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Abstract

Background: The identification of ligand binding sites is a key task in the annotation of proteins with known
structure but uncharacterized function. Here we describe a knowledge-based method exploiting the observation
that unrelated binding sites share small structural motifs that bind the same chemical fragments irrespective of the
nature of the ligand as a whole.

Results: PDBinder compares a query protein against a library of binding and non-binding protein surface regions
derived from the PDB. The results of the comparison are used to derive a propensity value for each residue which
is correlated with the likelihood that the residue is part of a ligand binding site. The method was applied to two
different problems: i) the prediction of ligand binding residues and ii) the identification of which surface cleft
harbours the binding site. In both cases PDBinder performed consistently better than existing methods.
PDBinder has been trained on a non-redundant set of 1356 high-quality protein-ligand complexes and tested on a
set of 239 holo and apo complex pairs. We obtained an MCC of 0.313 on the holo set with a PPV of 0.413 while
on the apo set we achieved an MCC of 0.271 and a PPV of 0.372.

Conclusions: We show that PDBinder performs better than existing methods. The good performance on the
unbound proteins is extremely important for real-world applications where the location of the binding site is
unknown. Moreover, since our approach is orthogonal to those used in other programs, the PDBinder propensity
value can be integrated in other algorithms further increasing the final performance.

Background
Many proteins carry over their function by interacting
with small molecule ligands. These include enzyme
cofactors, metabolites and chemical messengers such as
hormones. Moreover the vast majority of drugs are in
fact small molecules that bind to a target protein thus
modulating its function. Therefore the identification of a
ligand binding site can give indication about the mole-
cular function of a protein, even though the relationship
between the molecular and biological function, i.e. the
role of a protein in the context of a cellular process, is
not straightforward.

The task of predicting a binding site for a specific
ligand can be divided in two steps: i) the identification
of an appropriate cavity in the structure, ii) the predic-
tion of which molecule can fit in said cavity. The latter
task, which can be broadly identified with molecular
docking, is extremely demanding from a computational
point of view. Therefore the first step is almost always
necessary in order to limit the search space of a molecu-
lar docking experiment.
Accordingly a variety of algorithms have been devel-

oped to identify ligand binding pockets in protein struc-
tures [1]. The available methods use geometric criteria,
energy functions or a combination of both.
Geometric approaches, such as SURFNET [2], LIGSI-

TEcsc [3], ConCavity [4], APROPOS [5] and DEPTH [6]
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mainly work by identifying cavities on the structure and
then predicting one of the largest clefts as the ligand
binding site. Indeed it has been shown with SURFNET
that considering the two largest cavities calculated by
this method identifies the correct location of the ligand
in single-chain enzymes with a success rate of about
90% [7].
LIGSITEcsc combines geometric analysis with evolu-

tionary conservation by ranking clefts according to the
conservation of their constituent residues. The method
was tested on 48 apo/holo protein pairs and on a second
test set composed of 210 holo protein structures and
correctly predicts the ligand binding site in 71% and
75% cases, respectively.
ConCavity also integrates sequence conservation with

pocket detection and makes specific predictions of posi-
tions in space that overlap ligand atoms. Moreover,
instead of identifying entire clefts, the method specifi-
cally predicts which residues are likely to be in contact
with a ligand. ConCavity was tested on 332 apo/holo
protein pairs from the non redundant LigASite 7.0 data-
set [8] and achieved an area under the precision-recall
curve of 0.61 and 0.66 on apo and holo structure
respectively.
APROPOS uses an alpha-shape algorithm to identify

pockets by comparing surfaces of the protein generated
with different levels of detail. This algorithm correctly
locates more than 95% of the ligand binding sites in a
set of about 300 protein structures. DEPTH is based on
the observation that some of the residues in a binding
site could be deep but at the same time exposed to the
solvent. DEPTH has been compared with LIGSITE,
Pocket-Finder, SURFNET and Concavity on a set of 225
protein structures binding small ligands, achieving
results comparable with all these methods.
Methods based on energetic criteria, such as the one

developed by Morita et al. [9], Q-SiteFinder [10] and
SITEHOUND [11], usually calculate the energy of inter-
action between a probe and the surface of the protein.
Clusters of points with favorable interaction energies
define the predicted ligand binding sites.
SITEHOUND uses an energy-based approach to iden-

tify possible regions of binding, implementing different
types of probes (a carbon probe and a phosphate probe)
to characterize a protein structure. It has been tested on
77 protein structures and it correctly ranks the ligand
binding site in one of the top three clusters in 95% of
the cases.
Both Q-SiteFinder and the method by Morita et al.

