100™, 113", 69", 78", 105", 131%, 110™, and 398" fea-
tures. Observe that the most selected features were the
original expression values (729, 95, 100", 69", 78,
and 105", the average of neighbour cells (131%), the
absolute value of difference between neighbour cells
(398™), and the Euclidean distance between pair-wise
gene maps. Since the Euclidean distance directly reflects
the appearance similarity of two gene maps, this obser-
vation strongly supports our conjecture that gene map
similarities correlate closely with the gene functional
similarities. The wavelet features were not among the
top 20 features selected.

Because the 68 original features are gene expression
values in the 68 voxels (Figure 1), we can visualize and
locate these features in the mouse brain. For example,
the most selected original voxels with respect to cellular
component are shown in Figure 8 as D1, F3, F8, C9, D7,
G4, and G9. In the figure, the darker mark indicates
that the voxel is selected more frequently (in terms of
sum of weights) and that is more significant in predict-
ing the functional similarity of genes from the gene
expression maps. The boosting experiment also selected
features extracted from pairs of neighbour cells. The top
selected such features were the average expression
values of pairs of voxels: (F3, E3), (C9, C10), (C1, C2),
and the absolute value of difference between pairs of
voxels: (A5, A6), (D6, E7) as Figure 9 shows.

Boosting analysis on the restricted subset

Figure 7 shows that there is still noise weakening the
relationship between functional similarities and correla-
tion coefficients within the MFEP specific subset. There-
fore, we considered a restricted subset of the MFEP set
(consisting of 612 samples) in which the samples have
correlation coefficients bigger than 0.7 (illustrated by the
square in Figure 7).

Similarly, we applied the boosting analysis on the
restricted subset of 612 samples using our proposed
weak classifiers and AdaBoost. The dataset was ran-
domly split into two disjoint dataset: a training set
(441 samples) and a test set (171 samples). By setting
a threshold of 0.67 on the similarity values, there
were 35.2% training samples that were assigned label
1, and 30.3% control (test) samples that were assigned
label 1.

There were a total of 455 features for each sample in
the experiment. For the weak classifier, we chose the
value 20 for the number of bins. For the AdaBoost algo-
rithm, we performed 5000 iterations to reach the best
performance of the prediction. Using these settings, we
achieved the minimum error on training and control
data with respect to all three different gene ontologies
(Table 1). The results show that the accuracy of predict-
ing gene functional similarities is better on the restricted
subset. Figures 10, 11, 12 show the cumulated weight of
selected features of Cellular Component, Molecular
Function, and Biological Process respectively. The histo-
gram bar of a certain feature is the sum of the weights
of the feature which are selected during the 5000 itera-
tions. Additional file 1 shows the top selected original
voxels and the features extracted from neighbouring
voxels. Wavelet features were not among the top 10
selected significant features.
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Performing regression by boosting

We applied the proposed Adaboost method to perform
regression on the MFEP specific subset of the 59,340
samples. The dataset was randomly split into two dis-
joint sets: a training set (29,670 samples) and a test set
(29,670 samples). The labels of each sample were con-
tinuous values in the range O[1]. The prediction error
was calculated using the Root Mean Squared Error
(RMSE) of the difference vector between the actual
labels and predicted labels. The RMSE was also used
in the algorithm to get the error for the strong classi-
fier. There were totally 113 features for each sample in
the experiment. For the weak classifier, we chose 100
as the number of bins. For the AdaBoost algorithm,
the boosting was repeated for 10,000 iterations to
reach a stable performance on the prediction. Using
these settings, we calculated the prediction error on
the training and control samples. The minimum RMSE
on training data and control data with respect to three
different gene ontologies are shown in Table 2. By
changing the number of regions and number of itera-
tions, the error rate varied. The results indicate that
the prediction performance is better on the restricted
subset.

