
PROCEEDINGS Open Access

Efficient path-based computations on pedigree
graphs with compact encodings
Lei Yang*, En Cheng, Z Meral Özsoyoğlu

From ACM Conference on Bioinformatics, Computational Biology and Biomedicine 2011 (ACM-BCB)
Chicago, IL, USA. 1-3 August 2011

Abstract

A pedigree is a diagram of family relationships, and it is often used to determine the mode of inheritance
(dominant, recessive, etc.) of genetic diseases. Along with rapidly growing knowledge of genetics and
accumulation of genealogy information, pedigree data is becoming increasingly important. In large pedigree
graphs, path-based methods for efficiently computing genealogical measurements, such as inbreeding and kinship
coefficients of individuals, depend on efficient identification and processing of paths. In this paper, we propose a
new compact path encoding scheme on large pedigrees, accompanied by an efficient algorithm for identifying
paths. We demonstrate the utilization of our proposed method by applying it to the inbreeding coefficient
computation. We present time and space complexity analysis, and also manifest the efficiency of our method for
evaluating inbreeding coefficients as compared to previous methods by experimental results using pedigree
graphs with real and synthetic data. Both theoretical and experimental results demonstrate that our method is
more scalable and efficient than previous methods in terms of time and space requirements.

Introduction
With the rapidly expanding field of medical genetics and
genetic counselling, genealogy information is becoming
increasingly abundant. In January 2009, the U.S. Depart-
ment of Health and Human Services released an updated
and improved version of the Surgeon General’s Web-
based family health history tool [1]. This Web-based tool
makes it easy for users to record their family health his-
tory. Large extended human pedigrees are very informa-
tive for linkage analysis. Pedigrees including thousands of
members in 10-20 generations are available from geneti-
cally isolated populations [2,3].
The Utah Population Database [4] with 1.6 million gen-

ealogy records is one of the large, heavily used pedigree
data collections. The Jagelman Registries of Cleveland
Clinic [5] is an example of a pedigree data collection
which is heavily used by medical and genetic researchers
for the analysis of hereditary structure and identifying
risk factors for inherited colon cancer.

Pedigrees are hierarchical structures showing heredi-
tary relationships between individuals, and are typically
represented as directed acyclic graphs (DAGs). In a pedi-
gree graph, the set of paths to an individual from its
ancestors is important for computing quantitative mea-
sures of the genetic relationship between individuals,
such as inbreeding coefficients, kinship coefficients, and
identity coefficients. For example, Wright’s path-counting
formula [6], for computing inbreeding coefficients
requires all paths from a common ancestor to a given
individual’s parents. More specifically, the inbreeding
coefficient of an individual is a function of the number
and location of the common ancestors of both parents of
this individual in the given pedigree. Efficient computa-
tion of inbreeding and kinship coefficients is important
for large pedigrees, especially for real time applications
such as genetic counselling. The inbreeding coefficient of
an individual is one of the parameters in calculating the
cancer risk of an individual in hereditary cancers [7].
Inbreeding is also important for wildlife conservationists
and purebred livestock. Inbreeding coefficients are calcu-
lated routinely for animals included in national genetic
evaluations for yield traits [8], and animal selection [8].

* Correspondence: lxy105@case.edu
Electrical Engineering and Computer Science Department, Case Western
Reserve University, Cleveland, OH, USA

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

© 2012 Yang et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:lxy105@case.edu
http://creativecommons.org/licenses/by/2.0

With the rapidly accumulation of genealogy information,
there is need for scalable computation schemes due to
both the increasing volume of available pedigree data,
and the increasing usage of pedigree data analysis in
medical genetics for hereditary diseases.
In the conference paper [9], we propose a compact

encoding for pedigree graphs to be used for scalable and
efficient computation of inbreeding coefficients and
other genetic measures utilizing path-counting formulas
on large pedigrees. The Compact Path Encoding for a
directed acyclic graph (CPE) includes two parts: the first
is called the Prefix-based Encoding for a Tree (PET),
and the second part is the encoding for Non-Tree Edges
(NTE). CPE encoding and using it in computing
inbreeding coefficients has been first proposed in the
conference paper [9]. In this paper, we proposed an
improved algorithm which computes the inbreeding
coefficient using CPE more efficiently. We provide time
and space complexity analysis for CPE encoding algo-
rithm and show that the size of the CPE code produced
by the encoding algorithm is optimal. We also present
experimental results evaluating the performance of our
method for calculating inbreeding coefficients with all
the previous methods. The main contributions of this
paper are as follows:
I) A compact path encoding scheme for pedigree

graphs.
II) An efficient algorithm for encoding pedigree graphs

which produces compact path encoding with minimal
size.
III) An efficient and scalable algorithm for calculating

inbreeding coefficients on large pedigrees using the
compact path encoding.
IV) Time and space complexity analysis of the

inbreeding coefficient computation algorithm.
V) Experimental results demonstrating significant per-

formance gains for calculating inbreeding coefficients as
compared to other label-based schemes and traditional
recursive algorithms.
While we focus only on pedigree graphs in this paper,

Compact Path Encoding Scheme and the algorithm for
constructing paths using node labels are also applicable
to other directed acyclic graphs for efficient path
manipulation.

Problem statement
Pedigree data is represented by a directed acyclic graph,
where the nodes represent individuals, and directed
edges represent parent-child relationships. Given a pedi-
gree graph, we can calculate many quantities of interest
such as checking if an individual has inbreeding, com-
puting an individual’s inbreeding coefficients or comput-
ing kinship coefficients between individuals. Given an
individual n having father f and mother m, the kinship

coefficient between f and m is the probability that a
gene selected randomly from f and a gene selected ran-
domly from the same autosomal locus of m is identical
by descent. Actually, the inbreeding coefficient of n is
equal to the kinship coefficient between f and m. Alter-
natively, inbreeding coefficient of an individual can also
be stated as the probability that both copies of any
given gene of the individual are received from the same
ancestor. The inbreeding coefficient can be computed
using a recursive formula for computing kinship coeffi-
cients [10], or using Wright’s path counting formula [6].
Given an individual n, Wright’s formula for inbreeding
coefficient Fn is:

Fn =

⎧⎪⎨
⎪⎩

∑
A

∑
P

[(
1
2

)r+s+1

(1 + FA)

]
if n has in breeding

0 otherwise

⎫⎪⎬
⎪⎭ (1)

where A is the common ancestor of the parents of n,
and FA is the inbreeding coefficient for A, P is a pair of
paths that is not overlapping from the common ancestor
A to the parents of n, r is the number of generations
between n and A from the maternal side, and s is from
the paternal side. The summation is performed over all
common ancestors of the parents of n and for all non-
overlapping pairs of paths from the common ancestor
to the parents.
For applications requiring pedigree queries embedded

into database queries, and pedigree data stored in a data-
base, recursive methods for computing inbreeding coeffi-
cients tend not to be very scalable due to many database
accesses. Path counting formulas on the other hand
require efficiently identifying and manipulating paths.
In this paper, we focus on a scalable scheme for encod-

ing pedigree graphs and efficient algorithms using path
counting formulas for computations on pedigree graphs.
Pedigree computations where path counting formulas
can be used efficiently include inbreeding coefficients,
kinship and generalized kinship coefficients [9,11], and
identity coefficients which can be expressed as a linear
combination of generalized kinship coefficients. Here, we
use the computation of inbreeding coefficients as an
example to demonstrate the efficiency of graph encoding
scheme for path-based computations. The outline for
inbreeding coefficients calculation using graph encoding
(labelling) techniques by identifying paths is summarized
in Figure 1, where the paths to an individual n can be
identified using the labels of the node in the pedigree
graph corresponding to the individual.