use methane probes and have been tested on the same
dataset of 35 apo/holo protein pairs. Q-SiteFinder
achieves a success rate of 51% for apo and 80% for holo
structures, when considering the top scoring prediction
as the correct one. The method by Morita et al. has a

similar performance on holo structures, but performs
better on apo proteins achieving a success rate of 77%.
In addition to these approaches, a variety of methods

exist that predict the location of binding sites based on
several characteristics that distinguish them from other
regions of the protein surface. For instance residues in
binding pockets and enzyme active sites have been
observed to interact directly, or via few intermediates,
with a great number of residues in the structure [12].
Moreover enzyme active sites have been reported to
have perturbed pKa values [13] and, when mutated, lead
to a decrease in activity accompanied by an increase in
the stability of the protein [14]. The preference of cer-
tain residues to be located in binding sites has also been
exploited for prediction. Mehio et al. [15] recently
developed a binding site prediction method based on
the over-representation of specific atom triplets in bind-
ing sites with respect to the rest of the structure.
A separate discussion is necessary when the structure

of a homologue of the protein of interest is available.
For these cases different approaches have been proposed
in the last few years, such as 3DLigandSite [16], FIND-
SITE [17] and firestar [18].
3DLigandSite searches a structural library for proteins

homologous to the query. These proteins are superim-
posed with the structure of interest and the position of
their ligands is used to predict the location of the binding
site. Similarly FINDSITE superimposes and clusters
ligands from homologous structures onto a query protein
and uses the center of mass of the ligands to identify
putative binding sites. The predicted sites are then
ranked according to the number of templates sharing the
binding pocket. Firestar integrates FireDB, a database of
annotated functional residues, with a sequence alignment
tool in order to enable the comparison of binding resi-
dues across homologous proteins. When possible the
information of which residues are functionally important
is transferred to the protein of interest.
As previously stated the performance of binding site

prediction methods differs according to whether the
analysis is performed on apo or holo structures because
proteins undergo conformational changes when binding
their cognate ligands. In general most of these methods
correctly identify the location of the binding site in 70-
90% of the cases if the protein analyzed is in the bound
conformation (holo). In contrast, the same analysis per-
formed on the apo structures achieves a success rate
ranging from 50% to 70%.
A wealth of data concerning the mechanisms underly-

ing the interaction of proteins with small molecules can
be extracted from complexes of known structure depos-
ited in the PDB. While knowledge-based approaches
have been developed that use these data to dock ligands
onto proteins [19-21], no method exists that uses
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available protein-ligand complexes to predict binding
sites on a query structure, irrespective of the ligand.
In this work we detail the development of PDBinder, a

novel method for the prediction of ligand binding sites
in protein structures. PDBinder is a knowledge-based
method based on the observation that unrelated binding
sites share small structural motifs that bind the same
chemical fragments irrespective of the nature of the
ligand molecule as a whole [22]. Moreover these motifs
behave as small building blocks (modules) that can be
assembled to create different binding pockets [23]. This
modularity parallels the modularity of the ligand mole-
cules, which are themselves composed of recurring che-
mical fragments.
We therefore reasoned that, because of the presence

of these motifs and irrespective of the identity of the
bound ligand, a binding site should resemble other
known binding sites, more than other parts of the struc-
ture. Thus the number of similarities that are identified
between a protein patch and the set of all known bind-
ing sites can be used to assess the likelihood of that sur-
face area being able to bind a ligand.
PDBinder uses the Superpose3D [24,25] local struc-

tural comparison algorithm to scan a query protein
against a library of binding and non-binding protein sur-
face regions derived from the PDB. The number of simi-
larities identified in the two sets is then used to derive a
propensity value for each residue in the protein of inter-
est. Surface areas with high propensity values denote the
position of the predicted binding site. The method was
trained on a non-redundant set of 1356 high-quality
structures of protein-ligand complexes and tested on
two different datasets of 239 and 35 apo/holo structure
pairs. We also report a comparison between the perfor-
mance of PDBinder and other methods.

Availability
A downloadable version of the program is available at
http://cbm.bio.uniroma2.it/pdbinder/.

Results and discussion
Training of the method
In order to train PDBinder and determine the optimal
threshold of the propensity value we used the non-
redundant dataset of 1356 high-quality ligand binding
structures from which we derived the libraries of bind-
ing and non-binding residues. We used a leave-one-out
procedure as described in the methods. As a first test
we pooled the residues from all the structures together,
each one associated with the PDBinder propensity value
and a binary flag indicating whether the residue is part
of a binding pocket or not. To assess the predictive
power of the propensity value we drew a ROC curve
and obtained an Area Under the Curve (AUC) of 0.765

