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Abstract

Background: Anti-tumor therapies aim at reducing to zero the number of tumor cells in a host within their end
or, at least, aim at leaving the patient with a sufficiently small number of tumor cells so that the residual tumor
can be eradicated by the immune system. Besides severe side-effects, a key problem of such therapies is finding a
suitable scheduling of their administration to the patients. In this paper we study the effect of varying therapy-
related parameters on the final outcome of the interplay between a tumor and the immune system.

Results: This work generalizes our previous study on hybrid models of such an interplay where interleukins are
modeled as a continuous variable, and the tumor and the immune system as a discrete-state continuous-time
stochastic process. The hybrid model we use is obtained by modifying the corresponding deterministic model,
originally proposed by Kirschner and Panetta. We consider Adoptive Cellular Immunotherapies and Interleukin-
based therapies, as well as their combination. By asymptotic and transitory analyses of the corresponding
deterministic model we find conditions guaranteeing tumor eradication, and we tune the parameters of the hybrid
model accordingly. We then perform stochastic simulations of the hybrid model under various therapeutic settings:
constant, piece-wise constant or impulsive infusion and daily or weekly delivery schedules.

Conclusions: Results suggest that, in some cases, the delivery schedule may deeply impact on the therapy-
induced tumor eradication time. Indeed, our model suggests that Interleukin-based therapies may not be effective
for every patient, and that the piece-wise constant is the most effective delivery to stimulate the immune-response.
For Adoptive Cellular Immunotherapies a metronomic delivery seems more effective, as it happens for other anti-
angiogenesis therapies and chemotherapies, and the impulsive delivery seems more effective than the piece-wise
constant. The expected synergistic effects have been observed when the therapies are combined.

Introduction
A key problem of anti-tumor therapies is finding a suita-
ble scheduling of their administration to the patients. Of
course a major problem in medical oncology is avoiding
severe therapy-related side effects which, unfortunately,
may cause the death of the patient. However, also in the
ideal case of no side-effects, a therapy aims at reducing to
zero the number of tumor cells in the host, within its
end. Indeed, also if a single tumor cell remains the
patient has a tumor. Actually, the requirement might

theoretically be milder by accepting to leave the patient
with a sufficiently small number of tumor cells so that
the residual tumor can be eradicated by the immune sys-
tem. In any case, both the duration and the scheduling of
a therapy becomes of great relevance, as experimentally
shown and theoretically studied [1]. In this paper we
shall focus on a computational study of some kinds of
immunotherapies, whose underlying key idea is to modify
the natural interplay between tumor cells and immune
system, by boosting the latter.
Tumor cells are characterized by a vast number of

genetic and epigenetic events eventually leading to the
appearance of specific tumor antigens, called neo-antigens.
Such antigens trigger anti-tumor actions by the immune
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system [2], thus resulting in the tumor-immune system
interaction taking place. These observations provided a
theoretical basis to the hypothesis of immune surveillance,
i.e. the immune system may act to control and, in some
case, to eliminate tumors [3]. Only recently studies in
molecular oncology and epidemiology accumulated evi-
dences of this [4]. The competitive interaction between
tumor cells and the immune system is extremely complex.
As such, a neoplasm may very often escape from immune
control. A dynamic equilibrium may also be established
with the tumor surviving in a microscopic undetectable
“dormant” steady state [5]. If this is the case, on the one
hand a dormant tumor may induce metastases, on the
other hand over a long period of time, a significant frac-
tion of the average host life span, the neoplasm may
develop strategies to circumvent the action of the immune
system, thus restarting to grow [2,4,6,7]. We stress that
this evolutionary adaptation, termed “immunoediting” [4],
may negatively impact on the effectiveness of immu-
notherapies, as shown in [8].
Regarding immunotherapies, although the basic idea

of immunotherapy is simple and promising [9], the clin-
ical results are controversial since a huge inter-subjects
variability is observed [10-12]. Immunotherapies are
divided into two broad classes: passive and active thera-
pies [13]. Among the passive ones, the Adoptive Cellular
Immunotherapy (ACI) consisting in injecting cultured
activated immune effectors in the diseased host [14,15]
is probably the most important. Active immunotherapies
aim at stimulating the immune response by expanding,
for instance, the proliferation of cytotoxic T cells.
Among these, a prominent role is played by Interleukin-
based therapies [16,17].
Regarding the mathematical modeling of tumorim-

mune system interactions and and related therapies,
many papers have appeared using various approaches.
For instance, ordinary differential equations (ODEs) are
used in [5,8,13-16,18-28], the theory of kinetic active par-
ticles is used by Bellomo and Forni in [29,30] and hybrid
agent-based models have been introduced by Motta and
Lollini [31,32]. In [14] Kirschner and Panetta proposed a
largely influential ODE-based model of Tumor-Immune
system (T-IS) interplay, whose variables are tumor cells,
effector cells and the concentration of interleukins-2 (IL-
2). This model is able to explain various kinds of experi-
mentally observed tumor size oscillations [33-38] as well
as both macroscopic and microscopic constant equilibria.
Although a vast array of behaviors is mimicked by the
solutions of the Kirschner-Panetta (KP) model, the
tumor-free equilibrium is unstable for all biologically
meaningful values of the parameters. However, in [39] we
have shown that resetting the model in a hybrid setting
where the interleukins are modeled with a continuous
variable and the tumor and the immune system are

modeled with discrete-state continuous-time stochastic
process, the eradication via immune surveillance can be
correctly reproduced. Since eradication is a fundamental
topic in the study of immunotherapies, here we extend
our hybrid version of the KP model to investigate the
effects of both interleukin-based therapies and ACIs.
Although our hybrid version of KP model is highly idea-
lized, we think that it can provide useful information on
the design of the above mentioned therapies.