Graph encoding/labelling schemes
There are three families of labelling schemes [12],
namely bit-vector, prefix and interval. While very useful
for answering queries requiring descendants, ancestors,

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 2 of 22

siblings, etc., bit-vector [13] and interval-based schemes
[14,15] are not useful for identifying path information.
Since in this paper we need to identify paths, we focus
only on prefix-based schemes.
Prefix-based schemes directly encode the parent of a

node in a tree, as a prefix of its label using for instance
a depth-first tree traversal. Dewey labelling [16] is a pre-
fix based labelling for trees. EGDL [17] is an extension
of the Dewey labelling for DAGs. NodeCodes [18,19] is
a prefix based labelling scheme for directed graphs, also
used to encode pedigree data and path based pedigree
computations. Since NodeCodes labelling is closely
related to the scheme used in this paper, next we dis-
cuss it in more detail.

NodeCodes: a prefix based encoding
NodeCodes of a node is a set of labels each representing
a path to the node from its ancestors. Given a pedigree
graph, let r be the progenitor (i.e., the node with 0 in-
degree). For each node u in the graph, the set of Node-
Codes of u, denoted NC(u), are assigned using a
breadth-first-search traversal starting from the source
node r as follows:
1) If u is r then NC(r) contains only one element, the

empty string.
2) Otherwise, let u be a node with NC(u), and v0, v1, ...

vk be u’s children in sibling order, then for each x in NC
(u), a code xi* is added to NC(vi), where 0 ≤ i ≤ k, and *
indicates the gender of the individual represented by
node vi.
Basically, each node is assigned labels which are

sequences of integers and delimiters, the integers repre-
sent the sibling order, and the delimiters denote the

gender of the node, as well as being used to determine
the generations. We use ‘.’, ‘,’, and ‘;’ to denote female,
male or unknown respectively.
Example 1: Consider the pedigree graph with Node-

Codes as shown in Figure 2. There are 3 and 4 paths
from the root s to individuals P5 and P6 respectively.
Elements of NC(P5) = {<0.0,0.0,>, <1,0,0.0,>, <1,1.0.0,>}
each represents one of the 3 paths from s to P5. The
code <1,0,0.0,> in NC(P5) represents the path <s, P1, P2,
P4, P5>.
The basic steps for calculating the inbreeding coeffi-

cient of an individual n using NodeCodes include: 1)
Find the NodeCodes of mother m and father f of indivi-
dual n; 2) Identify common ancestors of m and f; 3) For
each common ancestor A, identify non-overlapping pairs
of paths from A to m and f, and compute the contribu-
tion to the inbreeding coefficients.
Given an individual n, with mother m and father f,

identifying common ancestors of m and f requires
matching NC(m) with NC(f) having the longest common
prefix for matching sets. Then, the longest common pre-
fix is used to identify the non-overlapping pairs of paths;
please see our earlier work [1,18] for details.
Having one code for each path from an ancestor to

the node is an advantage for NodeCodes in manipulat-
ing paths. For large pedigree graphs however, this is also
the shortcoming of NodeCodes since the number of
paths may increase significantly as pedigrees may have
(undirected) cycles, and the number of NodeCodes for
each node also increase, resulting the method to lose its
scalability.
Compact Encoding described below is similar to EGDL

[17], and uses one code for each node representing all

Figure 1 Algorithm: Inbreeding Coefficient.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 3 of 22

paths to the node from its ancestors. The paths are gen-
erated from this code as needed, and hence resulting in
significantly more compact representation of path infor-
mation as compared to NodeCodes.

Compact path encoding
In compact encoding, each node has one code repre-
senting all paths to the node from its ancestors, instead
of having one code for each of such paths as in Node-
Codes. All relevant path information can then be effec-
tively generated using only the information in the
compact encoding of the node.

Compact Path Encoding includes two parts: the first is
the representation of the node in a prefix based labelling
on a spanning tree of the graph where the unique pro-
genitor, r, is the root. This part is the Prefix-based
Encoding for Tree edges (or PET). Since there is a unique
path from r to each node considering only the edges of
the spanning tree, each node in the graph has a unique
PET code. The second part is the encoding for Non-Tree
Edges (or NTE) representing the list of non-tree edges in
the paths from the root to the node. Since each node is
uniquely represented by its PET code, each non-tree edge
(u, v) is represented as (PET(u), PET(v)).
Example 2: Consider the pedigree graph in Figure 3.

Compact Encoding of node P5, CPE(P5) = <0.0,0.0,#1,
#0.0,#1,0.#0.0,0.>, where 0.0,0.0, is PET(P5) which is the
NodeCodes of P5 w.r.t. the spanning tree. (<1,>, <0.0,>)
and (<1,0.>, <0.0,0.>) are the non-tree edges, (P1, P2) and
(P3, P4) in the paths from s to P5, where each edge (u, v) is
represented as (PET(u), PET(v)). In the CPE code special
symbols are used as delimiters.
In the next section, Compact Path Encoding is explained

with more details on the special delimiters that are used
for path construction from the codes.

Compact path encoding for DAGs
Given a single-root DAG G, the first step is to find a
Breadth-First tree T from G. As a result, all edges in G
are divided into tree edges and non-tree edges. After the
Breadth-First tree T is found, the prefix-based encoding
for a tree is performed on T. Then, for each node v in
G, we obtain the path-induced subgraph of v in G.
Definition (path-induced subgraph): The path-

induced subgraph of v in G, denoted as PS(v), is the
unique minimal sub-digraph of G that contains all the
paths in G from the root r to node v.
For a pedigree graph, any non-founder node is defined

as having (at most two) parent nodes. Given a non-
founder node v with parents f and m, we use a recursive
formula to obtain PS(v) according to PS(f) and PS(m).

PS(v) = PS(f)∪GPS(m)∪GGfmv

Gfmv = (V = {f ,m, v},E = {(f , v), (m, v)})
where ∪G denotes a graph union operator, which

operates on both the sets of vertices and the sets of
edges of two graphs.
To generate the CPE label of the node v in G,

denoted as CPE(v), we need to obtain all non-tree edges
of PS(v), denoted by NTE(v). We use the non-tree edges
of NTE(f) and NTE(m) to obtain NTE(v). More specifi-
cally, NTE(v) = NTE(f)∪NTE(m)∪{e} where e = (p,v)
denotes the non-tree edge from one parent p (either f
or m) to v.

Figure 2 A pedigree graph with NodeCodes.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 4 of 22

Figure 3 A pedigree graph with Compact Path Encoding.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 5 of 22

For an edge e in NTE(v), there are four cases:

case0 : e = (p, v)

case1 : e ∈ NTE(f) and e �∈ NTE(m)

case2 : e ∈ NTE(m) and e �∈ NTE(f)

case3 : e ∈ NTE(f) and e ∈ NTE(m)

Any edge e = (u, v) in G can be represented by a pair
of PET(u) and PET(v). More specifically, the CPE encod-
ing for a non-tree edge e Î NTE(v) is represented as

edgeCPE(e) =

⎧⎪⎪⎨
⎪⎪⎩

′$′ + PET(v1) +′ $′ + PET(v2) if case0
′ ∗′ +PET(v1) +′ ∗′ + PET(v2) if case1
′#′ + PET(v1) +′ #′ + PET(v2) if case2
′&′ + PET(v1) +′ &′ + PET(v2)if case3

where {’$’, ‘*’, ‘#’, ‘&’} denote PET delimiters.
Finally, for a node v which has the non-tree edges {e1,

e2 ... eg} in PS(v), the CPE encoding for v is represented
as

CPE(v) = PET(v) + edgeCPE(e1) + . . . + edgeCPE(eg).

