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Abstract

Background: Selecting an appropriate classifier for a particular biological application poses a difficult problem for
researchers and practitioners alike. In particular, choosing a classifier depends heavily on the features selected. For
high-throughput biomedical datasets, feature selection is often a preprocessing step that gives an unfair advantage
to the classifiers built with the same modeling assumptions. In this paper, we seek classifiers that are suitable to a
particular problem independent of feature selection. We propose a novel measure, called “win percentage”, for
assessing the suitability of machine classifiers to a particular problem. We define win percentage as the probability
a classifier will perform better than its peers on a finite random sample of feature sets, giving each classifier equal
opportunity to find suitable features.

Results: First, we illustrate the difficulty in evaluating classifiers after feature selection. We show that several
classifiers can each perform statistically significantly better than their peers given the right feature set among the
top 0.001% of all feature sets. We illustrate the utility of win percentage using synthetic data, and evaluate six
classifiers in analyzing eight microarray datasets representing three diseases: breast cancer, multiple myeloma, and
neuroblastoma. After initially using all Gaussian gene-pairs, we show that precise estimates of win percentage
(within 1%) can be achieved using a smaller random sample of all feature pairs. We show that for these data no
single classifier can be considered the best without knowing the feature set. Instead, win percentage captures the
non-zero probability that each classifier will outperform its peers based on an empirical estimate of performance.

Conclusions: Fundamentally, we illustrate that the selection of the most suitable classifier (ie, one that is more
likely to perform better than its peers) not only depends on the dataset and application but also on the
thoroughness of feature selection. In particular, win percentage provides a single measurement that could assist
users in eliminating or selecting classifiers for their particular application.

Background

Machine classifiers and feature selection algorithms have
been proposed for clinical diagnosis and prediction based
on favorable comparisons to competing methods [1,2].
For high-throughput biomedical data, feature selection is
a necessary preprocessing or embedded step that can bias
the comparison of classifiers. In an effort to compare
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classifiers fairly, we introduce the idea of classifier “suit-
ability” to a particular application. Every classifier is more
or less suited to model particular feature relationships.
For example, linear classifiers anticipate modeling fea-
tures exhibiting a mean shift between classes, whereas
nonlinear classifiers can model more complex corner
shapes or quadratic curves [3]. Classifier suitability
depends on two key aspects: (1) how frequently the fea-
ture relationships it models discriminate between classes
in the data and (2) how thoroughly we explore the
feature space to find those relationships. We propose
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“win percentage” as the probability that a classifier will
perform better than its peers on a finite random sample
of feature sets.

As an analytical tool to aid in our estimation of win
percentage, we design a Monte Carlo wrapper (MCW)
algorithm for feature selection that gives each classifier
equal opportunity to find informative feature sets.
MCW succeeds when its best-performing feature set is
among a top-performing fraction of all possible feature
sets. This fraction, combined with a tolerated failure
rate, defines the number of random samples that MCW
must explore. We show that the most suitable classifier
for an application depends on how thoroughly we
explore the feature space, and apply win percentage in
the analysis of eight biomedical gene expression classifi-
cation problems® [4].

Determining the most suited classifier to a particular
problem has applications in many domains but we are
most interested in the translation of machine learning
algorithms for clinical diagnosis and prediction. Ideally,
an exhaustive search of all feature sets could identify
the optimal feature set for each classifier. However, for
high-throughput biomedical data many thousands of
features make this infeasible and necessitate the use of
feature selection methods. A multitude of computa-
tionally efficient, yet suboptimal, feature selection
methods have been proposed [5,6] but these have made
comparing the resulting learning machines more diffi-
cult and potentially exclude otherwise suitable feature
sets. Often, the same feature selection method precedes
the comparison of all classifiers using cross-validation.
However, the performance of a classifier depends on
the feature selection method that precedes it. One way
to deal with this inherent dependency is to consider a
combinatorial approach of feature selection methods
and classifiers, selecting combinations of both that per-
form well on cross-validation [7,8]. Another way is to
attempt to find a feature selection method that per-
forms well for a variety of typical datasets [3]. We sim-
plify both approaches by considering a single unbiased
feature selection method that gives every classifier
equal chance to perform well. Instead of finding a clas-
sifier that performs well for a given feature selection
method, we attempt to identify classifiers that fit the
problem.