Methods
In the next sections we recall the KP model [14], its
hybrid definition [39] and we extend the hybrid model
with general immunotherapies.

The deterministic Kirschner-Panetta model
In [14] the following model of the dynamics of tumor-
immune system interaction was proposed

T′∗ = rT∗(1 − bT∗) − pTT∗
gT + T∗

E∗

E′∗ =
pEI
gE + I

E∗ − μE E∗ + cT∗ + σE

I′ =
pIT∗E∗
gI + T∗

− μII + σI

(1)

where T* (t), E* (t) and I (t) denote, respectively, the
densities of tumor cells, effectors of the immune system
and interleukins. The tumor induces the recruitment of
the effectors at a linear rate cT thus c may be seen as a
measure of the immunogenicity of the tumor. In other
words, according to [14]c is “a measure of how different
the tumor is from self”. The proliferation of effectors is
stimulated by the interleukins. The average lifespan of
effectors is μ−1

E and the average degradation time for
interleukin is μ−1

I . The source of interleukin is modeled
as linearly depending on effectors, and it also depends
on the tumor burden. Finally, continuous infusion
immunotherapy may be delivered when effectors and
interleukins are injected at constant rates sE, sI ≥ 0.
In the case of no therapy, i.e. sE, = sI = 0, the main

results obtained in [14] are that (i) the tumor-free equi-
librium point (0, 0, 0) is always unstable, (ii) it exists
positive cm ≪ 1 such that for c Î (0, cm) there is only
one is locally stable equilibrium, whose size is very large
due to the low value of c, (iii) it exists a cM > 0 such
that if c Î (cm, cM ) there is a unique periodic solution
whose period and amplitude decrease if c increases and,
finally, (iv) when c >cM there is a unique globally stable
equilibrium, whose size is a decreasing function of c.
Thus, we note that this model explicitly precludes the
possibility of tumor suppression in absence of immu-
notherapies. If idealized infinitely long constant continu-
ous infusion therapies are considered the behavior of
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the system is complex, but in all the possible meaningful
combinations of the parameters it is possible to find
regions where globally stable limit cycles exist, as well as
regions where there is cancer suppression. Moreover,
there is a threshold value such that, for higher values of
sI, there is an unbounded growth of effectors, leading to
severe side-effects.

A hybrid model with constant therapies
As discussed in [39], the low-level oscillations predicted
by model (1) make stochastic effects on the cell popula-
tions worth investigating. Unfortunately, it is possible to
see that a purely stochastic model with discrete popula-
tions becomes computationally too hard to analyze,
being the number of IL-2 huge. In this case a hybrid
approach, despite being more costly than the determi-
nistic counterpart, still permits a feasible analysis.
We now recall the hybrid model of T-IS interplay that

we defined in [39] and that extends the deterministic
model (1). Variables T and E of the hybrid model are
obtained from the densities T* and E* in (1) converted
into total number of cells by means of the volume V
(e.g. the blood and bone marrow volumes for leukemia).
We have T* = TV -1 and E* = EV -1. This leads to the
ODE system

T′ = rT
(
1 − b

V
T
)

− pTT
gTV + T

E

E′ =
pEI
gE + I

E − μEE + cT + VσE

I′ =
pI
V

TE
gIV + T

− μII + σI.

(2)

Note that the modified deterministic model (2) is
obtained by the original Kirschener-Panetta determinis-
tic model (1) by means of a nonsingular linear transfor-
mation. As it is very well-known linear transformations
of the state variables do not change the topological
properties of the solutions, and as a consequence these
transformations do not change all the stability properties
of equilibria [40,41].
From (2) a bi-dimensional stochastic process ruling the

dynamics of T (t) and E (t) is linked to a scalar differen-
tial equation ruling the dynamics of I (t). In [39] it is dis-
cussed that the dynamics of I (t) can be assumed to be
approximated by a linear ODE with randomly varying
coefficients, which are constant in the intervals between
two consecutive stochastic events. We briefly discuss
how this model is simulated, for a detailed description of
the underlying algorithm we refer to [39]. The algorithm
adopted is an extension of the Gillespie Stochastic Simu-
lation Algorithm (SSA) [42,43]. The SSA simulates a tra-
jectory of the continuous-time discretstate Markov
process underlying the system. To use this algorithm we

write the stochastic events as reactions modeling birth
and death, which for this model are described in Table 1.
The set of all the events is denoted as R. At each step
the SSA solves equations to discover the putative time
for the next reaction to fire, and probabilistically decides
which reaction fires. Intuitively, given S = R\ {R4} to
each reaction Ri ∈ S a propensity function ai (x) is asso-
ciated. With the system state x at time t the value ai (x)
dt gives the probability of the next reaction to fire in the
infinitesimal time [t, t + dt). All the propensity functions
in S are time-independent, meaning that they depend on
a state which is constant in between two stochastic
events. Differently, R4 depends on the continuous part of
the hybrid model, i.e. a4 (t) depends on I (t), and is hence
time-dependent.
We remark that the original SSA is assumed to simu-

late only time-independent chemical reactions. The
algorithm used to simulate this model takes inspiration
from algorithms simulating hybrid systems with time-
independent propensity functions [44,45] and algorithms
simulating purely stochastic systems with time-depen-
dent propensity functions [46,47]. In [39] the original
SSA equations (i.e. see [43]) for the putative time for
the next reaction are rephrased in this setting. In parti-
cular, with the last stochastic event fired at time tn the
putative time τ for the next reaction to fire is deter-
mined by solving