(see Figure 1). This result shows that the propensity
value assigned by PDBinder is indeed correlated with
the likelihood that a residue is part of a binding pocket.
In order to calculate the optimal propensity threshold

we choose the value that maximizes the average of the
prediction performance on all the proteins, i.e. instead
of pooling all the residues together we calculate the per-
formance for each chain and seek to maximize the aver-
age. This situation is clearly more indicative of the
typical usage of the method. Figure 2 shows how the
Sensitivity, Specificity, Positive Predictive Value (PPV)
and Matthew’s Correlation Coefficient (MCC) vary as a
function of the threshold of propensity value. This figure
also highlights the effects of using a threshold that max-
imizes the Positive Predictive Value, i.e. a threshold
value of 0.584. The PPV rises to 0.907 but the Sensitivity
decreases to 0.023 which means that only 2% of the
binding pockets residues are correctly recognized.
We choose the threshold value that maximizes the

average of the Matthew’s Correlation Coefficient (MCC).
The optimal threshold was thus determined to be

0.143. Because of the way the PDBinder propensity is
defined this means that at least ~15% of the matches of
a residue must be with residues in binding pockets for
the amino acid to be predicted as positive. Using this
threshold resulted in an average MCC on the training
set of 0.294, with an average sensitivity of 0.283, a speci-
ficity of 0.976 and a positive predictive value of 0.407.

Clustering of the predictions
The results on the training set show that using the pro-
pensity value alone we obtain ~40% of correct predictions.
Since binding sites are contiguous regions of the surface,
we investigated whether discarding spatially isolated pre-
dictions yielded an improvement in the performance of
PDBinder. We therefore decided to discard all the predic-
tions that do not have at least another prediction in a
defined radius. We tested different thresholds from 1.0 Å
to 20.0 Å in increments of 1 Å. The results of this spatial
filtering show that the best clustering radius is 10.0 Å.
This value is close to the mean radius of the binding sites
in the training set (8.97 ± 0.20 Å, 99% confidence interval).
The use of this threshold raises the positive predictive
value by 5.4% and the MCC by 0.018 with a loss of 1.4% in
sensitivity (see Table 1).

Amino acid-specific analysis
The amino acid composition of binding pockets is
known to be different from that of the remainder of the
structure. Indeed some amino acids such as arginine
and histidine are commonly found in ligand binding
sites [26]. Therefore structural motifs including these
residues will tend to match more frequently with bind-
ing sites by virtue of their composition alone. We tried
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to separate this effect from the contribution given by
geometry by calculating a different propensity value
threshold for each amino acid.

This method implicitly normalizes for the preference of
certain amino acids to appear in binding sites. For
instance, in order for the propensity of a histidine to rise

Figure 1 ROC curves for the analysis on the Training Set and Apo/Holo Test Set. Green: Training Set (AUC 0.766); blue: Holo Test Set (AUC
0.780); brown: Apo Test (AUC 0.767).

Figure 2 Performance of PDBinder. Sensitivity, Specificity, Positive Predictive Value and Matthew’s Correlation Coefficient calculated as a
function of the Propensity Value threshold.
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above the threshold, the structural motifs of which it is
part have to appear in known binding sites more fre-
quently than other motifs involving histidine. If we use
the same threshold for all the amino acids, the same his-
tidine has to “compete” with all the motifs, which is
easier because histidine is itself preferred in binding sites
while the other motifs include residues which are
strongly disfavored.
We therefore calculated 20 different thresholds using

all the residues in the training set, with the same
method that was used to derive the general cutoff (see
above). Figure 3 displays the residue-specific cutoffs
along with the general cutoff of 0.143 used in the pre-
vious analysis (red line). The optimal cutoffs are specific
for each aminoacid type and range from the 0.036 of
leucine to the 0.291 of histidine. Interestingly these cut-
offs correlate well (Pearson’s correlation coefficient 0.9)
with the residue preferences calculated from the compo-
sition of the binding sites alone, with residues having a
threshold higher than the general cutoff being favored.

We again calculated the average MCC for all the pro-
teins in the training set, this time using the amino acid-
specific cutoffs and obtained an MCC of 0.291 with an
average sensitivity of 0.244 a specificity of 0.985 and a
positive predictive value of 0.447. Therefore the use of
residue-specific thresholds yielded fewer, more accurate
predictions but the average performance was slightly
worst and was not recovered by introducing the spatial
clustering (data not shown).
We decided to determine how much the geometry of

the binding residues is important for our knowledge-
based potential with respect to the simpler aminoacid
composition of the binding triplets. To this end we cal-
culated an average propensity value for all the binding
triplets of residues having the same aminoacid composi-
tion, i.e. AVV, VAV and VVA, regardless of their geo-
metric configuration. To derive the average propensity
value, we calculated the ratio between the number of
times each triplet with the same aminoacid composition
appears in a binding pocket and the total number of
occurrences of the triplets having the same aminoacid
composition.
The complete list of triplets along with their potentials

is reported in the Additional file 1: Table 1.
We then applied these propensity values in a leave-

one-out experiment on the training set. For each protein
structure, the propensity value associated to a residue is
calculated as the average propensity value of the triplets
in which each residue is found using Superpose3D.