Feature selection methods can be categorized into
filter- and wrapper-based approaches. Filter-based meth-
ods rank genes based on some measure of utility such as
the difference between class means (e.g., ¢-test p-value or
fold-change). This emphasis on class means favors linear
classifiers that consider the mean as the single distin-
guishing characteristic among classes (e.g., nearest cen-
troid). However, nonlinear classifiers have been shown to
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perform well for a variety of problems [9] and deserve
equal treatment when it comes to feature selection.
Wrapper-based feature selection attempts to find feature
sets that perform well for a particular classifier using that
classifier as a black box [10]. Several heuristic wrapper-
based feature selection methods are commonly used for
nonlinear classifiers, such as sequential forward selection
or backward elimination [6]. However, these suffer from
a nesting structure that causes all explored feature sets to
contain highly overlapping feature membership. One way
to give each classifier an equal chance of finding a suita-
ble feature set is to conduct a randomized search of the
feature space using a wrapper-based approach. The clas-
sification performance of each candidate classifier deter-
mines the quality of a feature set.

Randomized algorithms come in two basic varieties:
those that provide the correct answer for a given input
every time (Las Vegas), and those that may give different
answers to the same problem on multiple runs (Monte
Carlo) [11]. Las Vegas algorithms have been proposed
for feature selection [5,12] but have fallen out of favor
perhaps due to the relative success of faster heuristic
methods. Monte Carlo feature selection has been used
to select features that commonly appear in different
cross-validation runs [13]. Stochastic algorithms such as
simulated annealing and genetic algorithms offer a com-
promise in that previous results guide the search but
maintain randomness to avoid local optima [14].

Regardless of feature selection method, the utility of a
particular classifier depends not only on its performance
on a carefully selected feature set but also on the diffi-
culty in discovering that feature set. That is, depending
on computational resources and time, the most suitable
classifier may change. By randomly sampling feature
sets, we remove classifier bias and separate the compari-
son of classifiers from feature selection. Although this
approach requires significantly more computational
resources than heuristic methods, it provides a founda-
tion for a fair comparison between classifiers.

Results

First, we motivate our study by illustrating that each
classifier appears to perform better than its peers for
each dataset given the right feature set. Therefore, the
difficulty in finding the right feature set must play a role
in determining the suitability of a classifier. Second, we
show that win percentage accomplishes this goal in a
simple example, and demonstrate the correspondence
between the continuous version of our win percentage
and the discrete version. After demonstrating the utility
of our approach using synthetic datasets from known
distributions, we apply it to analyze datasets from the
FDA MAQC-II Project [15].
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Demonstrating the utility of each classifier for each
dataset

Figure 1 provides scatter plots for selected feature sets that
exemplify the utility of each classifier. The black line or
curve in each panel represents the average decision
boundary across 20 iterations of five-fold cross-validation.
The white background indicates regions of the feature
space that receive a unanimous label for all 20 iterations
of cross-validation. The cyan shading represents the
uncertainty of sample labeling reaching a peak at the deci-
sion boundary. The red and green ellipses mark a distance
one standard deviation away from the mean (marked with
an X’) of each class. Each panel corresponds to one row in
Table 1. For example, panel A corresponds to the first row
showing the two gene names from the plot and that near-
est centroid achieved a performance of 0.812. The remain-
ing classifiers performed significantly worse and therefore
do not carry an asterisk. In fact, all six classifiers (panel
A - F of Figure 1) showed significantly better performance
than their peers given the right feature set. Nearly all clas-
sifiers showed significantly better performance for all data-
sets given the right high performing (top 100) feature set.
Figures S1-6 and Tables S1-6 in Additional File 1 provide
scatter plots and performance results for all cancer
datasets.

An illustrative example of win percentage

To illustrate our approach, we simulate experimental
data starting with Gaussian conditional distributions p
(x]c) for three candidate classifiers with the following
parameters:

p(x|C =c¢1) =N(0.50,0.20), p(C=c1) =1/3
p(x|C =c;) = N(0.70,0.07), p(C=¢2)=1/3. (1)
p(x|C =¢3) =N(0.75,0.02), p(C=c3) =1/3

Figure 2 plots p(x,c) for the three classifiers. Classifier
¢3 clearly performs well for a larger variety of feature
sets. However, if we are willing to explore the feature
space more thoroughly, classifier ¢; has the longer tail
and better chance to win. The dashed lines in Figure 3
plot the win percentage of each hypothetical classifier as
a function of the subsample size, N. When only one
sample is drawn, each classifier has equal chance
because their priors are equal. As N increases, c3 has the
initial advantage because it has the greater mean perfor-
mance. For 10<N<26, ¢, gains favor because it has mod-
erate mean and variance. However, sampling at least 27
feature sets would suggest using classifier ¢; because it
has the best chance of outperforming its peers. The
solid lines in Figure 3 plot the 2.5- and 97.5-percentile
of 100 iterations of drawing M = 10,000 samples from
p(x,c) and using the discrete win percentage formula in
Equation 11.
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This example shows the fundamental difference
between classifiers that we are modeling; some classifiers
perform well on a wide variety of feature sets, whereas
other classifiers perform well on the right set of features.
A fair way to compare them is to consider how thor-
oughly we can explore the feature space given practical
computing limitations.