τ
∑
j∈S

aj(x) +
∫ tn+τ

tn
a4(t)dt = χ (3)

with c a random number with distribution Exp(1).
The solution of equation (3) has no analytical form,
thus requiring iterative methods to find its solution.
We remark that the same equation in the case of only

time-independent propensity functions yields the well
known SSA strategy to generate exponential jumps. As
far as model analysis is concerned, differently from the
deterministic model (1), the stochastic simulations per-
formed in [39] show that, at least in some cases, sup-
pression of the neoplasm might be reached, thanks to
the conjunction of the intrinsic tendency of the Tumor-
Immune System to oscillate with the stochastic
dynamics.

Table 1 Birth and death reactions for the hybrid model

reaction Propensity reaction propensity

R1 : T ↦ T + 1 a1 = r2T R2 : T ↦ T - 1 a2 =
r2b
V

T2

R3 : T ↦ T - 1 a3 =
pTTE

gTV + T
R4 : E ↦ E + 1 a4(t) =

pEEI(t)
gE + I(t)

R5 : E ↦ E - 1 a5 = μEE R6 : E ↦ E + 1 a6 = cT

R7 : E ↦ E + 1 a7 = VsE

Reaction-based events and propensity functions [42] of the hybrid model [39].
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A hybrid model with general therapies
In this paper we consider more general immunothera-
pies than the constant ones considered in [14,39]. Thus,
here we allow that the therapy related influxes sE and
sI are functions of time, and in next sections we shall
focus on two common periodic scheduling of a therapy.
In the deterministic setting, model (2) can trivially be
modified by adding time-dependent immunotherapies,
that is

T′ = rT
(
1 − b

V
T
)

− pTT
gTV + T

E

E′ =
pEI
gE + I

E − μEE + cT + VσE(t)

I′ =
pI
V

TE
gIV + T

− μII + σI(t).

(4)

It is important to notice that in the realistic case of
finite duration therapies the deterministic system always
predicts tumor re-growth, being the tumor-free equili-
brium (0, 0, 0) unstable. Practically, if at the end of the
therapy the solution is very close to the tumor-free equi-
librium, immediately after the end the tumor restarts
growing. We remark that in the oncological context it is
important the state in which the tumor is at the end of a
therapy, e.g. the tumor shrinkage up to an undetectable
size, but it is far more important what is observed during
the follow-up visits, i.e. that the tumor has not re-grown.
In this framework the deterministic model is unable to
reproduce the reality and it structurally gives negative
answers on the effectiveness of the therapy. These rea-
sons, combined with the possible low-level oscillations of
model (1) makes again stochastic effects worth investigat-
ing. Along the line of [39], this shall permit to have an
estimation of the average value of the random therapy-
induced eradication time ter better than the one obtain-
able in the deterministic framework, that is better than
min{t | T (t) <1} which would be actually very rough. As
in [39], switching from the deterministic to the hybrid
version of the model is furthermore justified by the fact
that, at the best of our knowledge, there is no proof that
the average of the state variables of a nonlinear birth and
death stochastic processes follows the dynamics of the
corresponding ODE system, when variables assume low
values. In fact, the ODE system would be a good approxi-
mation of the purely stochastic model if the state vari-
ables were “sufficiently large”. In any case, by using the
above deterministic approximation of ter its standard
deviation could never be computed.
We now present an SSA-based algorithm to simulate the

hybrid version of the above model. This new algorithm
extends the algorithm which simulates model (2) in a nat-
ural way. The reactions in Table 1 are left unchanged pro-
vided that the propensity function for R7 is modified as a7

(t) = V sE (t) to reflect the time-dependency of sE (t). As a
consequence in this case we have two time-dependent
propensity functions a4 (t) and a7 (t), hence we define
S = R\ {R4,R7}. Let us model the event-induced changes
in the values of T and E by the vectors(

νT
νE

)
=

(
1 −1 −1 0 0 0 0
0 0 0 1 −1 1 1

)
.

Here the i-th components of νT and νE, i.e. νT,i and νE,i,
describe how the reaction Ri affects the population T and
E, respectively. With the last stochastic event fired at
time tn we define

A4(τ ) =
∫ tn+τ

tn
a4(t)dt

and

A7(τ ) =
∫ tn+τ

tn
a7(t)dt = V

∫ tn+τ

tn
σE(t)dt.