Table 1 Benchmark results

SENSITIVITY SPECIFICITY PPV MCC

TRAINING SET 0.269 0.984 0.461 0.312

HOLO TEST SET 0.295 0.983 0.413 0.313

APO TEST SET 0.251 0.984 0.372 0.271

Results obtained by PDBinder on the Training Set and Apo/Holo Test Sets.
These results were derived by using a single propensity threshold for all the
amino acids and applying the spatial clustering with a 10 Angstrom threshold.

Figure 3 Residue-specific cutoffs vs residues abundance. The residue-specific cutoffs of propensity values are shown together with the
abundance of each residue in binding sites. The abundance is calculated as the ratio between the relative abundance of each residue in
binding and non-binding regions. The horizontal red line marks the general cutoff value (0.143) derived from the whole analysis. The Pearson’s
correlation coefficient between the two series is shown.
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When using this simpler aminoacid composition
potential, the best MCC obtained on our training set
drops to 0.099 (corresponding to a propensity threshold
of 0.254), thus showing the importance of the geometry
of a triplet in determining whether a residue is binding
or not.
These results show that geometry alone gives a strong

contribution to the predictive power of PDBinder. How-
ever the signal from the binding site composition, i.e.
the differential occurrence of specific residues, is too
strong to be ignored without some loss of performance.
The single cutoff method was therefore used for all the
remaining analyses.

Evaluation of the results with the test set
A benchmark dataset for binding site prediction methods
should ideally consist of proteins with one unbound
structure to apply the method, and at least one bound
structure to assess the correctness of the predictions.
This is necessary to account for the fact that proteins can
undergo conformational changes upon binding. Conse-
quently applying a binding site prediction method to a
bound structure from which the ligand has been deleted
does not appropriately reproduce situations where the
binding site location is truly unknown.
For these reasons we tested PDBinder on the LigASite

dataset, which includes, for each protein-ligand complex
(holo structure), a structure determined in absence of the
ligand (apo). The training and test sets are completely
independent. Moreover, in order to avoid any unfair
advantage deriving from the possible homology of a
structure in the test set with the chains used to build the
libraries of binding and non binding residues, we did not
consider structural matches with residues coming from
proteins having a sequence identity with the query struc-
ture higher than 30%.
We used the optimal propensity threshold of 0.143

which was derived from the analysis of the training set as
described above. The average MCC value on the holo test
set was 0.313 with an average sensitivity of 0.295, an aver-
age specificity of 0.983 and a PPV of 0.413 (see Table 1).
The small decrease in performance shows that the optimal
threshold derived from the training set is general enough
to be applied to an independent dataset.
Using the Apo Test set of unbound structures the aver-

age MCC values calculated from the distribution was
0.271 with a sensitivity of 0.251, a specificity of 0.984 and
a PPV of 0.372 (see Table 1). These results show that the
performance of PDBinder suffers only a modest decrease
when moving from holo to apo structures. This observa-
tion could be explained by the fact that our method con-
siders the conformation of groups of three residues only.
Therefore, even if the overall structure of the binding
pocket is altered when the ligand is bound, the local

conformation of small subsets of residues is mostly pre-
served (see Figure 4).

Comparison of PDBinder with Q-SiteFinder
Q-SiteFinder is a method that scans the surface of a
protein with a methyl probe and predicts clusters of
favorable interaction spots as ligand binding sites. We
developed an automated procedure to analyze the test
set proteins using the Q-SiteFinder webserver [27]. In
order to compare the results with those obtained with
PDBinder, we had to map the cluster of probes pre-
dicted by Q-SiteFinder on specific residues of the struc-
ture. To this end we defined as binding residues those
lying closer than 3.5 Angstrom to any cluster of probes
identified by Q-SiteFinder.
We determined that Q-SiteFinder obtains the best

performance in terms of MCC and PPV when the top
two clusters are considered as positive predictions (data
not shown) and applied this criterion in all the following
analyses. The results obtained by both methods are dis-
played in Table 2. The performance of PDBinder on the