Synthetic datasets

To explore a wide variety of probability densities, we
repeat the previous example 100 times and compare the
theoretical and discrete estimate of the win percentage
in Equation 7 and 11, respectively. We varied p(x|c) by
drawing means from N(0.5,0.1), standard deviations
from |N(0,0.1)|, and p(c) uniformly. The root mean
square error (RMSE) across 100 random distributions,
100 repeated trials of drawing M = 1,000 samples, and 1
< N < 40 was 4.2%. Increasing M to 10,000 reduces the
error to 1.0%. These results show a clear correspon-
dence between the ideal case with known continuous
distributions and the more practical discrete distribu-
tions. We next consider cases where the underlying dis-
tributions are not parametric.

Gene expression datasets

We apply the win percentage analysis on clinical gene
expression microarray data. We constrain the feature set
space to contain all Gaussian feature pairs, correspond-
ing to our Gaussian candidate classifiers. Evaluating all
pairs for all datasets required approximately 100 days of
computation using MATLAB on 1.95 GHz servers with
20 GB of RAM. We use a discrete distribution of p(x,c)
to compute win percentage.

Figure 4 shows the distribution of top-classifier perfor-
mance p(x,c) for each classifier. Figure 5 shows the cor-
responding win percentage as a function of the number
of random feature sets, N, for each dataset. For six data-
sets (Panels A, B, C, D, G and H), nearest centroid wins
the largest percentage of all feature sets, illustrated by
the largest area under the solid blue density curves,
representing p(x,c = NC) in Figure 4; and the tallest
solid blue win percentage curve at N = 1 in Figure 5.
Upon first glance, the conditional distributions would
appear somewhat Gaussian but zooming in reveals an
unsmooth tail near the peak performance (see insets of
Figure 4). In particular, the positive control (panel G of
Figure 4) reveals a large disparity in performance
between the gender-specific gene set near 0.90 and less
specific gene sets near 0.80. The negative control per-
forms much worse in the tail (panel H of Figure 4).

The win percentage at N = 10" reveals the top classi-
fier considering all feature sets. However, these results
are not statistically significant because they are based on
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Figure 1 Classifier discrimination plots for breast cancer, pathological complete response. Panels A, B, C, D, E, and F correspond to the
classifiers, NC, SDA, DLDA, UDA, LDA, and QDA, respectively. RD indicates residual invasive tumor, and pCR indicates pathological complete
response. The black line indicates the average decision boundary across 100 folds of cross-validation. The cyan shading indicates the uncertainty
in the labeling. White areas are labeled the same for every fold, whereas dark cyan represents the most uncertainty. The ellipses correspond to
one standard deviation away from the mean for each class indicated with an ’x.
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Table 1 Estimated classifier performance for breast cancer, pathological complete response

Gene 1 Gene 2 NC DLDA LDA SDA UDA QDA
217764_s_at 215127_s_at 0.812* 0.774 0.771 0.752 0.743 0.748
219233_s_at 205225_at 0.787 0.818* 0.770 0.781 0.799 0.775
216092_s_at 220040_x_at 0.785 0.787 0.796* 0.782 0.782 0.776
219438_at 218663_at 0.761 0.763 0.762 0.806* 0.777 0.771
203928_x_at 217297_s_at 0.739 0.744 0.759 0.793 0.810* 0.802
213228_at 212956_at 0.764 0.761 0.761 0.765 0.799 0.809*

* Top performing classifier and any classifiers that do not have a significantly lower mean using a paired t-test with o = 0.05.

the performance estimate from only one “best” feature
set. Under the null hypothesis that all classifiers have
equal chance to perform better, a repeat performance
estimate would likely identify a different classifier.
Focusing on win percentages outside the shaded statisti-
cally insignificant region, we find significant win percen-
tages for smaller N. If we are content with a feature set
performing among the top 0.05% of all feature sets 99%
of the time, we may focus our attention on N = 10*
Exploring feature sets at this level of thoroughness,
UDA performs near the top on five of the six non-con-
trol datasets.

For panels A, B, C, D, G, and H linear classifiers appear
to perform better when exploring a small number of fea-
ture sets. For panels A, B, C, E, F, G, and H nonlinear
classifiers perform significantly well for larger N. These

data suggest nonlinear classifiers perform better when we
explore the feature space more thoroughly, and linear
classifiers perform better when we do not. On the other
hand, the neuroblastoma data in panels E and F show
that nonlinear classifiers also have significantly high win
percentage for smaller values of N. The positive control
in panel G shows the most striking result. LDA has sig-
nificantly high win percentage for N < 10°. Surprisingly,
the negative control has statistically significant win per-
centages for small N. This suggests that the null hypoth-
esis that every classifier has equal chance to perform
better than its peers on a given feature set is not true.
Most striking is N = 1. In this case, millions of feature
sets are analyzed and the null distribution would expect
that every classifier perform better than its peers almost
exactly 1/6 of the time. This is clearly not the case,

—+C,

defined in Equation 1.