To improve space efficiency, we modify the labelling
scheme for the edge belonging to case0. If e Î NTE(v)
and e Î case0, the destination node of e must be v.
Thus, we can use a special character ‘?’ to replace PET
(v).
We model Pedigrees, Individuals, and Compact Path

Encoding labels in our relational database with the fol-
lowing tables:
Pedigree(PedigreeID, Name)
Individual(IndividualID, PedigreeID, MotherID,

FatherID, Gender, Name, DOB, DOD, etc.)
CompactPathEncoding(PET, PedigreeID, NTE,

IndividualID)

Generating CPE labels
The CPE encoding algorithm in Figure 4, which is a
modification of Breadth First Search(BFS), starts from
the founders of the pedigree graph and generates the
CPE label for each node in the graph in breadth first
order. During each round of the BFS, we make sure the
parent node’s CPE is finalized before finalizing the chil-
dren node’s CPE.
When the algorithm processes each child of the current

individual, if a child has not been visited before, (i.e., the
color of that child is white), the child inherits the non-
tree edges of its parent and the color of the child is
updated to gray. After that, the child is pushed to the end
of the queue. On the other hand, if the color of a child is
gray (i.e., this child has been visited before), the edge con-
necting the individual to this child must be a non-tree
edge. Therefore, the non-tree edge set of this child is the

union of the non-tree edge set of itself and the non-tree
edge set of its parent, plus the new non-tree edge. After
processing all the children of the current individual, we
change the color of the individual to black, which means
that this individual has been finalized. By enforcing the
order of visiting individuals, we can avoid pushing the
same individual into the queue for multiple times. Thus,
the efficiency of encoding is improved.
Given a pedigree graph G = (V, E), CPE encoding and

NodeCodes encoding have the same asymptotic time
complexity, which can be expressed as O(|E| + |V|)
since every vertex and every edge needs to be explored
a constant number of times.

Optimizing the size of CPE encoding
Given a pedigree graph, G = (V, E), the length of the
PET codes of the nodes, and hence the size of the CPE
encoding for G, differs by the choice of spanning tree
that is used for PET codes.
Example 3: Consider the two different spanning trees

shown in Figure 5 & 6, for the pedigree graph in Figure
3. Note that in Figures 5 and 6, we omit the node for
the unique (virtual) progenitor r, which is the root of
the spanning tree, and the (tree) edges from r to the
(actual) progenitors P0,..., P5.
We can see that for each node v in the pedigree

graph, the size of the PET(v) in Figure 5, is less than or
equal to the size of PET(v) in Figure 6. In fact, for the
spanning tree shown in Figure 5, the sum of the lengths
of tree edges from the root (or progenitors) to each
other node (non-progenitors) is minimum of all alterna-
tive choices for tree edges for this pedigree graph. We
refer to such spanning trees as shortest path-based span-
ning tree. As a matter of fact, the encoding algorithm in
Figure 4 obtains a shortest path-based spanning tree,
which also leads to the minimum total size for the CPE
code as will be shown below.
For simplicity, we assume that each node has two

incoming edges, except the founders who don’t have
parents. And we also ignore the gender delimiters. For
an individual vi, we use |PET(vi)| to denote the length
of PET code of vi, and Des(vi) to denote all descendants
of vi. The number of descendants of vi is |Des(vi)|. A
non-tree edge between individual vi and individual vj is
denoted as eij. Len(eij) denotes the length of the encod-
ing for the non-tree edge eij, where Len(eij) = |PET(vi)|
+ |PET(vj)|. Given a node vj which has an incoming
non-tree edge eij, the number of descendants of vj is |
Des(vj)|. Thus, the contribution from eij to Space(G),
which is the size of the whole CPE code, can be com-
puted as

S(eij) = Len(eij)∗(|Des(vj)| + 1) = (|PET(vi)| + |PET(vj)|)∗(|Des(vj)| + 1)

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 6 of 22

Considering the PET codes for all nodes in V and
the contribution from all non-tree(NTE) edges, we
obtain the total length of CPE for G, Space(G), as
follows:

Space(G) =
∑

1≤k≤|V|
|PET(vk)| +

∑
eij∈NE

S(eij)

=
∑

1≤k≤|V|
|PET(vk)| +

∑
eij ∈NE

Len(eij)∗(|Des(vj)| + 1)

=
∑

1≤k≤|V|
|PET(vk)| +

∑
eij∈NE

(|PET(vi)| + |PET(vj)|)∗(|Des(vj)| + 1)

(2)

Lemma 1: For a pedigree graph G the spanning tree
which minimizes the size of PET codes in G also mini-
mizes the total size of CPE encoding for G.
Proof: First of all, an individual vi is chosen arbitrarily

from the pedigree graph G. The individual vi can have at
most two in-coming edges. In G, Des(vi) is fixed, because
the ancestor-descendant relationship is defined by G. No
matter which edge we choose as the non-tree edge, it is
be inherited by all the descendants of vi. Thus, the (|Des
(vi) + 1|) part in the formula 2 doesn’t change.

Figure 4 Algorithm: CPE Encoding.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 7 of 22

Secondly, there are one in-coming tree edge and one
in-coming non-tree edge for an individual vi. For the
non-tree edge for vi, no matter which parent is chosen
as the non-tree edge parent, the length of the non-tree
edge doesn’t change. Because if we choose mother as
the non-tree parent, the PET of the individual will be
equal to the PET of father concatenated by one encod-
ing character specific for vi, then the length of the non-
tree edge will be |PET(Mother)| + |PET(Father)| + 1.
The result is the same if we choose father as the non-
tree parent, and it is always equal to |PET(Mother)| + |
PET(Father)| + 1.
Proposition 1: For a pedigree graph G, using the

breadth first search (BFS) to encode the PET code

minimizes Space(G), which is the size of CPE encoding
for G.
Proof: The spanning tree built by BFS has the shortest

path from root to each node by the definition of BFS.
Since the length of the PET code for a node is deter-
mined by the length of the path from the root to the
node, the PET code of each node is also minimal for the
tree produced by BFS. Since the algorithm in Figure 4
uses BFS, and using Lemma 1, the algorithm also mini-
mizes the total size of CPE encoding for G.

Path construction
The paths between an individual n and one of its ances-
tors p can be divided into two sets: tree paths and non-

Figure 5 An example of shorter PET codes.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 8 of 22

tree paths. A tree path only contains tree edges, while a
non-tree path has at least one non-tree edge.
Lemma 2: If PET(p) is a prefix of PET(n), there is a

tree-path from p to n.
Proof: According to the PET encoding scheme for a

tree T, if PET(p) is a prefix of PET(n), it means that p is
an ancestor of n along the tree. Therefore, we can con-
clude that there must be a path on the tree from p to n.
Now, we leverage the property of the PET code to

reconstruct the tree path from one ancestor node to a
given node. To obtain all non-tree paths, we design a
recursive procedure to find all the paths containing at
least one non-tree edge. The basic idea is to start with a
node u in the path which contains a non-tree edge, and
this node has an outgoing non-tree edge ending at v.
Then we decompose the finding path procedure into
two parts, the path from the common ancestor to the
node u and the path from v to the individual. In this

way, we use the CPE code to recursively reconstruct all
the non-tree paths. Figure 7 is the pseudo-code
algorithm.
Example 4: Let’s take the node P6 in Figure 3 as an

example and show how to use FindPath algorithm in
Figure 7 to find all paths from P1 to P6.