The exact simulation algorithm for the hybrid system
with generic immunotherapies is Algorithm 1 and is
defined in Table 2. With the current state x and the
propensity functions in S evaluated, i.e. aS0 =

∑
j∈S aj(x)

the putative time for the next stochastic event follows

A4(τ ) + aS0τ + A7(τ ) = χ (5)

where c is a random number with distribution Exp(1).
Notice that equation (5) is a natural extension of equa-
tion (3) and, as such, it does not admit a general analy-
tical solution. Consequently numerical methods to find
its solution are again required. In the following, when
looking for a solution of equation f(x) = 0 in [a, b] with
f(a)f(b) <0 and f continuous we always adopt the bisec-
tion method with double stopping criteria |b - a| <10-8

∧ |f(x)| <10-6. Once the jump is determined, given
a0 = aS0 + a4(t + τ ) + a7(t + τ ), the next event to fire find
is Rj if

j−1∑
i=1

ai(t + τ ) < r · a0 ≤
j∑

i=1

ai(t + τ ) (6)

where r is a random number U[0, 1] and ai(t + τ ) =
ai(x) if i ∈ S. It is important to notice that equations (5)
and (6) would reduce to the standard equations used in
the SSA if the system was entirely stochastic.
Some considerations about the ODEs constituting the

model (4) are worth discussing. If the last stochastic
event happened at time tn and the next will happen at
time tn+1 the equation for I’ reads as

I′ =
pI
V

T(tn)E(tn)
gIV + T(tn)

+ σI(t) − μII (7)
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which, since in such intervals the other two state vari-
ables are constant, is a linear ODE with constant input
and constant coefficients. Thus, given I(tn) = In its analy-
tical solution in (tn, tn+1) is

I(t) = Bn + (In − Bn)e−μI(t−tn)

+ e−μIt
∫ t

tn
σI(z)eμIZ dz

(8)

where

Bn =
1
μI

(
pI
V

T(tn)E(tn)
gIV + T(tn)

)
. (9)

Notice that equation (8) is necessary to evaluate, at
each step of Algorithm 1, the value of a4(t). In the next
sections we will consider specific types of immunothera-
pies and, according to their mathematical modeling, we
may discuss on equation (8).

Values of the parameters
We discuss now the values of the parameters used to
simulate the model. In Table 3 we recall the parameters
used in [39] to perform the simulations. Those values
and ranges are originally given in [14,48]. Note that
those values pertain to mice and they were taken from
[20,49], where accurate fitting of real data concerning
laboratory animals was performed. As in [39] volume V
is estimated to be 3.2 ml. This follows by the body
weight of a femal chimeric mouse ranging from 20 to
40 grams, and by considering also that their blood
volume ranges from 5.8 to 8 ml per 100 grams. It fol-
lows that V reasonable ranges from 1.16 up to 3.2 ml.
We remark that we will give the parameters for the
functions sI(t) and sE(t) in the next sections when the
therapies will be discussed.

Interleukin-based immunotherapies
In the next paragraphs we discuss how to specialize
model (4) with either a piece-wise constant or an impul-
sive interleukin-based immunotherapy. In both cases, we
consider a therapy starting at time ts, ending at time te
and consisting of the injection of molecules of IL-2. As
already said a really uninterrupted continuous infusion
therapy in [ts, te], such as those in [14,39], is not realis-
tic. Here we consider a continuous infusion therapy
delivered at pre-set times

� = {θi|i = 0, . . . , k}
where θi Î [ts, te] for i = 0, . . . , k. In the following,

with a slight abuse of terminology, we refer to each θi Î
Θ as a therapy session.
Piece-wise constant therapy
In the case of a continuous infusion each therapy ses-
sion has a duration of A time-units and a constant
influx rate di in the i-th infusion. We model the therapy
as

σI(t) =
{
0 if ts < t < te∑k

i=0 dig(t − θi, A) otherwise
(10)

where A <min{θi+1 - θi | i = 0, . . . , k - 1} (i.e. no
overlap between two therapy sessions), and g(t, A) is the
“window function” of amplitude A, i.e.

g(t, A) = H(t) − H(t − A)

where H(·) the well-known Heavyside function.
Although this scenario can be simulated by Algorithm
1, some considerations about the equations that need
to be solved are worth discussing. In particular, when
solving for t >tn equation (8) by using equation (10)
the key point is to evaluate the integration part of
Equation (8), i.e.

Table 2 The Hybrid Simulation Algorithm (Algorithm 1)

Require: (T0, E0, I0), t0, tstop.

1: set the initial state to (T0, E0, I(t0)) and the initial time t to t0;

2: while t < tstop do

3: let x be the current state, for j ∈ S evaluate aj(x), define aS0 =
∑

j∈S aj(x);
4: let c be a random number with distribution Exp(1), solve the transcendental equation

A4(τ ) + aS0τ + A7(τ ) = χ

and then define a0 = aS0 + a4(t + τ ) + a7(t + τ );

5: let r be a random number U[0, 1], for the next event to fire find j by solvingj−1∑
i=1

ai(t + τ ) < r · a0 ≤
j∑

i=1

ai(t + τ )

where if i ∈ S then ai(t + τ ) = ai(x);

6: update (T, E, I(t)) to (T + νT,j, E + νE,j, I(t + τ )) and change clock to t + τ ;

7: end while

Input: initial state (T0, E0, I0), start time t0, stop time tstop.
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i ∈ S
where t = tn + � and h (x) = sI(x)e

μIx. Since Θ = {θ0,
θ1, . . . , θk}, we start by considering the set of therapy
sessions which start and complete in the time window
(tn, tn + �), such a set is

θ(tn,ϕ) = {θj ∈ �|tn < θj ∧ θj + A < tn + ϕ}.
Now, since Θ contains ordered time-points then also

θ(tn, �) does. We want to get the index of the minimum
and the maximum θj’s from θ(tn, �); we define

θmin = min(θ(tn,ϕ))

θmax = max(θ(tn,ϕ))

so that the indexes min and max denote such values.
To solve R(tn, tn + �) we split the integral in three time
intervals [tn, θmin), [θmin, θmax + A] and (θmax + A, tn + �]
so that

R(tn, tn + ϕ) =
∫ θmin

tn
η(x)dx

+
∫ θmax+A

θmin

η(x)dx +
∫ tn+ϕ

θmax+A
η(x)dx.