Figure 2 Distribution of winning classifier performance. The joint probability density functions for the classifiers in the illustrative example
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suggesting that knowing the top performing classifier for
one feature set may influence our expectation for other
feature sets. We revisit this discrepancy in the discussion.
Insignificantly high win percentage helps eliminate
some classifiers from consideration. For example for N
> 1, UDA for dataset B; SDA for dataset C; QDA for
dataset D; NC and SDA for dataset E; NC, DLDA, and
SDA for dataset F; DLDA, SDA, and for dataset G; and
DLDA and SDA for dataset H do not show a signifi-
cantly high win percentage. Some classifiers clearly fail
based on our significance test and may be considered
unsuitable for some combinations of dataset and N.

Multiple sampling of microarray data

In the previous example, we used all feature pairs to
compute the exact win percentage. However, it will typi-
cally be impractical to evaluate all feature sets under
consideration. Now, we repeat the previous example
using a finite random sample of size M from the total
number of feature pairs. We repeat 20 trials, each time
selecting M random samples from all Gaussian feature
pairs, and computing the win percentage based on the
sample. For a given M, variance increases as N increases.
Figure 6 shows the variation in win percentage for data-
set F using M = 10 million. The dashed lines are the
same as panel F of Figure 5 and the solid lines indicate

the 95% confidence interval for the mean performance
of the 20 trials. Intuitively, when N is much larger than
M, win percentage depends on a classifier’s relative per-
formance on only one (top) feature set. Any variance in
that selection transfers to win percentage. For example,
some of the trials did not contain the top overall feature
set resulting in confusion about the top performing clas-
sifier. The confidence interval for UDA and LDA
reflects this by spanning the entire range. On the other
hand, for smaller N, win percentage averages over many
feature sets reducing the variance.

Figure 7 reports the root mean square error between
the estimated win percentage using M samples and the
actual win percentage (Figure 5) for all datasets. Inter-
estingly, the ratio between N and M appears to be the
major factor in determining the error in win percentage.
Figure 7 shows box plots for RMSE at different ratios of
M to N. For M = N, the RMSE is closely approximated
by the following equation:

N 0.48
RMSE ~ 0.24 x (M) : 2)

The last row in Table 2 shows the predicted RMSE
based on Equation 2. In order to accomplish a RMSE of
less than 1%, these data suggest selecting M > 750N.
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Table 2 Random features required for ¢ and p

N & p & p

1 0,001 0999 1x10° 1.000

10 0.001 0499 1x10° 0749

100 0.001 0.0667 1x10° 0.129

1K 0.001 0.00688 1x10° 0.0137

10K 0.001 0.000691 1x10° 0.00138

>10K 0.001 = 691/N 1x10° = 13.8/N

The fraction of top feature sets, p, gets smaller as N increases. For p near zero,
p = -(In ¢)/N corresponding to the last column of the table.

Discussion

The suitability of a classifier for a dataset cannot be
determined after feature selection. We show that given
the right feature set, any of the six classifiers examined
here could be judged as suitable. However, if we con-
sider the difficulty of finding a good feature set for a
classifier we may evaluate a classifier for a dataset rather
than for a particular feature set. These ideas motivate
our proposed win percentage measure for comparing
the relative suitability of a classifier to a dataset. How-
ever, as an initial investigation there are several points
that bear consideration for future study.

We provide examples to illustrate the potential useful-
ness of win percentage for analyzing and comparing classi-
fier performance. Eventually, we would like to use win
percentage to inform the model building process. One
approach that seems promising is to use win percentage to
assist practitioners in selecting or eliminating classifiers
from consideration. After determining a suitable classifier,
we could choose a tailored feature selection method within
cross-validation to estimate its performance.

One key aspect of our approach is that we do not
attempt to model the absolute performance of each clas-
sifier across the feature space. Win percentage only com-
pares classifiers and does not comment on their absolute
performance. In general, we would expect these classi-
fiers to perform near chance on the random labels. How-
ever, we observe that the mean of X appears to exceed
0.5 on every dataset including the negative control. This
bias can be explained by the selection of one best perfor-
mance among the six candidate classifiers. The expected
value of the largest sample among six random samples
from a Gaussian distribution is g + 1.270 [14,16]. There-
fore, it is reasonable to expect the observed mean shifts.
Future work might incorporate whether the top classifier
performs better than chance on the dataset.