PET(P1) : 1,

CPE(P6) : 1, 1.$0.0, 0.$1, 1.#1, #0.0, #1, 0. #0.0, 0.

PET(P6) : 1, 1

(PET(vs) → PET(vd)) : {0.0, 0. → 1, 1.}, {1,→ 0.0, }, {1, 0. → 0.0, 0.}

According to step 3, PET(P1) is a prefix of PET(P6), thus
there is a tree path from P1 to P6. Then, we process all
non-tree edges. For the edge represented by {0.0,0.®1,1.},
PET(P1) is not a prefix of the string ‘0.0,0.’, so we skip this
edge. For the edge represented by {1,®0.0,}, PET(P1) is a
prefix of ‘1,’ (actually, PET(P1) is ‘1,’), but the tree path p2
for this edge is NULL. Recursively we can find the paths

Figure 6 An example of longer PET codes.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 9 of 22

from ‘0.0,’ (corresponding to node P2) to P6.

PET(P2) : 0.0,

CPE(P6) : 1, 1.$0.0, 0.$1, 1.#1, #0.0, #1, 0.#0.0, 0.

PET(P6) : 1, 1.

(PET(vs) → PET(vd)) : {0.0, 0. → 1, 1.}, {1,→ 0.0, }, {1, 0. → 0.0, 0.}

In terms of finding the paths from node P2 to P6, PET
(P2) is not a prefix of PET(P6), so there is not a tree-path.
But, for the non-tree edge represented by {0.0,0.®1,1.},
PET(P2) is a prefix of ‘0.0,0.’, so there is a tree path from
P2 to ‘0.0,0.’, following by a non-tree edge from ‘0.0,0.’ to
P6. Thus, we obtain a non-tree path from P2 to P6 (repre-
sented as 0.0,®0.0,0.®1,1.). Once the recursion is done,
we have a non-tree path from P1 to P6 (represented as
1,®0.0,®0.0,0.®1 ,1.) which is obtained in according to
the non-tree edge{1,®0.0,}.
Similarly, we process the non-tree edge {1,0.®0.0,0.},

and obtain a non-tree path from P1 to P6 (represented
as 1,®1,0. ®0.0,0.®1,1.). Totally, we have obtained
three paths from P1 to P6.

p1 : 1,→ 1, 1.

p2 : 1,→ 0.0,→ 0.0, 0. → 1, 1.

p3 : 1,→ 1, 0. → 0.0, 0. → 1, 1.

Similarly, we obtain two paths from P1 to P5.

q1 : 1,→ 0.0,→ 0.0, 0. → 0.0, 0.0,

q2 : 1,→ 1, 0. → 0.0, 0. → 0.0, 0.0,

Inbreeding coefficients calculation
After obtaining the CPE label for each node in pedigree
graphs, we use Wright’s formula [6] presented in section
2 to calculate inbreeding coefficients. For the inbreeding
coefficient of an individual, Wright’s Formula requires
identifying: parents of the individual, common ancestors
of parents, and non-overlapping pairs of paths from
these common ancestors to both parents.
Definition (Non-overlapping pair of paths): Let {p1,

p2} be a pair of paths from a common ancestor c to
mother m and father f of an individual. The pair {p1, p2}
is non-overlapping if c is the only node in common to
p1 and p2. Otherwise, the pair of paths {p1, p2} is over-
lapping, and the nodes in common to paths p1 and p2
other than c are called the crossover nodes, which are
also common ancestors for m and f.

Identifying father and mother
Given CPE(n), which is the CPE code of an non-root
individual n, we first identify the PET of the father and
mother from CPE(n). Since one node can only have at
most two incoming edges in a pedigree graph, we have
the following lemma.
Lemma 3: If an individual only has one parent, then

there must be a tree edge connecting the individual and
its parent. Otherwise, (individual has two parents) the
edges connecting the individual to its parents must be
one tree edge and one non-tree edge.

Figure 7 Algorithm: FindPath.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 10 of 22

Lemma 3 is utilized in the algorithm shown in Figure 8
which outlines identifying the PET for mother and father
of an individual efficiently.
Example 5: Let’s take the node P7 in Figure 3 as an

example and illustrate how to use the algorithm to find
the parents of P7.

CPE(P7) : 0.0, 0.0, 0, $1, 1.$0.0, 0.0, 0, #0.0, 0.#1, 1.& 1,& 0.0,& 1, 0.&0.0, 0.

In the first step, we get the PET(P7), which is
‘0.0,0.0,0,’. And we obtain the position of the 2nd to last
gender delimiter in PET(P7), and we get the substring of
PET(P7) which ends with the 2nd to last gender delimiter
in PET(P7). As a result, we have ‘0.0,0.0,’ which is the
PET label for node P5.
In the second step, we find that CPE(P7) still contains

other symbols, then we try to locate PET(P7) in this
string. According to the lemma above, we can conclude
that there is only one appearance of this PET(P7) in this
string. Next, we fetch the PET label just before PET(P7),
which is ‘1,1.’ and this is the PET label for node P6.
Thus, both the PET codes for the mother and father of
node P7 are obtained.
After obtaining the father and mother’s PET, we need

to obtain the non-tree edges for the father and mother
respectively from CPE(n). According to the different
types of PET label delimiters, (i.e. {’$’, ‘*’, ‘#’, ‘&’}), we

can efficiently identify the non-tree edges inherited from
the father or mother. Figure 9 shows the algorithm.
Example 6: For node P7, all non-tree edges are repre-

sented as

e0 = $1, 1.$0.0, 0.0, 0, e1 = #0.0, 0.#1, 1. e2 = &1,&0.0, e3 = &1, 0.&0.0, 0.

We obtain NTE(P5) = {e2, e3} and NTE(P6) = {e1, e2,
e3}.
Then, we use a generic PET label delimiter ‘%’ to con-

struct CPE(f) and CPE(m). The resulting CPE labels are
capable for identifying common ancestor and corre-
sponding paths from each common ancestor to f and m.
Thus, we can get the CPE code of P5 and P6.

CPE(P5) : 0.0, 0.0,%1,%0.0,%1, 0.%0.0, 0.

CPE(P6) : 1, 1.%0.0, 0.%1, 1.%1,%0.0,%1, 0.%0.0, 0.

Identifying common ancestors
For an individual n having parents f and m, we can use
CPE(f) and CPE(m) to obtain all the common ancestors
of f and m, as shown in Lemma 4 below. Let Prefix(s)
be the set of all prefixes of string s. For clarity, a prefix
of a string s = s1...sk is a string s’ = s1...sj, where j ≤ k.
Lemma 4: Given an individual n, CPE(n) contains all

the PET of n’s ancestors.