Figure 4 PDBinder performance on the apo form of rRNA
methyltransferase (KsgA). The binding site of the 16S rRNA
methyltransferase (KsgA) from Thermus thermophilus in complex
with 5’-methylthioadenosine (MTA). The holo form (PDB:3fut) is
represented in yellow while the apo form (PDB:3fux) is in green. In
order to evaluate the structural differences between the holo and
apo forms, we superimposed the binding pocket residues (Residues
25, 27, 28, 54, 56, 75, 76, 99, 100, 117, 119) on their C-alpha atoms
resulting in an RMSD of 2.05 Angstrom. Superimposed residues with
an RMSD lower than 0.7 Angstrom are not represented in the
picture (residues 54, 56, 75). PDBinder was able to identify all the
binding residues of the holo form with the exception of Ala100 and
Pro119. However, due to the high degree of conformational
change, PDBinder did not identify residue Phe25 as binding in the
apo form (RMSD 5.9). Even if the overall structure of the binding
pocket is altered when the ligand is bound, the local conformation
of small subsets of residues is mostly preserved and the method is
able to identify seven of the eleven binding residues.
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holo set is better both in terms of PPV (0.413 vs 0.279)
and MCC (0.313 vs 0.306). The sensitivity and specificity
values show that PDBinder misses more true positives
(sensitivity 0.295 vs 0.466) but makes more correct pre-
dictions on average (specificity 0.983 vs 0.934). Interest-
ingly, while the performance of both methods as
expected worsens when analysing the apo proteins, the
relative decrease in performance of Q-SiteFinder is sig-
nificantly greater. Indeed Q-SiteFinder suffers a 35%
reduction in MCC vs 13% of PDBinder and a 28%
reduction in PPV vs 10% of PDBinder.

Identification of the GDP binding pocket of the GDPRAN-
NTF2 complex
In order to illustrate the potential of PDBinder, we ana-
lyzed the GDPRAN-NTF2 complex (PDB: 1a2k) using
both PDBinder and Q-SiteFinder. This complex has five
chains, A and B forming the NTF2 protein and C D and
E forming the GDPase Ran protein which binds a GDP
molecule per chain. Figure 5 shows the predicted bind-
ing residues as sticks. The predictions of PDBinder are
in green while those derived from the top 2 clusters of
Q-SiteFinder are in yellow. PDBinder correctly identified
all the binding site residues with only one false positive
per chain, namely residue S150.
To understand why PDBinder achieved more accurate

predictions on this structure with respect to an energy-
based method, we analyzed in more detail the residues
predicted as positives and negatives. All the residues
identified by PDBinder as positives have a high number
of matches with triplets found in binding pockets in the
training set, and only one residue has a propensity value

which is borderline but high enough to exceed the
threshold of 0.143 (Table 3).
The prediction of S150 as binding, the only false posi-

tive, may be explained by its structural neighbors raising
the number of matches with the dataset of binding
residues.
The analysis of the residues correctly predicted as

negatives by PDBinder, and incorrectly marked as bind-
ing by Q-SiteFinder, shows the importance of consider-
ing geometry besides the simple relative abundance of a
residue in binding pockets. Indeed for instance residue
124 of chain A is a histidine, which is 2.5-times more
frequent in binding sites (Figure 3). However, in this
case, this residue is in a different structural context and
only has 3 matches against the entire set of binding resi-
dues. This histidine therefore has a low propensity value
and is correctly predicted as negative.

Integration with Q-SiteFinder
The approaches used by PDBinder and Q-SiteFinder are
completely independent. The former is based on the
analysis of the geometry of known binding residues,
while the latter is based on predicting the energy of
interaction with a chemical probe. We therefore decided
to investigate whether a combination of the two
approaches yielded improved results. To this end two
different strategies were applied:
i) Predicting a residue as binding when at least one of

the methods identifies it as such.
ii) Predicting a residue as binding only when both

methods agree.
Table 2 displays the results of combining the two

methods. When integrating the results using a simple
boolean criterion (i.e. PDBinder AND/OR Q-siteFinder)
the best performance is obtained by considering as posi-
tives the residues predicted by at least one method.
With this approach there is a 0.052 (holo) and 0.009
(apo) increase in the MCC with respect to PDBinder
alone but the PPV decreases by 0.127 (holo) and 0.141
(apo). Overall these changes are due to the fact there is
a large increase in sensitivity accompanied by a smaller
decrease in specificity, i.e. more of the true binding site
residues are identified but the predictions are less cor-
rect on average.

Comparison of PDBinder with other ligand binding site
prediction methods
Large cavities in protein surfaces often harbor ligand
binding sites or enzyme active sites, and several methods
(e.g. SURFNET, LIGSITE) are available to identify such
pockets. Mehio et al. recently developed a method called
STP (Surface Triplets Propensities) that assigns to each
residue of a structure a propensity value derived from
counting the occurrences of triplets of atoms in known