The integral in [θmin, θmax + A] is the summation of
|θ(tn, �)| non-zero basic integrals over the sub-intervals
[θj, θj + A] for any θj Î θ(tn, �), that is∫ θmax+A

θmin

η(x)dx =
∑

θj∈θ(tn,ϕ)

(∫ θj+A

θj

g(x)dx

)
.

Notice that for any θj Î θ(tn, �) it holds that sI(x) = 0
for any x Î (θj + A, θj+1) (i.e. when the therapy is not
delivered) yielding

∫ θj+1
θj+A

η(x)dx = 0. Furthermore, since

∫ θj+A

θj

σI(x)eμIxdx =
dj
μI

[
eμIx

]θj+A
θj

=
djeμIθj(eμIA − 1)

μI

then the overall integral evaluates as

∫ θmax+A

θmin

η(x)dx =
eμIA − 1

μI

⎛
⎝ ∑

θj∈θ(tn,ϕ)

dje
μIθj

⎞
⎠ .

Notice that this quantity can be easily computed in a
iterative fashion. The cases of the rightmost and left-
most integration intervals are similarly accounted. Let
us consider the leftmost interval [tn, θmin), we consider
whether tn is included in in the (min - 1)-th therapy-ses-
sion. We have this definition

∫ θmin

tn
η(x)dx =

dmin−1

μI

(
eμI(θmin−1+A) − eμItn

)

if θmin-1 < tn ≤ θmin-1 + A and 0 otherwise. This holds

since in the uppermost case
∫ θmin

tn
η(x)dx =

∫ θmin−1+A
tn

η(x)dx.

Similarly, in the interval (θmax, tn + �] by cases on the rela-
tion between tn + � and θmax+1∫ tn+ϕ

θmax+A
η(x)dx =

dmax+1

μI
(e−μIt − eμIθmax+1 )

if θmax+1 ≤ tn + � < θmax+1 + A and 0 otherwise. This
holds since in the uppermost case∫ tn+ϕ

θmax+A
η(x)dx =

∫ tn+ϕ

θmax+1
η(x)dx. We remark that all these

combinations of cases are necessary because of all the
possible combinations of the parameters t and tn with
the set Θ.

Table 3 Values of the parameters

Par. Value Unit Description

r 0.18 days-1 baseline growth rate of the tumor

b 10-9 ml-1 carrying capacity of the tumor

a 1 ml/days baseline strength of the killing rate by immune effectors

c 10-4 days-1 tumor antigenicity

V 3.2 Ml blood and bone marrow volumes for leukemia

gT 105 ml-1 50% reduction factor of the killing rate by immune effectors

gE 2 · 107 pg/l 50% reduction factor of IL-stimulated growth rate of effectors

gI 103 ml-1 50% reduction factor of production rate of interleukins

pE 0.1245 days-1 baseline strength of the IL-stimulated growth rate of effectors

pI 5 pg/days baseline strength of production rate of interleukins

μE 0.03 days-1 inverse of average lifespan of effectors

μI 10 days-1 loss/degradation rate of IL2

Parameters of model (4), as given in [39].
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Impulsive therapy
In many cases the infusions are very short implying that
the in flux rate reaches very large values, so that one
may approximate sI(t) as a train of pulses, i.e.

σI(t) =
{
0 if ts < t < te∑N

i=0 uiδ(t − θi), otherwise.
(11)

Here, ui is the i-th injected dose of molecules of IL-2
and δ(t - θi) is the Dirac’s delta function centered at t =
θi. By simple algebraic manipulations it is possible to see
that here function R(tn, t) is given by

R(tn, t) =
ie∑
i=is

uieμIθiH(t − θi)

where {θis , . . . , θie} = � ∩ (tn, t). Finally, we stress that
an alternative to the use of the Dirac’s generalized func-
tions is to represent the drug deliveries as impulsive
kicks given to I(t), thus becoming an impulsive differen-
tial equation [50,51]. Indeed, we have that at time θi Î
Θ the value of I(θi) increases by ui units thus yielding

I(θ+
i ) = I(θ−

i ) + ui (12)

for i = 0, . . . , k.

Adoptive cellular immunotherapies
In the next paragraphs we discuss how to specialize
model (4) with either a piece-wise constant or an impul-
sive ACI. As in the previous section we consider a set of
k therapy sessions Θ = {θi | i = 0, . . . , k}.
Piece-wise constant therapy
As before we assume

σE(t) =
{
0 if ts < t < te∑k

i=0 dig(t − θi,A) otherwise.
(13)

This scenario can be simulated by Algorithm 1 where,
in this case, the function A7(τ) is given by

A7(τ ) = V�(t) + V
ie∑
i=is

di(t − θi)H(t − θi)

− V
ie∑
i=is

di(t − θi − A)H(t − θi − A)

where {θis , . . . , θie} = � ∩ (tn, t) and

�(t) = H(θis−1 + A − tn)dis−1
[
(t − tn)H(t − θis−1)

− (t − θis−1 − A)H(t − θis−1 − A)
]
.