Figure 8 Algorithm: Identify PET of Father and Mother.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 11 of 22

Proof: If a node u is an ancestor of n, then the paths
from u to n can be divided into two sets: tree path and
non-tree path(s). A tree path only contains tree edges,
while a non-tree path has at least one non-tree edge.
Given the node n which has the non-tree edges {e1, e2

... ek} in PS(n), the CPE encoding for n is represented as
CPE(n) = PET(n) + edgeCPE(e1) + ... + edgeCPE(ek)
where edgeCPE(ei) = {PET(vsi), PET(vdi)} for ei = (vsi,
vdi), 1 ≤ i ≤ k
If there is a tree path from u to n, then PET(u) is a

prefix of PET(n), denoted as PET(u) Î Prefix(PET(n)).
If there is no tree path from u to n, then there exists a

vertex x in the list of non-tree edges listed in CPE(n)
such that u is connected to vertex x by a tree path. PET
(u) must be in the set A(n) = {Prefix(PET(x)) | (x,v) is a
non-tree edge in the list of non-tree edges for n}.
Hence, if u is an ancestor of n, then PET(u) is either in
Prefix(PET(n)) or it is in A(n). Thus, the CPE(n) con-
tains all the PET codes of n’s ancestors.
Example 7: To obtain all the common ancestors of P5

and P6, we first calculate the ancestors of P5 and P6

respectively. If the node u has both tree path and non-
tree paths to n, then the node u can be obtained from
PET(n), and we don’t need to keep PET(u) in the prefix
sets obtained from the non-tree edges of n (see Table 1).
The common ancestors of P5 and P6 are obtained

from the intersection of these two sets as shown in
Table 2.
As we can see from Figure 3, the above result shows

all the common ancestors of P5 and P6.

Finding path-pairs
After getting all the common ancestors of the father f
and mother m of an individual, we re-construct all the
non-overlapping pairs of paths which are from a specific
common ancestor A to the father f and mother m based
on PET(A), CPE(f), and CPE(m). The outline of Path-
Pairs Finder is shown in Figure 10.

Finding paths for multiple ancestors
When the father f and mother m have more than one
ancestor, we use memorization technique to solve the
path finding problem regarding all ancestors. More spe-
cifically once we have finished finding all the paths from
one common ancestor to f (or m), we will store all these
paths for future usage. The next time we meet the same
ancestor, we can get all the paths without calculating
them again.

Identifying non-overlapping path-pairs
After we get the two sets of the paths, we can use all
common ancestor of the father f and mother m to build
an inverted index for these paths. The keys of the
inverted index are the PETs of the common ancestors,
and the elements are the paths ID containing the corre-
sponding common ancestor.
Example 8: For the paths {p1, p2, p3, q1, q2} in exam-

ple 4, we can build the following index using all the
common ancestors for P5 to P6. The common ancestors
are listed in Table 3.
The inverted index is as follows (see Table 4).
Using the above inverted index, and we propose the

algorithm in Figure 11 to eliminate the overlapping

Figure 9 Algorithm: Identify Non-tree Edges of Father and Mother.

Table 1

Ancestor(P5) Prefix(PET(P5)) 0. 0.0, 0.0,0. 0.0,0.0,

A(P5) 1, 1,0.

Ancestor(P6) Prefix(PET(P6)) 1, 1,1.

A(P6) 0. 0.0, 0.0,0. 1.0.

Table 2

Individual n P1 P0 P2 P3 P4

PET(n) 1, 0. 0.0, 1,0. 0.0,0.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 12 of 22

paths. After applying the algorithm in Figure 11 to elim-
inate the overlapping paths, we can get the following
table for the matrix M (see Table 5).
Thus, the non-overlapping pairs of paths are {p1, q1}

and {p1, q2}. After obtaining all non-overlapping path-
pairs for the ancestor P1, we follow Step 2.c) and 2.d) in
the Inbreeding Coefficient algorithm in Figure 1 to
obtain the node P1’s contribution to the node P7’s
inbreeding coefficient.

Improved CPE
One of the bottlenecks in inbreeding computations with
CPE is to identify the pairs of paths between the mother
and father of an individual and their common ancestor
that contribute to the inbreeding. From the algorithm in
Figure 10, we can see that only the non-overlapping
pairs of paths contribute to the final inbreeding coeffi-
cient. If a common ancestor cannot provide any non-
overlapping pair of paths, then we call this common
ancestor a nonessential ancestor. We can identify such
ancestors beforehand, and filter them out before the
costly path-pairs checks for improving the efficiency of
the inbreeding coefficient computation with CPE.
For clarity, let Sub_G(v, m, f) denote the unique mini-

mal sub-digraph of G that contains all the paths in G
from the node v to nodes m and f.
Lemma 5: In Sub_G(u, m, f), if node u only has one

child v (where both u and v are common ancestors of m
and f), then u must be a nonessential common ancestor.
Proof: Given two nodes u and v which are common

ancestors of m and f, if node u is the parent of v, we know
Nm(u) ≥ Nm(v), because Nm(u) =

∑
v∈children of u Nm(v).

The result also holds for Nf(u) and Nf(v). Since node v is
the only child of u in the context of Sub_G(u, m, f), it is
true that Nm(u) = Nm(v) and Nf(u) = Nf(v). If Nm(u) = Nm

(v), it means that every path from u to m passes through v.
If Nf(u) = Nf(v), we can conclude that every path from u to
f must pass through v. Therefore, all pairs of paths from
ancestor u to m and f are overlapping, because they all
pass the ancestor v. Therefore, u must be a nonessential
ancestor for m and f in terms of inbreeding calculation.
Based on Lemma 5, before checking the overlapping

relationship between every pair of paths, we can check
the number of children of the current ancestor u. If
there exists only one child of the current ancestor u, the
ancestor u is nonessential and we can skip it.
Example 9: In Figure 3, both P2 and P4 are common

ancestors of P5 and P6. While P2 has only one child P4
in sub_G(P2, P5, P6). According to Lemma 5, we can
eliminate P2 from the common ancestors set safely.
One problem to be addressed is how to identify the

children of one individual. When calculating the
inbreeding coefficient of one individual, the mother and
father for that individual needs to be obtained first. In
the meanwhile, an adjacency list can be maintained to
record the parent-children relationship. If the indivi-
duals are processed in topological order, we can make
sure that we get all the parent-children relationship for
all the ancestors of current individual. Therefore, when
processing the current individual, we can take advantage
of this parent-children relationship and prune the non-
essential ancestors.

Figure 10 Algorithm: Path-Pairs Finder.

Table 3

Individual n P1 P0 P2 P3 P4

PET(n) 1, 0. 0.0, 1,0. 0.0,0.

Table 4

1, p1, p2, p3, q1, q2
0.0, p2, q1
1,0. p3, q2
0.0,0. p2, p3, q1, q2

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 13 of 22

Complexity analysis
Time complexity
Let k be the average number of PETs in the CPE of one
individual whose inbreeding coefficient is being calcu-
lated, and s is the length of the longest PET among
these PETs. Then, the identifying parents step takes O
(k) time. The common ancestors of parents are obtained
by getting the intersection of the unique prefix sets of
mother and father. To get the unique prefix set of one
parent, we process the PETs one by one. Thus, it may
take as long as O(s*k*log(s*k)) for one parent. We can
maintain the prefix set as sorted, in such case the inter-
section of these two sets only takes O(s*k) operations.
Let n be the number of paths from the root to that indi-
vidual. Identification of the non-overlapping pairs of
paths could take as much as O(n2) time. Therefore, the
total time complexity for calculating the inbreeding

coefficient for one individual is O(k) + O(s*k*log(s*k)) +
O(n2) = O(s*k*log(s*k)+n2).
For calculating the inbreeding coefficients for multiple

individuals, we can use the property that siblings share
exactly the same inbreeding coefficient to prune
repeated calculation. Suppose we want to calculate the
average inbreeding coefficient for a set of t individuals,
and the average number of children of each pair of par-
ents is m. Then the total time complexity could be O
((s*k*log(s*k)+n2)*t/m).
Space complexity
In this subsection, we first analyse the space complexity
theoretically and then provide an example to illustrate that
the worst case we have is tight. Suppose there are V indivi-
duals and E edges in the pedigree graph. The upper bound
of the length of one CPE code is equal to the maximum
length of PET code times the maximum number of PET
codes in one CPE code. The maximum length of the
PET code could be (V - 1), and the maximum number of
PET code in one CPE code could be 1 + 2*(E - V), since
there could be at most (E - V) non-tree edges in one CPE
code and each of the edges is consisted of two PET codes.
The space complexity is equal to (V - 1) * (1 + 2*(E - V))

Figure 11 Algorithm: Eliminate-Overlapping.