In estimating the performance of each classifier for a
feature set, we use two iterations of three-fold cross-
validation. Such a method is itself a randomized algo-
rithm and multiple trials produce different results. In
particular, our notion of “best” may be extended to
include those classifiers that perform insignificantly
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differently from the best or “among the better” classi-
fiers during cross-validation. This improvement would
likely move all win percentage curves closer to 1/6 in
Figure 5 and reduce the apparent significance of all
results. In particular, it would partly address the appar-
ent significance of the negative control (randomly
labeled) dataset.

Intuitively, we would expect the negative control to
exhibit win percentages that are likely to be drawn from
the null distribution. For N = 1 in panel H of Figure 5,
this is obviously not the case. Another contributing fac-
tor could be that the feature sets are not independent of
each other. If a classifier performs better than its peers
on a single feature, it would stand to reason that it is
more likely to perform better than its peers on all fea-
ture sets containing that feature. If this is the case, it
reduces the number of independent observations used
to compute the null distribution. In the extreme, the
win percentage computed from individual features is
also exhibited by all feature pairs. In this case, the num-
ber of independent observations is reduced from C(F,2)
combinations to merely F. We can easily adjust our cri-
tical win percentages by reducing M to F in Equation 10
and using Equations 12-14. By doing this, none of the
win percentages for the random endpoint are significant.
However, estimating the actual redundancy among fea-
ture sets for an arbitrary dataset proves difficult as does
adjusting M. Future work could estimate the null distri-
bution empirically by computing win percentage using
multiple permutations of the class labels for each data-
set. This computationally expensive approach could lend
insight into the true null distribution and the effective
number of independent feature sets implied by M in our
theoretical null distribution.

Although we focused on a pair-wise analysis of the
feature space, our proposed approach easily extends to
higher dimensions. Whereas it is often impractical to
estimate the performance of all feature triplets or quad-
ruplets, these data suggest that sampling only 750N of
these higher dimensional feature sets may be useful in
comparing classifiers that explore N random feature
sets. As the feature sets become larger, it may also be
useful to define the probability of selecting each feature
set. For example, one can favor features based on a pre-
ferred ranking criterion. Whereas heuristic methods
quickly find local minima, the randomness in this
approach makes a more thorough exploration of the fea-
ture space possible.

Conclusions

We propose a novel way to compare classifiers based on
the probability that they will outperform their peers
(win percentage) on a random sample of the feature
sets. Unlike cross-validation that estimates classifier
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performance using random subsets of all samples, win
percentage estimates classifier suitability using random
subsets of all feature sets. First, we illustrate the utility
of this approach using all Gaussian feature pairs. Then,
we show that precise estimates (within 1%) can be
achieved using a smaller random sample of all feature
pairs.

We show that win percentage performs as expected
on synthetic datasets and then apply it to real microar-
ray data. We observe that the selection of the most sui-
table classifier does not only depend on the dataset but
also on the thoroughness of feature selection. In addi-
tion, the results suggest that nonlinear classifiers per-
form better when the feature space is explored more
thoroughly and linear classifiers perform better when it
is not. Using a theoretical null distribution, we can
exclude some classifiers from consideration because
their win percentage falls within a statistically insignifi-
cant region.

Methods

In an effort to assess the suitability of a classifier to a
dataset, we first attempt to find feature sets for which
each classifier performs better than its peers. In order to
compare multiple classifiers across all feature sets, we
propose estimating the probability that each will per-
form better than its peers will, given an incomplete sam-
ple of feature sets. We refer to this probability as “win
percentage.” If a classifier performs well on one feature
set and poorly on all others, the likelihood of winning
will depend on the certainty in selecting that feature set.
However, a classifier that performs well on a large vari-
ety of feature sets is more likely to win even when only
a small group of feature sets is considered.

Randomized feature selection

As an analytical tool to define classifier suitability to a
dataset, we specify a wrapper-based Monte Carlo feature
selection method, MCW (shown in Table 3) that draws
a fixed number of feature sets randomly and evaluates
each using candidate classifiers. The function ‘random-
Subset’ uses a pseudorandom number generator to
select a random feature set from among the total num-
ber of feature sets under consideration with replace-
ment. For example, F features have 2° total subsets or C
(F,2) combinations of feature pairs. In practice, the user
could favor some subsets by defining the probability of
selecting each subset. For example, one might specify a
prior probability on the number of features in a feature
set, p(Ng). The ‘performance’ function used for MCW
returns the highest estimated performance among all
candidate classifiers along with the labels of the top per-
forming classifiers in the set C;. If that feature set
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Table 3 Pseudocode for a Monte Carlo wrapper-based
feature selection algorithm
MCWI(S, N)
1. Xour = -
2.Fori=1toN
S; = randomSubset(S)
(x, C) = performance(S))

If Xi >Xout
Sout = Sir Xout = Xir Cout = randomElement(C;)

3. outpUt Souy Xout Cout

The input, S, is the set of all features, and N is the total number of feature
subsets to draw randomly. The variable X; is the performance of the top
classifier for subset S;, and C; is the label of the top classifier. Souy, Xour and
Cout return the top performing feature set, top estimated performance, and
top classifier, respectively.

returns the top performance so far, one classifier c,, is
chosen at random.