Impulsive therapy
We consider the case of an impulsive ACI where at each
θi Î Θ there is the rapid infusion of wi cultured effec-
tors. Thus, we could proceed similarly to the case of

impulsive IL-based therapy. However, here the introduc-
tion of generalized functions does not lead to simplifica-
tions, and as a consequence we shall model the therapy
as

E(θ+
i ) = E(θ−

i ) + wi. (14)

Thus to the “natural” stochastic events external deter-
ministic events are superimposed. As a consequence, at
such times (i) the differential equation ruling the
dynamics of I(t) must be updated and (ii) all the pro-
pensity functions involving E change value. This means
that the integral terms of equation (5) in Algorithm 1
should be modified to consider such changes. However,
results in [52] allow us for a modification of the algo-
rithm that we discuss now. One of the fundamental
properties of the SSA is that, with the system at time t,
for any possible value of τ the propensity functions are
constant in the time interval [t, t + τ). The same holds
in some configurations of the hybrid model studied in
[39]. However, this does not hold in the case of impul-
sive ACI since, if tn is the time of the n-th stochastic
event and θj >tn is the closest injection after tn, the pro-
pensity functions a3 and a5 change after θj, invalidating
the property. Of course, the time-dependent propensity
functions a4 and a7 are, by definition, potentially non-
constant. We argue that there is a similarity between
scheduling-based SSAs for systems with delays and this
hybrid system (i.e. consider this ACI as a set of events
scheduled at the preset times in Θ). Although this dif-
fers from such algorithms where the scheduling times
are stochastically chosen during the simulation, this
allows to modify Algorithm 1 into Algorithm 2 pre-
sented in Table 4, which is indeed inspired by the algo-
rithms discussed in [53-57]. As for such algorithms, the
correctness of Algorithm 2 relies on the existence of a
general schema of SSA-based algorithm with piece-wise
constant time-dependent propensity functions [52]

Table 4 The Hybrid Simulation Algorithm (Algorithm 2)

Require: (T0, E0, I0), t0, tstop.

1: initialize the simulation as for Algorithm 1;

2: while t < tstop do

3: pick a value for τ as in Algorithm 1;

4: get θnext = min{θi Î Θ | θi >t}

5: if τ < θnext then

6: fire a reaction as in Algorithm 1;

7: else

8: update (T, E, I(t)) to (T, E + wnext, I(t + θnext)) and change clock to
t + θnext;

9: end if

10: end while

Input: initial state (T0, E0, I0), start time t0, stop time tstop.
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where is stated tha, and this algorithm respects that
schema.

Combining IL-2 therapies and ACI
Combining therapies requires combining the results of
the previous sections. To shorten the presentation we
briefly discuss how to perform the simulations of the
hybrid model with combined immunotherapies.
Whenever an impulsive ACI is considered, indepen-

dently of the IL-2 therapy, the model can be simulated
by Algorithm 2. In the other cases the model can be
simulated by Algorithm 1.

Results
In the next sections we perform both asymptotic and
transitory analysis of the solutions of deterministic sys-
tem (4). We show the existence of deterministic condi-
tions that guarantee the eradication of the tumor, and
that will be used to tune the parameters of our hybrid
model when performing its simulations, which are dis-
cussed in the forthcoming section.

Deterministic asymptotic analysis
With the aid of elementary dynamical systems theory
[41] and by using some mathematical properties sum-
marized in the additional file 1, here we briefly investi-
gate how the therapies may influence the asymptotic
behavior of the solutions of the deterministic system (4).
We shall focus on the mathematically idealized case of
infinite length of the therapy and on the deterministic
conditions guaranteeing the eradication of the tumor.
IL-2 immunotherapy
We start from the case of the delivery of a IL-based mono-
therapy (i.e. sE(t) = 0). By setting T = E = 0 it follows I(t) =
J∞(t), where J∞(t) is the asymptotic solution of

J′ = −μIJ + σI(t). (15)

Thus, we found a tumor-free state

TFI = (0, 0, J∞(t))

which is, however, unstable. In fact, this follows by
setting

(T,E, I) = (0, 0, J∞(t)) + (Tl,El, Il),

and linearizing since the equation for tumor cells reads
as T′

l = rTl. Even though this means that the tumor-free
state (0, 0, J∞(t)) is unstable, this does not mean that
under an IL-based mono-therapy a tumor cannot be era-
dicated. In fact, as we show, there exist conditions imply-
ing that (T, E, I) ® (0, +∞, +∞), namely the tumour is
eradicated. This can be verified by using basic differential
inequalities recalled in the additional file 1. Indeed, from
the differential inequality

I′ ≥ −μII + σI(t)

it follows that I(t) >J(t) and, for large times, I(t) ≥ J∞(t).
In turn, the inequality

pEI(t)
gE + I(t)

>
pEJ∞(t)
gE + J∞(t)

yields the inequality

E′ ≥
(

pEJ∞(t)
gE + J∞(t)

− μE

)
E. (16)

Finally, from the properties of periodical linear differ-
ential equations recalled the additional file 1 we can
observe that

pE

〈
J∞(t)

gE + J∞(t)

〉
≥ μE (17)

implies that (T(t), E(t)) ® (0, +∞). In other words, the
deterministic model predicts that eradication is possible
only at the price of killing the patient for the excess of
stimulation of the immune system, that is E(t) ® +∞.
We remark that the above inference does not consider
finite length therapies. In fact, if at the end of the ther-
apy the tumor has been eradicated, the number of effec-
tors and the interleukin density will both decay.
Inequality (17) is the condition which we obtain by the
deterministic model. We now refine such a condition to
account for the three therapies that we mentioned so
far: (i) constant, (ii) piece-wise constant and (iii) impul-
sive. It holds that:

(i) when a constant therapy where sI(t) = sI is con-
sidered J∞ = sI /μI and condition (17) is

pEσI
gEμI + σI

≥ μE.