Table 5

p1 p2 p3

q1 True False False

q2 True False False

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 14 of 22

= O(V2(E - V)). Since in a pedigree graph the total number
of edges is less than or equal to 2*V, the total space com-
plexity should be O(V3).
Although the bound we got from the above analysis

looks relatively loose, from the following example we
can see that it’s tight in the worst case. In Figure 12, an
extreme case of the pedigree graph has been shown.
The first column shows the length of the PET code at

each level. The second column shows how many times
that the non-tree edges are inherited at that level. For
example, the non-tree edge between individual 1 and
individual 3 will be inherited by all the individuals
except individual 1, 2 and 4. Since there are V indivi-
duals totally, that edge will be inherited by V - 3 times.
The third column shows the length of non-tree edge at
that level. For example, the length of the PET code for

Figure 12 An example of pedigree illustrating a worst-case scenario.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 15 of 22

individual 1 is 1 and the length of the PET code for
individual 4 is 2, so the non-tree edge between indivi-
dual 1 and individual 4 is equal to 1 + 2 = 3.
Therefore, the total length of the encoding for non-

tree edges is equal to Σ (the length of each non-tree
edge * the number of times that edge is repeated). The
result is 3*(V - 3) + 5*(V - 5) + ... + (2L - 1)*1, where L
is equal to V/2. After we calculate the result, it’s O(V3).
Since the space complexity for only the non-tree edges
part is already O(V3), the space complexity for the
whole CPE encoding certainly should be O(V3).

Experiments
In this section we show the effectiveness of our CPE for
inbreeding query evaluation by comparing with the
NodeCodes-based computation [18,19] and traditional
iterative method used in existing systems [20,21].

Experimental data
The Cleveland Clinic’s (CCF) Familial Polyposis Registry
[5], which we used as our real data set, is the largest
inherited colorectal cancer registry in the United State
and the second largest in the world. The Polyposis Reg-
istry captures complex pedigree and clinical data such
as demographic characteristics, pedigree relations, distri-
bution of polyps, cancer sites, surgical procedures and
medical treatments. Our real dataset consists of 654
pedigrees containing 8345 individuals. The largest one
consisted of 118 individuals spanning 8 generations. The
2nd largest one consisted of 115 individuals spanning 7
generations. There are 32 pedigrees having average
inbreeding coefficients larger than 0. The size of these
pedigrees ranges from 7 to 118. The average inbreeding
coefficient of these 32 pedigrees ranges from 0.0015 to
0.0417.
In order to test the scalability of our approach for cal-

culating inbreeding coefficients on large pedigrees, we
used a population simulator implemented in [18] to
generate arbitrarily large pedigrees. The population

simulator is based on the algorithm for generating
populations with overlapping generations in Chapter 4
of [22] along with the parameters given in appendix B
of [23] to model the relatively isolated Finnish Kainuu
subpopulation and its growth during the years 1500-
2000. An overview of the generation algorithm was pre-
sented in [18]. The parameters include: starting/ending
year, initial population size, initial age distribution, mar-
riage probability, maximum age at pregnancy, expected
number of children by time period, immigration rate,
and probability of death by time period and age group.
For our synthetic data, large pedigrees were generated

by running the simulator from the year 1500 with an
initial population 30, and immigration rates from 0.005
to 0.01, while the maximum number of individuals to
generate was raised from 1000 to 10,000. For each para-
meter setting (pedigree size and immigration rate), we
chose 3 different random seeds to generate three pedi-
grees, and obtain the average number of founders and
average inbreeding coefficient for each setting. In this
paper, we use average inbreeding coefficient as one of
the characteristics for pedigree data. The detailed result
is listed in Table 6.
The average inbreeding coefficient is 0.03 for the Dun-

ker population in Pennsylvania and 0.04 for islanders on
Tristan da Cunha [24]. The average inbreeding coeffi-
cient is 0.00210 for Norwegian 19th century data [25].
The average inbreeding coefficient for 435777 Utah
Mormons in [26] is 0.000106.

Experimental setup
We tested the effectiveness of our method using C# .
NET 4.0 and SQLServer 2008. We implemented CPE,
improved version of CPE and NodeCode labelling algo-
rithms and used strings to store CPE and NodeCodes
with the sibling numbers encoded in a base-64 represen-
tation. All queries were run on cold cache and the test
machine was a 2.93GHZ Intel(R) Xeon with 48GB RAM
running Windows Server 2008 R2.

Table 6 Average inbreeding coefficient for synthetic pedigrees having different immigration rate and size

Pedigree size Immigration rate # of founders Average inbreeding coefficient

1000 0.005 196 0.0032986

0.01 270 0.0022222

2500 0.005 404 0.0035005

0.01 606 0.0015536

5000 0.003 554 0.0044207

0.005 736 0.0030604

0.007 921 0.0021039

0.008 994 0.0014392

0.01 1145 0.0009371

10000 0.005 1409 0.00022236

0.01 2226 0.0006543

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 16 of 22

We compared the execution time required to calculate
inbreeding coefficients by the recursive method, the
path-counting method using NodeCodes, and the path-
counting method using CPE and improved-CPE. We ana-
lysed the effects of pedigree size (# of individuals) and the
average inbreeding coefficient value. We refer to the
recursive method as Iterative, the path-counting method
using NodeCodes as NodeCodes, the path-counting
method using CPE as CPE, and the path-counting
method using CPE and eliminating nonessential ancestor
as I-CPE respectively.

Experiments on real data
The Cleveland Clinic’s (CCF) Familial Polyposis Registry
[5] is used as our real data set. Among 654 real pedi-
grees, only two pedigrees have more than 115 indivi-
duals and no pedigrees in the 76-114 range. Therefore,
the two largest real pedigrees are used for average space
efficiency comparison. For one individual, the average
length of CPE is 15.67 bytes, while the average length of
NodeCodes is 15.84 bytes. Since the real pedigrees are
very small, CPE achieves small improvement over Node-
Codes. In the next section, we use synthetic data to
demonstrate that the space improvement from CPE
grows as the pedigree size grows. Then, the two largest
real pedigrees are used for average computation effi-
ciency performance comparison, and the results are
shown in Table 7. As can be seen, CPE method per-
forms best for the two largest real pedigrees among
three methods.