Table 2 Results of integrating PDBinder with
Q-SiteFinder

SENS SPEC PPV MCC

PDBinder (1) 0.295 0.983 0.413 0.313 HOLO

Q-siteFinder (2) 0.466 0.934 0.279 0.306

(1) AND (2) 0.154 0.997 0.483 0.245

(1) OR (2) 0.622 0.913 0.286 0.365

PDBinder 0.251 0.984 0.372 0.271 APO

Q-siteFinder (2) 0.324 0.931 0.200 0.199

(1) AND (2) 0.098 0.997 0.375 0.168

(1) OR (2) 0.497 0.909 0.231 0.280

Integration of PDBinder with Q-SiteFinder. These results refer to the Apo/Holo
Test Set. The first two rows detail the performance values achieved by
PDBinder (1) and Q-SiteFinder (2) alone. The third row reports the results
obtained if a residue is considered positive when it is predicted by both
methods. The fourth row details the opposite situation in which a residue is
considered positive when it is predicted by either method. The last row
reports the results obtained with the two threshold systems. We performed a
ten-fold cross validation to derive two different propensity thresholds, one for
the residues predicted as positive by Q-SiteFinder and the other one for the
negatives. The results are the average of the ten cross validation runs ± the
standard error.
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Figure 5 Comparison of the results of PDBinder and Q-SiteFinder on the GDPRAN-NTF2 complex. Side view of the GDPRAN-NTF2
complex (PDB: 1a2k) showing the A, B and D chains that surround the binding pocket. The residues correctly predicted as binding by PDBinder
are in green while the false positives are in red. The grey shapes represent the top 2 ligand positions predicted by Q-SiteFinder. Residues that lie
at less than 3.5 A from the Q-SiteFinder predictions are colored in yellow.

Table 3 Predicted binding residues for the GDPRAN-NTF2 complex

CHAIN RESIDUE RESIDUE NUM BIND NON-BIND PDBINDER PROPENSITY VALUE

PDBinder predictions D G 19 311 627 0.332

D G 20 409 487 0.456

D T 21 200 491 0.289

D G 22 868 754 0.535

D K 23 1112 267 0.806

D T 24 476 557 0.461

D T 25 418 535 0.439

D N 122 405 244 0.624

D K 123 381 156 0.709

D D 125 145 163 0.471

D S 150 227 433 0.344

D A 151 343 809 0.298

D K 152 31 175 0.150

Q-SiteFinder predictions A Q 65 1 109 0.009

A S 67 57 532 0.097

A Q 88 14 221 0.060

A L 89 24 1168 0.020

A I 96 9 313 0.028

A G 98 82 741 0.100

A A 122 16 538 0.029

A H 124 3 26 0.103

B M 97 8 207 0.037

B G 98 96 741 0.115

B A 122 19 568 0.032

B H 124 3 22 0.120

B F 126 0 10 0.000

D V 40 33 1820 0.018

D A 41 44 1033 0.041

D T 42 36 426 0.078

Binding site residues predicted by Q-SiteFinder and PDBinder on GDPRAN-NTF2 complex (PDB: 1a2k). The only false positive residue identified by PDBinder is
S150.
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binding sites. The authors use these residue propensities
to rank the surface cavities identified by SURFNET and
then compare their results with those obtained with
Q-SiteFinder and the method by Morita et al. The 35
apo proteins of the original Q-SiteFinder test set are
used for the comparison.
We therefore decided to perform a similar experiment

and used PDBinder to rank the cavities identified by
SURFNET on the same dataset of 35 proteins. The
ranking is based on the number of binding residues pre-
dicted by PDBinder in each cavity. Figure 6 displays the
results of considering the top first, second or third-rank-
ing cavities for the identification of the ligand binding
site. The results show that PDBinder performs better
than SURFNET, Q-SiteFinder, STP and the method by
Morita et al. when only the first cavity is considered.
Conversely when size alone is used for ranking SURF-
NET outperforms all the methods if one considers the
top two or three cavities.
Similarly to what we did with Q-SiteFinder, we tried

to integrate PDBinder and STP to investigate whether
this led to a performance improvement. STP assigns a
PatchScore to each atom and the authors consider 70 as
the threshold for the identification of high scoring

atoms which are then used to rank the cavities. For the
purpose of integrating STP and PDBinder we consider
any residue with at least one atom having a PatchScore
greater than 70 as a binding residue. The number of
residues predicted by either method is then used to
rank the cavities.
As shown in Figure 6 the integration of PDBinder and

STP clearly outperforms all the other methods, when
only the top cavity is considered. When the top two cav-
ities are considered PDBinder + STP outperforms SURF-
NET, while no single method does. Considering the top
three cavities results in SURFNET and PDBinder + STP
having identical performance and once again outper-
forming all the other methods.