Selecting the number of iterations for MCW

Because it is impractical to explore all possible subsets
to find the optimal feature set for each classifier, we
choose the number of evaluated feature sets, N, to bal-
ance practical computing constraints and tolerated
bounds on feature set performance. Specifically, we
introduce the desired fraction, p, of top-performing fea-
ture sets among which MCW’s selected feature set will
likely belong. The probability that MCW’s selected fea-
ture set is not among the top p percent of top-perform-
ing models is ¢, the failure tolerance. The probability
that a random feature set rates in the top p percent of
all feature sets is p. That is, a random feature set has a
50% chance to be in the top 50% and a 1% chance to be
in the top 1%. As we evaluate more feature sets, the
chance of failure decreases such that:

Pr(Failure) = ¢ = (1 — p). 3)

Given a tolerated chance of failure, ¢, and the desired
top fraction of all feature sets, p, we solve for the num-
ber of necessary iterations of the algorithm:

N < Ine
~In(1-p)’

Table 2 provides an example of how the fraction of
top feature sets, p, gets smaller as we increase N. For p
near zero, p can be approximated as the following:

(4)

p=1 — !N
Ine
In(1-p)=" (5)
N —Ine
N 7
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where we use the first-order Maclaurin approximation
for In(1-p)=-p . This indicates a simple inverse relation-
ship between number of random samples and size of
the fraction of top feature sets.

Theoretical win percentage

Now that we have specified a classifier-agnostic feature
selection method, we may derive a suitable criterion to
compare different classifiers considering the uncertainty
in feature selection. First, we consider the probability
density of the best performance of all candidate classi-
fiers, x;, computed at each iteration of MCW. For now,
we ignore which classifier produces a feature set’s per-
formance and treat it as a random variable, X, with
probability density function p(x). The probability that a
particular performance, x, will be the best in a random
sample of size N is the following [17]:

p(x = max(x; ...xn)) = N - P(X < x)N"1p(x), (6)

where P is the cumulative density function and the x;
are drawn from p(x). In terms of MCW, p(x = max(...))
is the probability density function of the output variable
Xout- Although we could approximate this distribution
by running MCW a large number of times, Equation 6
represents the exact density considering all possible
MCW results. When comparing classifiers, we are more
interested in which classifier performs better at each x.
Therefore, we consider the joint distribution p(x,c),
where c is a categorical random variable representing
the classifier that performs best for a feature set with
performance x. The probability that classifier ¢ performs
best in a random sample of size N is the following:

win(c) = / p(clx)p(x = max(x; .. .xn))dx, (7)

where the integrand is the probability that classifier ¢
performs best for a feature set with performance x. In
terms of MCW, win(c) is the probability that MCW will
output ¢,y = ¢. Given a reasonable approximation to
p(x,c) we can estimate which classifiers are more likely
to win without needing to run MCW.

Discrete win percentage

When the distribution of performance for each classifier
cannot be reasonably approximated by a Gaussian or
other parametric distribution, we model X as a discrete
random variable. We estimate p(x,c) from a sufficiently
large set of random samples,

Sm={(xi )1 <i <M} (8)
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We then draw hypothetical subsets of S,; within
MCW:

SN = {(xsircsi)ll < i =< N}r (9)

to derive the win percentage for a random sample of
size N:

Wrank(x) = p(x = max(x;, ... X)) =
<M — rank(x) + 1>N _ (M — rank(x) + 1 — count(x))N (10)
M M '

where ‘rank’ is the rank of x among all M samples in
descending order and ‘count’ is the number of samples
with performance x in Ss. The first fraction is the prob-
ability of randomly selecting with replacement N feature
sets all of which have the same rank as x or worse. The
second fraction removes those that do not contain a
sample with performance x. Notice that for x to hold
the maximum performance, it must be among the M
samples. Figure 8 plots this distribution as a function of
the rank of x for M = 100. If we select one random
sample, each sample has equal probability of being the
best regardless of rank. As N increases, the probability
shifts toward the better ranked feature sets, until at the
limit only the best feature set is likely to be selected.
Selection pressure refers to an analogous concept for
genetic algorithms [17].

Estimating which classifier is more likely to perform best
given the number of randomly sampled feature sets N
involves a simple summation over all M samples, (x;,c;):

M [ p(xi = max(x, ... X))

win(c) = ) G

i=1

, CEC{ (11)

, otherwise

Again, win(c) is the probability that MWC will output
Cout = ¢ and C; is the set of classifiers with equal perfor-
mance, x;. Win percentage provides the exact fraction of
times classifier ¢ performs better than its peers among
all possible subsets Sy used by MCW.