Experiments on synthetic data
In this section, we demonstrate the scalability and effi-
ciency of CPE with respect to space cost and computa-
tion cost on synthetic data.
In the first experiment, we used two different immigra-

tion rates (0.005, 0.01) to generate pedigrees for each of
the different pedigree sizes. In terms of space efficiency,
we compared the total length of CPE with NodeCodes.
Figure 13 shows the effect of pedigree size on the space
cost improvement of CPE over NodeCodes. The improve-
ment of CPE grew increasingly larger as the pedigree size
increased, from a comparable amount 5.00% on the smal-
lest pedigree to 47.59% on the largest pedigree when the
immigration rate is 0.005.
In the 2nd experiment, 5 pedigrees (size 5000) having

different inbreeding coefficients which were generated
by setting different immigration rates (0.003, 0.005,
0.007, 0.008, 0.01) were selected to compare the total

length of CPE with NodeCodes. Figure 14 shows the
effect of inbreeding coefficients on the space cost
improvement of CPE over NodeCodes. The improve-
ment of CPE grew increasingly larger as the inbreeding
coefficients increased, from a comparable amount
12.49% on the pedigree having average inbreeding
0.00079371 to 46.57% on the pedigree having average
inbreeding 0.0044207.
In order to see how the performance improvement of

CPE scales with the pedigree size, we used two different
immigration rates (0.005, 0.01) to generate pedigrees for
each of the different pedigree sizes. The results shown
in Figures 15 and 16 are the average performance for
running the experiment three times with three different
pedigrees for each parameter.
As shown in Figure 15, for the pedigrees generated by

setting immigration rate 0.005, the improvement of I-
CPE over Iterative is over 98%; the improvement of I-
CPE over NodeCodes is over 93%; and the improvement
of I-CPE over CPE ranges from 22.19% to 64.85%.
In Figure 15, as we notice that the advantage of I-CPE

over the original CPE is decreasing as the size of the
pedigree graph increases. Our CPE method for comput-
ing the inbreeding coefficient consists of two time-con-
suming parts, which are the path construction part and
non-overlapping paths checking part. The improved ver-
sion of CPE method only tries to optimize the non-over-
lapping paths checking part. The problem here is that
the path construction time dominates the total compu-
tation time when the size of the pedigree graph becomes
large, which can be seen from Figure 16. In another
word, the non-overlapping paths checking part becomes
less significant. Thus, the optimization on that part
becomes less significant. In fact, when the size of the
pedigree becomes large, the total number of paths is
exponentially increasing, and that’s reason that the path
construction time dominates the total computation time
finally.
Figure 17 shows the percentage improvement of I-CPE

over Iterative, NodeCodes, and CPE with respect to
increasing pedigree size generated by setting immigra-
tion rate 0.01. Performance gains of I-CPE over CPE
ranges from 67.16% to 62.98%.
In the last experiment, 5 pedigrees (size 5000) having

different inbreeding coefficients were selected for
demonstrating the effect of inbreeding coefficients on
the computation improvement of CPE over NodeCodes.
Figure 17 shows the effect of inbreeding coefficients on
the time cost improvement of I-CPE over CPE and
NodeCodes.
As shown in Figure 18, the computation efficiency

improvement of CPE over NodeCodes grows increasingly
larger as the inbreeding coefficients increase, and it is
over 90% even for the smallest inbreeding coefficient

Table 7 Time cost results on real data

CPE NodeCodes Iterative

Average 0.61 1.35 1.33

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 17 of 22

tested. On the other hand, the computation efficiency
improvement of I-CPE over NodeCodes decreases as the
inbreeding coefficients increase. The reason is that as
the inbreeding coefficient increases, the complexity of
the pedigree graph increases, which means the total
number of paths in the pedigree graph grows exponen-
tially. As we have analyzed previously, the path con-
struction time dominate the total computation time
eventually, so the relative performance of I-CPE over
NodeCodes decreases. In the extreme case, when the
inbreeding coefficient becomes even large, the perfor-
mance of I-CPE and CPE tends to be same.

Further improvements
To reduce the space cost of labels for a graph, one possible
solution is to compact the graph itself with smaller num-
ber of nodes edges. For pedigree data, instead of using
nodes to represent individuals, we can compact families, i.
e., parents and their children, as nodes in the pedigree

graph. The directed edges in this graph between the nodes
representing families represent relationships between
families. That is, there is an edge between two nodes if
there is a shared individual between the two families (e.g.
a child in one family may be the parent in another family).
Such a representation of pedigrees, using family nodes is
used in [19], and shows a significant improvement over
NodeCodes in terms of space and time requirements for
path-based computations over large pedigrees. Utilizing
CPE together with Family-level representation of pedigree
graphs for the computation of inbreeding coefficients, and
other path-based computations on large pedigrees will
make the scalability and the performance efficiency of
CPE based computation even more pronounced.

Other related work
There are also a few other commercial and academic
software packages for calculating inbreeding coefficients,
including FSpeed [20], LaoTzu’s Animal Register [21],

Figure 13 Effect of pedigree size on the space cost improvement of CPE over NodeCodes.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 18 of 22

Cyrillic [27]. One of the most popular commercial
packages is Cyrillic 2.1, which can calculate inbreeding
and crossovers from phenotype data, but provides no
support for structure-based querying and only supports
pedigrees of up to 10,000 individuals. Cyrillic 3 supports
larger pedigrees, but simply uses MENDEL [28] for ped-
igree analysis such as inbreeding, which uses a techni-
que that is known to only work for calculating
inbreeding of small to medium-sized pedigrees [29].
Another popular commercial pedigree software product
is Progeny [30]. As compared to NodeCodes [18], CPE
is a more compact encoding, and instead of keeping one
code for each path to a node, it constructs the paths as
needed from one compact code of the node. As com-
pared to Extended Greedy for DAGs (EGDL) [17] the
encoding for CPE is more compact, and it is tailored for
applications for large pedigrees. Using PET delimiters
for CPE, the non-tree edges inherited via paternal and
maternal paths to an individual can be distinguished
efficiently.

Conclusions
We have proposed a new compact path encoding (CPE)
scheme for pedigree graphs for efficient evaluation of
path based computations on pedigree data. The compact
path encoding is also applicable to other DAGs in gen-
eral. We used computation of inbreeding coefficients of
an individual using Wright’s path counting formula to
demonstrate the effectiveness and the efficiency of CPE.
We have presented algorithms to generate all paths to
an individual from its ancestors from the CPE code of
the node corresponding to the individual, as well as
algorithms to identify common ancestors, overlapping
paths, etc. We also implemented and tested our method
using both real and synthetic data of various sizes to
test scalability. Experimental results show that the use
of CPE for inbreeding coefficients calculation performs
significantly better than Nodecodes and iterative method
both in terms of time and space requirements. Our
future work includes (i) further improvements on com-
pact encodings, and (ii) developing scalable methods for

Figure 14 Effect of inbreeding coefficient on the space cost improvement of CPE over NodeCodes.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 19 of 22

Figure 15 Effect of pedigree size on performance improvement for immigration rate 0.005.

Figure 16 Percentage of path construction time of the total computation time by I-CPE method.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 20 of 22

Figure 17 Effect of pedigree size on performance improvement for immigration rate 0.01.

Figure 18 Effect of inbreeding coefficient on the performance improvement of I-CPE and CPE over NodeCodes.

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 21 of 22

calculating inbreeding coefficients and other genetic
computational problems including generalized kinship
and identity coefficients, using compact encodings and
path-counting formulas.

Acknowledgements
We thank Prof. Robert C. Elston, Case School of Medicine, for introducing us
to the identity coefficients and referring us to the related literature [10], and
Prof. Jing Li, EECS, Case Engineering School, for useful discussions. This
research has been supported by the National Science Foundation grants DBI
0743705, DBI 0849956, CRI 0551603 and by the National Institute of Health
grant GM088823.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 3, 2012: ACM Conference on Bioinformatics, Computational
Biology and Biomedicine 2011. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/13/S3.