Conclusions
In this work we detailed the development of PDBinder,
a novel method for predicting the location of ligand
binding sites in protein structures. Our approach is
based on the observation that unrelated binding sites
contain similar structural motifs that are associated with
specific chemical fragments in the ligands, irrespective
of the identity of the ligand molecule as a whole. PDBin-
der therefore assumes that ligand binding sites will

Figure 6 Comparison with other binding site prediction tools. Results obtained when applying different methods to the problem of ranking
surface clefts identified by SURFNET to single out the correct ligand binding site. These data were obtained on a dataset of 35 apo proteins. The
three different histograms report the number of correct identifications for each method when considering the top first, second and third
predictions respectively.
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resemble each other more than other parts of the struc-
ture, because of the presence of these small motifs.
We built two libraries of binding and non-binding

residues from a set of 1356 high-quality protein struc-
tures and used the Superpose3D local structural com-
parison algorithm to search for structural similarities
between a query structure and the two libraries of resi-
dues. The number of matches with the sets of binding
and non-binding residues is then used to assign a pro-
pensity value to each amino acid in the query structure.
We optimized the score threshold on the training set of
1356 proteins using a leave-one-out procedure, and then
tested PDBinder on the LigASite dataset, which com-
prises 239 apo/holo structure pairs.
We obtained an MCC of 0.313 on the holo set, with a

PPV of 0.413. Interestingly the performance on apo
structures is quite similar to the one obtained with the
proteins in their ligand-bound conformation. This could
be explained by the fact that, even though the ligand
induces some rearrangements in the overall structure of
the binding site, the local conformation of small sets of
residues, which is the level of detail relevant for PDBin-
der, does not vary much. This result is extremely impor-
tant for real-world applications where the location of the
binding site is unknown because the protein has been
crystallized without a ligand.
We then compared PDBinder with a number of exist-

ing methods. The comparison with Q-SiteFinder on the
LigASite test set showed that PDBinder has a superior
performance and this can be further improved by com-
bining the two methods. We then used PDBinder to
rank surface cavities identified by SURFNET and com-
pared the performance with that of STP, Q-SiteFinder
and the method by Morita et al. The results show that
PDBinder is better than all other methods when consid-
ering only the first cavity as the correct one. Moreover
combining PDBinder and STP outperforms all the other
methods when the top ranking two or three cavities are
also considered.
In conclusion this work shows that PDBinder is an

efficient method for the prediction of ligand binding
sites, that uses an approach which is very different from
those found in the literature. The Propensity Value is a
statistical potential unique among the other developed
binding site prediction algorithms that not only has a
good performance by itself, but also has an original
approach which allows it to be integrated effectively
with existing programs.

Methods
PDBinder is a binding sites prediction method based on
the assumption that the propensity of a residue to inter-
act with a ligand is related to the number of times that
the residue and its structural neighbours appear in the

same geometric configuration in binding pockets of pro-
tein-ligand complexes of known structure. PDBinder
uses the Superpose3D local structure comparison algo-
rithm to identify local similarities between a query
structure and two libraries of binding and non-binding
residues respectively.

The libraries of binding and non-binding residues
We derived two libraries of residues from all the pro-
teins of known structure, one of residues in ligand bind-
ing pockets, and the other including all the remaining
residues, according to the following procedure. We
grouped together all the proteins in the Protein Data
Bank having a sequence identity greater than 30% using
the BLASTClust sequence clusters provided by PDB
[28]. This initial set was composed of 144711 protein
chains divided into 15376 homology groups. We decided
to select only high-quality structures with a resolution
lower than 2.0 Å inclusive and an R-factor lower than
0.20 Å inclusive. This reduced the set to 27399 chains
divided into 4216 homology groups.
Binding pockets were defined by selecting all the resi-

dues having an atom closer than 3.5 Angstrom to any
atom of a ligand. This distance threshold was deter-
mined during the training phase on our training set of
proteins, after trying all the thresholds ranging from 3.0
to 10.0 Angstrom in increments of 0.5 (see Additional
file 2: Table 2). We chose the value that resulted in the
highest AUC.
Non-biological ligands present in crystallization buf-

fers or solvents were excluded from the analysis [29].
We also removed metal ions, because they are often
bound by few residues with strict geometric require-
ments [30], and ligands of extremely large size as shape
complementarity is not effectively captured by our
method.
Because of the above mentioned considerations only

ligands having between 10 and 60 heavy atoms were
included in the analysis. The lower bound of 10
excludes metal ions and very small molecules, while
retaining ligands that take part in many enzymatic pro-
cesses [8]. The upper bound of 60 heavy atoms led to
the elimination of only 0.5% of the remaining ligands in
the PDB. Protein chains that did not have any ligand
fulfilling these criteria were removed from the analysis
reducing the total to 14864 chains divided in 2062
homology groups. In order to make sure that the bind-
ing pockets in our dataset have comparable sizes we
only kept the PDB chains that had at least 10 binding
residues. This step reduced the number of chains in the
dataset to 8444 divided into 1356 homology groups.
Only a single representative was retained for each

homology group by selecting the chain with the highest
number of residues located in a binding pocket. This
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was done to create a non-redundant dataset while at the
same time preserving the greatest possible variability of
binding pocket residues. The final dataset of 1356 pro-
tein chains was used to define the library of binding
residues, i.e. the residues in a binding pocket, and non-
binding residues, i.e. all the remaining amino acids. In
total the binding dataset was composed of 1896 binding
pockets comprising 25905 residues and the non-binding
one of the remaining 423556 residues.