(ii) if we consider the piece-wise constant sI(t) of
equation (10) where the therapy sessions are periodi-
cally scheduled with period P, duration A and the
rate of each session is the same, that is ∀θi Î Θ. di =
d, we have that

J∞(t) =

⎧⎨
⎩

d
μI

− β1e−μI t if0 ≤ t < A

β2e−μI(t−A) if 0 ≤ t < P
(18)

where

β1 =
d
μI

eμIP − eμIA

eμIP − 1
β2 =

d
μI

− β1e−μIA.
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In this case condition (17) reads as

pE
P
(1 − ω1 − ω2) ≥ μE

where

ω1 =
gE

μI(gE + α1)
log

(
eμIA − γ1

1 − γ1

)

ω1 =
1
μI

log

(
eμI(P−A) + γ2

1 + γ2

)

γ1 =
β1

gE + α1
γ2 =

β2

gE

and g1 <1.
(iii) if we consider the impulsive sI(t) of equation
(11) where all the therapy sessions are periodically
scheduled with period P and the rate of each session
is ∀θi Î Θ.ui = U we have

J∞(t) =
U

1 − e−μIP
e−μI(t mod P)

where t mod P is the standard modulo operation.
Then the eradication condition (17) is

pE
PμI

log
(
ueμIP + gE(eμIP − 1)
u + gE(eμIP − 1)

)
> μE. (19)

ACI
When only ACI is delivered (i.e. sI(t) = 0) there is the
following tumor-free asymptotic solution

(0, εE(t), 0)

where εE(t) is the asymptotic solution of

ε′(t) = −μEε + σE(t) (20)

which is the equation for E when T = I = 0. In the
case of periodically delivered therapy with period P, the
linearized equation for tumor cells is

T′
l =

(
r − a

gTV
εE(t)

)
τι

and hence the local eradication condition (17) is

a
gTV

〈εE(t)〉 ≥ r. (21)

However, by averaging both the sides of (20) yields

εE(P) − εE(0) = 0 = −μE〈εE(t)〉 + σE(t)

which implies that

〈εE(t)〉 = 〈σE(t)〉
μE

.

Finally, in this case the local stability condition corre-
sponding to equation (17) becomes

a

gTV

〈σE(t)〉
μE

≥ r. (22)

As for the case of IL-2 mono-therapy we now focus
on the therapies considered so far, we have that:

(i) if we consider constant sE(t) then condition (22)
is sE >rgT V/a.
(ii) if we consider a piece-wise constant sE(t) with
infinite length te = +∞, period P where θi = iP, dura-
tion A and injection rate bi = b for any θi Î Θ, then
similarly to the case of the IL-based mono-therapy
one can show that

ε∞(t) =
b

μE
− b

μE
ξe−μEt

where

ξ =
eμEP − eμEA

eμEP − 1

if 0 ≤ t < A and

ε∞(t) =
(

b
μE

− b
μE

ξe−μEA
)
e−μE(t−A)

if 0 ≤ t < P and the eradication condition can be
consequently computed.
(iii) if we consider the impulsive therapy sE(t) where
the common injection rate is wi = w for i = 1, . . . ,
+∞, by using the results reported in the additional
file 1 we have that

εE(t) =
w

1 − e−μEP
e−μEP

and hence the eradication condition (22) is

a
gTV

w
PμE

≥ r. (23)

Combined therapies
Finally, we shortly consider when both the therapies are
delivered. In this case there is the following tumor-free
asymptotic solution

(0, ε∞(t), J∞(t))
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where ε∞(t) is the asymptotic solution of

ε′(t) =
(

pEJ∞(t)
gE + J∞(t)

− μE

)
ε + σE(t). (24)

In the case of synchronous delivery with common per-
iod P the local eradication condition becomes

a

gTV
〈ε∞(t)〉 ≥ r. (25)

As for the mono-thrapeutic case in some of the sce-
narios that we mentioned it is possible to infer analytical
local eradication conditions. In the additional file 1 we
show the derivation of the eradication condition for
combined impulsive therapies with synchronous
delivery.
Global stability of the eradication
We conclude by investing the global stability of the era-
dication. Since for sufficiently large t it is I(t) ≥ J∞(t)
then from the differential inequality

E′(t) >

(
pEJ∞(t)
gE + J∞(t)

− μE

)
E + σE(t)

follows that, for large times, E(t) ≥ ε∞(t). Then by

T′ < rT
(
1 − b

V
T
)

− aT
gTV + T

ε∞(t)

it follows that T(t) < X(t), where

X′ = rX
(
1 − b

V
X
)

− aX
gTV + x

ε∞(t).

Finally, it follows that if ∀x(0) > 0. X(t) ® 0 then also
T(t) ® 0, and the tumor eradication is globally asymp-
totically stable [41].