Authors’ contributions
This paper is co-authored by Lei Yang, En Cheng and Meral Ozsoyoglu.
Developing algorithms (i) for encoding graphs using CPE, (ii) for
constructing paths from CPE encoding, (iii) for the computations of
inbreeding coefficient efficiently, (iv) the improved CPE algorithms, and (v)
space and time complexity results are all done in collaboration among the
three authors led by Meral Ozsoyoglu. Experiments are also designed by all
three authors, En Cheng generated the synthetic data used by the
experiments, and Lei Yang coded and ran the experiments. Manuscript has
been read and approved by all authors and that all authors agree to the
submission of the manuscript to BMC Bioinformatics journal.

Competing interests
The authors declare that they have no competing interests.

Published: 21 March 2012

References
1. Surgeon General’s New Family Health History Tool Is Released, Ready for

“21st Century Medicine”. [http://www.dhhs.gov/news/press/2009pres/01/
20090113a.html].

2. Falchi M, et al: A genome wide search using an original pairwise
sampling approach for large genealogies identifies a new locus for total
and low-density lipoprotein cholesterol in two genetically differentiated
isolates of Sardinia. Am J Hum Genet 2004, 75:1015-1031.

3. Ciullo M, et al: New susceptibility locus for hypertension on chromosome
8q by efficient pedigree-breaking in an Italian isolate. Hum Mol Genet
2006, 15:1735-1743.

4. Pedigree and Population Resource: Utah Population Database. [http://
www.hci.utah.edu/groups/ppr/].

5. [http://www.clevelandclinic.org/registries/].
6. Wright S: Coefficients of inbreeding and relationship. Am Nat 1922,

56(645):330-338.
7. Church JM: A scoring system for the strength of a family history of

colorectal cancer. Dis Colon Rectum 2005, 48(5):889-896.
8. Wiggans GR, et al: Calculations and use of inbreeding coefficients for

genetic evaluation of United States dairy cattle. J Dairy Sci 1995,
78:1584-1590.

9. Yang L, Cheng E, Ozsoyoglu ZM: Using compact encodings for path-
based computations on pedigree graphs. ACM-BCB 2011 .

10. Karigl G: A recursive algorithm for the calculation of identity coefficients.
Ann Hum Genet 1981, 45:299-305.

11. Cheng E, Elliott B, Ozsoyoglu ZM: Efficient computation of kinship and
identity coefficients on large pedigrees. J Bioinform Comput Biol 2009,
7(3):429-453.

12. Christophides V, et al: Optimizing taxonomic semantic web queries using
labeling schemes. Web Semantics: Science, Services and Agents on the World
Wide Web 2004, 207-228.

13. Krall A, Vitek J, Horspool N: Near optimal hierarchical encoding of types.
ECOOP ‘97 1997, 128-145.

14. Agrawal R, Borgida A, Jagadish HV: Efficient management of transitive
relationships in large data and knowledge bases. Proc of the SIGMOD
Conference on Management of Data 1989, 253-262.

15. Li Q, Moon B: Indexing and querying XML data for regular path
expressions. VLDB ‘02 361-370.

16. Online Computer Library Center: Dewey decimal classification.[http://www.
oclc.org/dewey].

17. Strunjaš-Yoshikawa S, et al: Compact encodings for all local path
information in web taxonomies with application to WordNet. In SOFSEM
Wiedermann J 2006, LNCS 3831:511-520.

18. Elliott B, Akgul SF, Mayes S, Ozsoyoglu ZM: Efficient evaluation of
inbreeding queries on pedigree data. Proc of SSDBM 2007 , DOI: 10.1109/
SSDBM.2007.12.

19. Elliott B, Cheng E, Mayes S, Ozsoyoglu ZM: Efficiently calculating
inbreeding on large pedigrees databases. Inf Syst 2009, 34(6):469-492.

20. FSpeed. [http://www.tenset.co.uk/fspeed/].
21. LaoTzu’s Animal Register. [http://animalregister.net/].
22. Ollikainen V: Simulation techniques for disease gene localization in

isolated populations. PhD thesis University of Helsinki, Finland; 2002.
23. Toivonen H, Onkamo P, Vasko K, Ollikainen V, Sevon P, Mannila H, Herr M,

Kere J: Data mining applied to linkage disequilibrium mapping. Am J
Hum Genet 2000, 67:133-145.

24. [http://www.bookrags.com/research/inbreeding-gen-02/].
25. Gedde-Dahl T Jr: Population structure in Norway. Inbreeding, distance

and kinship. Hereditas 1973, 73(2):211-232.
26. Jorde LB: Inbreeding in the Utah Mormons: an evaluation of estimates

based on pedigrees, isonomy, and migration matrices. Ann Hum Genet
1989, 53(Pt 4):339-355.

27. Cyrillic Software. [http://www.cyrillicsoftware.com/].
28. MENDAL Manual. [http://www.genetics.ucla.edu/software/mendel].
29. Lange K, et al: Mendel version 4.0: a complete package for the exact

genetic analysis of discrete traits in pedigree and population data sets.
Am J Hum Genet 2001, 69(Supplement):A1886.

30. Progeny Software. [http://www.progeny2000.com/].

doi:10.1186/1471-2105-13-S3-S14
Cite this article as: Yang et al.: Efficient path-based computations on
pedigree graphs with compact encodings. BMC Bioinformatics 2012 13
(Suppl 3):S14.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Yang et al. BMC Bioinformatics 2012, 13(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/13/S3/S14

Page 22 of 22

http://www.biomedcentral.com/1471-2105/13/S3
http://www.dhhs.gov/news/press/2009pres/01/20090113a.html
http://www.dhhs.gov/news/press/2009pres/01/20090113a.html
http://www.ncbi.nlm.nih.gov/pubmed/15478097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15478097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15478097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15478097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16611673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16611673?dopt=Abstract
http://www.hci.utah.edu/groups/ppr/
http://www.hci.utah.edu/groups/ppr/
http://www.clevelandclinic.org/registries/
http://www.ncbi.nlm.nih.gov/pubmed/15785893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15785893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7593853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7593853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7305283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19507284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19507284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16725283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16725283?dopt=Abstract
http://www.oclc.org/dewey
http://www.oclc.org/dewey
http://www.tenset.co.uk/fspeed/
http://animalregister.net/
http://www.ncbi.nlm.nih.gov/pubmed/10848493?dopt=Abstract
http://www.bookrags.com/research/inbreeding-gen-02/
http://www.ncbi.nlm.nih.gov/pubmed/4713280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4713280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2624429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2624429?dopt=Abstract
http://www.cyrillicsoftware.com/
http://www.genetics.ucla.edu/software/mendel
http://www.progeny2000.com/

	Abstract
	Introduction
	Problem statement
	Graph encoding/labelling schemes
	NodeCodes: a prefix based encoding

	Compact path encoding
	Compact path encoding for DAGs
	Generating CPE labels
	Optimizing the size of CPE encoding

	Path construction
	Inbreeding coefficients calculation
	Identifying father and mother
	Identifying common ancestors
	Finding path-pairs
	Finding paths for multiple ancestors
	Identifying non-overlapping path-pairs
	Improved CPE
	Complexity analysis
	Time complexity
	Space complexity

	Experiments
	Experimental data
	Experimental setup
	Experiments on real data
	Experiments on synthetic data

	Further improvements
	Other related work
	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