Scanning a query structure with the libraries of residues
PDBinder uses Superpose3D, a fast local structure com-
parison method, to search for small (three residues)
similarities between a query structure and the two
libraries of binding and non-binding residues. Two sets
of residues are considered similar if they can be super-
imposed with a Root Mean Square Deviation (RMSD)
lower than a threshold. For this work we used an RMSD
threshold lower than 0.7 Å as proposed in [31]. For the
purpose of this analysis we only considered pairings
between identical residues, i.e. no substitutions were

allowed, to avoid having an excessively large number of
matches. Additionally each residue in a match must be
a neighbour (i.e. distance less than 7.5 Å) of at least
another residue in the match, as defined in [25]. Given
these constraints, the program uses an exhaustive
depth-first search procedure to identify similarities
between two sets of input residues.
Following the structural comparison we count the

number of times each amino acid of the query protein
is involved in a match with a group of residues from the
binding (Totbind) and non-binding (Totother) datasets
respectively.
The propensity value Pr is defined as:

Pr = Totbind/Totbind + Totother

This value ranges from 0, for residues that have never
been involved in a match with a known binding pocket,
to 1, for residues that are always found in matches with
binding pockets. Figure 7 shows the surface of a struc-
ture colored according to the propensity values of the
residues.

Figure 7 Propensity values for the binding pocket of the GTPase from Pyrococcus abissi bound to GTP (PDB: 1yr8). The surface of the
protein has been colored according to the Propensity Value assigned to each residue by PDBinder. The colors range from blue, for low
propensity values, to red for high values. The binding pocket clearly shows a strong positive signal.
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Training set
We used the same non-redundant set of proteins from
which we derived the binding and non-binding residue
libraries to optimize the parameters of the method.
Obviously, when deriving the propensity values for a pro-
tein chain, we exclude from the two libraries the residues
coming from the chain itself (leave-one-out). Since the
dataset is non-redundant (see above), when evaluating a
structure from the training set, we compare it with bind-
ing pockets derived from proteins that have less than
30% sequence identity with the query structure.

Test set
To test PDBinder we used LigASite, a golden standard
dataset of biologically relevant ligand binding sites in
protein structures. LigASite contains proteins with one
unbound structure (apo) and at least one structure of
the protein-ligand complex (holo). Correct quaternary
structures suggested by PQS [32] were used to account
for the fact that the quaternary arrangement of protein
chains can influence the definition of the binding sites.
LigASite uses an automated approach to filter out non-

relevant ligands based on their number of inter-atomic
contacts with the protein. Redundancy is removed using
the PISCES database [33] with a sequence identity cutoff
value of 25%. PDB entries consisting of Ca traces were
excluded from the list, as well as non X-ray entries, and
X-ray entries with a resolution greater than 2.4 Å or an
R-value greater than 0.25.
Starting from the non-redundant version of LigASite

we created two datasets, one comprising apo-protein
structures, and one comprising holo-protein structures.
Since a single apo-protein may have more than one holo-
protein associated, we created apo-holo pairs by retaining
the holo protein which had the higher number of con-
tacts with the ligand. Additionally, only pairs of proteins
sharing 100% sequence identity were retained to allow an
easy mapping of the binding residues from the holo to
the apo structure.
Moreover we discarded 28 proteins in common with the

Training set. The final test set consisted of 239 apo/holo
pairs.

Additional material

Additional file 1: Complete list of triplets along with their potentials.
For each triplet with the same amino acid composition we report the total
number of matches with the library of binding (BIND) and non-binding
(non-bind) residues. In the last column the average PDBinder Propensity
Value is calculated for each triplet. For clarity, the row describing the
behaviour of the VAL triplet reports the “bind” and “non-bind” data for all
triplets containing a Val, an Ala and a Leu in any order and conformation.

Additional file 2: AUC by using different distance thresholds. AUC
achieved by PDBinder using different distance thresholds between the
binding pockets residues and any atom of the bound ligand.

List of abbreviations used
PDB: Protein Data Bank; STP: Surface Triplets Propensities; MCC: Matthew’s
Correlation Coefficient; PPV: Positive Predictive Value; AUC: Area Under the
Curve; RMSD: Root Mean Square Deviation.
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