Although other randomized algorithms could be used
to estimate a related definition of win percentage, we
chose MCW because of its simplicity. For example, a
Las Vegas algorithm continues to explore feature sets
until a convergence criterion is met [12], resulting in an
unpredictable N and complicating the resulting mathe-
matical formulation.

Statistical significance of win percentage

Win percentage provides a statistic that potentially
reveals which classifiers are more or less suited to a par-
ticular problem. We introduce a method for significance
testing that helps determine which values for win per-
centage are unlikely to occur by chance. Specifically, we
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estimate the null distribution for win percentage and use
it to calculate a p-value for each classifier’'s win
percentage.

Under the null hypothesis, each classifier has an equal
chance to perform better than its peers for a given fea-
ture set. For a single classifier, win percentage depends
on which feature sets the classifier wins. We model win-
ning and losing as a Bernoulli process where the classi-
fier of interest has a 1/6 chance to win each feature set
and a 5/6 chance to lose. Ignoring ties, win percentage
is a weighted average of Bernoulli random variables:

M
win(c) = Zwibi, (12)
i-1

where w; is the probability defined in Equation 10 and
b; is a Bernoulli random variable equal to one when the
classifier wins the ith-ranked feature set. Therefore, win

percentage is a random variable with the following
mean and variance:

M M
E[win(c)] = ZwiE [bi]=q Zwi =q
i=1 i=1

M
Var [win(c)] = > wiVar [b] = q (1 —q) Y _w}.

i=1

We model the null distribution for win percentage as
a beta distribution with a mean of 1/6 and a variance
determined by M and N. Specifically, we use the
method-of-moments to estimate the parameters of the
beta distribution:

1 1
"( ?ilw%”)’ ﬂ=(1“’)<z¢zlwf‘l>'(”)
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Using a desired false positive rate of 5%, we use a
Bonferroni adjusted significance level of 0.01 (five
degrees of freedom for six classifiers). Then, we com-
pute the critical win percentages at the 0.5™ and 99.5™
percentile of the null distribution. We consider the win
percentages between the two critical values to be statis-
tically insignificant.

Classifiers and performance metric

Given a dataset of features and labeled samples, we esti-
mate the distribution of best classifier performance
using cross-validation. Each feature set produces one
sample (x;,C;), where x; is the maximum cross-validation
performance among candidate classifiers and C; is the
set of classifiers achieving the highest performance.
Although a number of methods for cross-validation
could be used, we chose two iterations of three-fold
cross-validation for its efficiency compared to more
iterations or more folds. This allows us to explore a
much larger feature space than more computationally
complex performance estimates.

In order to compare a variety of linear and nonlinear
classifiers without needing computationally expensive
parameter selection, we focus on six Gaussian Bayes
classifiers. Specifically, we represent each class as a mul-
tivariate Gaussian distribution with a possibly con-
strained covariance matrix. We classify new samples
with the label associated with the most likely class dis-
tribution using uniform priors. The covariance matrix is
either constrained to be the same for both classes
(pooled) or allowed to vary between classes (unpooled).
In addition, the covariance is proportional to the iden-
tity matrix (spherical), uncorrelated (diagonal), or
unconstrained (full). Table 4 summarizes the six classi-
fiers. In particular, the well known nearest centroid clas-
sifier corresponds to pooled spherical covariance, linear
discriminant analysis corresponds to pooled full covar-
iance, and quadratic discriminant analysis corresponds
to unpooled full covariance. Classifiers utilizing pooled
covariance are linear in that they construct a linear deci-
sion boundary, whereas those that compute covariance
independently for each class are nonlinear and construct
a quadratic decision boundary. Classifier complexity
increases when you move down or to the right in the
table. The degrees of freedom for two-class two-dimen-
sional data are listed in parentheses.

Table 4 Relationships between candidate classifiers
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When comparing classifier performance, the fraction
of correctly classified test samples (accuracy) is a very
common performance metric. Usually, the samples for
training and testing are selected to have equal propor-
tions in each class. In this work, we use the average of
sensitivity and specificity, also known as binary AUC
(area under the receiver operating characteristic curve
using binary labels). When the class proportions are
equal, this measure is equivalent to accuracy. However,
in many biomedical applications including those in this
paper, the class proportions are skewed. For these data,
the average of sensitivity and specificity represents a
class-balanced accuracy, ie., the expected accuracy if the
class proportions were balanced. In practical applica-
tions of biomedical classification, it may be desirable to
favor sensitivity over specificity (or vice versa), justifying
a weighted average of the two.