Discussion

In this study, we identify the pair-wise gene functional
similarities by multiplex gene expression maps. This is
based on the hypothesis that genes with similar gene
expression maps share similar gene functions which was
confirmed for a number of genes in previous analysis
[14]. Since the dataset we had available only contained
gene expression maps, it was hard to use supervised
learning to analyze it, so, instead, we built a new dataset
in which each sample represented a pair of genes. The
features for these samples were the similarity or distance
values between two gene expression maps, and the
labels were the functional similarities between genes.
We used the wavelet transform to extract features from
the averaged hemispheres of the mouse brain, and also
extracted features from all the pairs of neighbouring
voxels. In addition, the correlation coefficients, the p-
value of the correlation coefficients and the Euclidean
distance were included in the calculation of the differ-
ence between gene expression maps. We used the abso-
lute difference between each pair of features of the two
genes as the features of samples, and the functional
similarities of two genes as the labels. The functional
similarities were the averaged function distances for
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each pair of functions included in the two genes. The
similarity (distance) between any two gene functions
was obtained by Lin’s method based on GO structures.
We also built the MFEP specific subset using multiple
functional profiles [24] so that the genes in the subset
had strong relationship between gene functions and
gene expression maps. Based on the MFEP specific sub-
sets, we applied AdaBoost and proposed a weak classi-
fier to fit the characteristics of the dataset. We further
restricted the dataset to a more specific one and tested
our proposed method on this subset. This methodology
can be applied to analyze any large-scale dataset without

a target attribute, and is not restricted to gene
expressions.

From the experiment on identifying the relationship
between similarity of gene expression maps and func-
tional similarity, we observed that with increasing simi-
larities of gene expression maps, the pair-wise genes’
functional similarities were also increased, especially for
samples with correlation coefficients between pairs of
gene maps larger than 0.8. From the boosting analysis,
we were able to predict functional similarities of pairs of
genes with about 84% accuracy (16% error rate) on the
restricted MFEP specific subset. Using the proposed
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Figure 12 Cumulated weight of selected features on the restricted subset - Biological Process. 1 - 42: wavelet features; 43 - 110: original

voxels; 111: the correlation coefficient; 112: the p-value of the correlation coefficients; 113: the Euclidean distance between pair-wise gene maps;
114 - 284: average of neighbouring voxels; 285 - 455: absolute value of difference between neighbouring voxels.
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Table 2 Minimum Root Mean Squared Error (RMSE) on the MFEP specific and restricted subset with respect to gene

ontologies

RMSE on restricted subset

Control data

Training data Control data

Ontology RMSE on specific subset
Training data
Cellular Component 0.3287
Molecular Function 0.3928
Biological Process 0.3699

0.3475 0.2207 0.2829
04075 0.2030 0.3582
0.3808 0.2371 0.3539

methods, the similarity of pairs MFEP gene expression
maps can drive the assignment of new GO terms having
similar functions to a new gene.

The selected weak classifiers were able to identify the
features that are more important for the prediction. By
checking the most selected original features and wavelet
features we were able to locate the significant single
voxels and the neighbouring voxels in the mouse brain.
The most highly selected voxels generally corresponded
to the salient neuroanatomical features of the analyzed
brain slice. For example, in Figures 8, the most selected
voxels corresponded to cortex and striatum. The top
selected wavelet features in Additional file 1 also fea-
tured cortex and striatum. These observations are con-
sistent with the major molecular and anatomical
features of the brain slice.

In the current study, the samples were divided into
two classes in accordance to our binary classification
formulation. In the future, we plan to use a finer split of
the samples (e.g., four or more classes) to improve the
precision and model the problem as a regression pro-
blem. There are many linear regression algorithms that
can handle large amounts of training data. In the future,
we will try different regularizers besides boosting, such
that there will be no need to make arbitrary thresholds
of labels. Furthermore, since the Euclidean distance
between wavelet representations may be insufficient to
capture non-linearity in the complicated gene map-to-
gene function relationship, we plan to investigate other
information that is not captured by the wavelet repre-
sentation. We also plan to incorporate other features
besides the current ones into the analysis to further
improve the model.

Additional material

Additional file 1: The most selected original voxels on the restricted
subset (best viewed in color).
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