Datasets and feature space

We analyze eight classification problems from three can-
cer datasets from the FDA MicroArray Quality Control
Phase-II Project (MAQC-II) [15]. Table 5 summarizes
eight datasets from MAQC-II. The breast cancer dataset
[18] originates from microarray data collected from fine
needle aspiration specimens from newly diagnosed
patients before treatment. Dataset A classifies each
patient as either having pathological complete response
or residual invasive cancer after preoperative chemother-
apy. Dataset B classifies patients based on estrogen recep-
tor status as determined by immunohistochemistry. The
multiple myeloma dataset [19] originates from microar-
ray data collected from bone marrow plasma cells in
newly diagnosed patients, and classifies them based on
overall survival (dataset C) and event-free survival (data-
set D) using a 730-day cutoff. The neuroblastoma dataset
[20] originates from microarray data collected from
newly diagnosed patients and classifies them based on
overall survival (dataset E) and event-free survival (data-
set F) using a 900-day cutoff. In addition, we analyze a
positive control labeled by patient gender (dataset G) and
a negative control labeled randomly (dataset H) using the
same neuroblastoma patients.

Although our approach is extensible to any probabilis-
tic sampling of the feature space, for this investigation
we limit ourselves to feature sets containing exactly two
features. This allows us to compute an exact win

Covariance Spherical Diagonal Full

type

Pooled Nearest centroid (NC, 5 d.f) Diagonal linear discriminant analysis(DLDA, Linear discriminant analysis (LDA, 7 df)
6 df)

Unpooled Spherical discriminant analysis (SDA, Uncorrelated discriminant analysis (UDA, Quadratic discriminant analysis (QDA,

6 df) 8 df)

10 df)
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Table 5 Dataset properties
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ID Description Total features Gaussian features Gaussian pairs
A Breast cancer, pathological complete response 22283 10404 54 % 107
B Breast cancer, estrogen receptor status 22283 10154 52 % 107
C Multiple myeloma, overall survival 54675 16736 14 x10°
D Multiple myeloma, event-free survival 54675 16147 13x10°
E Neuroblastoma, overall survival 10707 3095 48 x 10°
F Neuroblastoma, event-free survival 10707 3122 49 x 10°
G Neuroblastoma, positive control (gender) 10707 3050 46 x 10°
H Neuroblastoma, negative control (random) 10707 3064 47 x 10°

percentage using the complete feature space and com-
pare it to win percentage computed using only a frac-
tion of the complete space. We could equally apply this
methodology to sets of three or more features; however,
we believe feature pairs illustrate the principal. We
explore all features that exhibit a prescribed level of
normality based on the standard error of the kurtosis of
each feature. Thus, we explore the complete feature
space of Gaussian feature pairs. Table 5 also lists the
number of features passing the Gaussian test for each
dataset and the total number of feature pairs evaluated.

lllustrating the utility of each classifier for each dataset
We propose win percentage as a way to assess the suitabil-
ity of a classifier to a dataset. If the choice were obvious,
there would be no need for such a measure. To illustrate
the utility of each classifier for each datasets, we attempt
to find gene pairs for which each classifier performs statis-
tically significantly better than its peers. We use the results
of the coarse cross-validation (two iterations of three-fold),
to rank feature sets by top classifier performance. Then,
we reanalyze the top 100 feature sets using a finer-grained
20 iterations of five-fold cross-validation in order to more
precisely estimate performance and to find statistically sig-
nificant differences. Because we use the same folds for
every classifier, we use a paired t-test to compare the
mean performance of the top classifier to each of the
remaining classifiers. For each classifier, we select one fea-
ture set that demonstrates its utility, provide a scatter plot
to show how the classifier fits the data, and report perfor-
mance results as well as significance.

Sampling with replacement

In this work, we chose to draw random samples with
replacement. Alternatively, we could draw randomly with-
out replacement so that no feature set is drawn more than
once within MCW. Although this is a slightly more effi-
cient way to explore the feature space, sampling with
replacement allows a simpler presentation and mathemati-
cal representation. The difference is subtle even when ran-
domly sampling a subset of size M from a total set of size
M. In this case, the expected fraction of unique samples is

63.2% [21]. Using MCW, we typically draw subsets much
smaller than the total feature space. The expected fraction
of unique samples in a subset of size N from a set of size
M is (1-(1-1/M)N)M/N. Conservative estimates of M =
1000000 and N = 100000 result in 95% unique samples,
suggesting that we would need to draw ~5% more samples
to achieve the same feature space coverage as a random
sample without replacement.

Endnote

* This work is based on an earlier work: Win percen-
tage: A novel measure for assessing the suitability of
machine classifiers for biological problems, in ACM
International Conference on Bioinformatics and Compu-
tational Biology, (Aug. 1-3, 2011) © ACM, 2011.

Additional material

Additional file 1: Please see additional file: File01_additional.pdf for
supplemental material that contains classifier discrimination plots
and classifier performance for pair-wise analysis on all cancer
datasets.
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