Deterministic transitory analysis
Results of the previous section refer to the highly idea-
lized case of a infinite horizon therapy. However, real
therapies have a finite duration and, more important,
the host organism has a finite lifespan. Thus, in this as
well as in other applications of computational biology
and medicine it is natural to wonder whether such
results can be used at all [8,28]. This is critically related
to the velocity at which the solutions of the equations
studied in the previous section tend to their asymptotic
solutions.
As far as the IL-2 mono-therapy is concerned, the

velocity of growth of E(t) - which in turn determines
the velocity of reduction of T(t) - is ruled by the differ-
ence pE〈J∞(t)/(gE + J∞(t))〉 - μE. Moreover, independently
of the initial conditions the function J(t) converges to
J∞(t) in some multiple of average degradation time of
the interleukin, i.e. 1/μI, which is small. Thus, this

means that very soon the asymptotic solution is reached.
Observe now that since J∞(t)/(gE + J∞(t)) <1 it follows
that if pE < μE then the constraint (17) is never fulfilled.
We stress that this is the case for the values listed in
Table 3. In practice, since in general 〈J∞(t)/(gE + J∞(t))〉
<<1 and since μE is small, it follows that pE must be far
larger than μE. This requires that, for some of the set-
tings that we will simulate in the next sections, the
value of pE could be different from the one given in
Table 3. Biologically, this might substantially reduce the
number of patients to whom the IL-2 mono-therapy
might be effective.
Further discussions are worth. In the case of impulsive

therapy unless IL-2 is injected every few hours J∞(t) ®
0 rapidly, so that the eradication is unlikely unless large
doses are delivered. This is also mirrored in the corre-
sponding local eradication condition (19). Furthermore,
in equation (16) it is also very important parameter gE,
whose value used in our simulations is very large. Thus,
if μIP and gE are large we may roughly say that - unless
huge doses are delivered or pE is particularly large - the
coefficient of E in inequality (16) is almost always com-
parable to -μE, so that a large rate of injection is
required to fulfill eradication condition (19).
In the case of piece-wise continuous delivery of IL-2

J∞(t) takes few hours to get sufficiently closer its maxi-
mum plateau value, as given by equation (18). This sug-
gests that for this kind of drug delivery the duration of
each therapy session, i.e. A, should be a quite large frac-
tion of the unity. This, of course, poses some practical
problems since the patients should receive very long
daily infusions. However, in some recent clinical trials
on cyrcadian rythms-tuned delivery of chemotherapy
some special 24-hours infusors have been experimented
[58]. Roughly speaking, the above fact might be related
to the “indirect effect” of IL-based therapies. In fact,
they aim at triggering the expansion of the number of
effector cells which, in turn, kill tumor cells.
Differently, as far as the ACI mono-therapy is con-

cerned, the velocity of convergence of εE(t) is some mul-
tiple of the average lifespan of the effector, i.e. 1/μE.
Such a value is generally quite big and, for instance, it is
33 days about in our simulations. This means that the
convergence is very slow and that, unless the duration
of the therapy is exceptionally long, the results of the
asymptotic analysis cannot be used as a basis for the
stochastic simulations. Similar considerations can be
done for the combined therapy.
Finally, it is important to recall that the conditions

that derived in the previous section are of local nature.
In order to guarantee the eradication for generic non-
small initial conditions (T(0), E(0), I(0)) the constraint
specific to the simulated therapy has to be largely
fulfilled.
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Stochastic simulations
We performed stochastic simulations of the model
under various therapeutic settings, whose results are
now reported. We have mostly considered a single-
month daily therapy, i.e. Θ = {1, . . . , 30}. When differ-
ent schedules are considered the parameters are expli-
citly reported. In all the figures representing simulation
days and number of cells are given on the x-axis and
the y-axis, respectively. To perform simulations a JAVA
implementation of model (4) and Algorithms 1 and 2
has been developed.
IL-2 immunotherapy
In Figure 1 a single stochastic run of the hybrid model
with only IL-2 based immunotherapies is shown. We
simulated both piece-wise constant (left) and impulsive
(right) IL-2 daily immunotherapies with initial config-
uration T(0) = 105 and E(0) = I(0) = 0. In the former
case each therapy session lasts A = 0.2 days, i.e. 4.8
hours, and di = 4 · 107/A for i = 1, . . . , 30. In the latter
case at each therapy session the value ui for the injec-
tion is ui = 4·107 for i = 1, . . . , 30. Thus the total
injected drug per day is the same in both cases. More-
over, according to the transitory analysis, in both cases
we twentyfold increased the value of pE reported in
Table 3, i.e. we used pE = 20 · 0.1245. As we already
said, this requirement shall reduce the number of
patients to whom this therapy might be effective. All the
other parameters are as in Table 3.
Notice that (i.e. compare with the transitory analysis)

the piece-wise constant immunotherapy seems more
efficient than the impulsive one. Indeed (i) in the piece-
wise case the eradication of the tumor is reached at te ≈
20 days and the maximum tumor size is around 106 =
10 · T(0). Differently, (ii) in the impulsive case the
tumor is eradicated a few days later, i.e. te ≈ 23 days,
and the maximum tumor size is almost 20·T(0). At the
eradication day the number of effector cells is around 4
· 106 in both cases, whereas the density of IL-2 is of the
order of 107 in (left) and 104 in (right).

Adoptive Cellular Immunotherapy
In Figure 2 a single stochastic run of the hybrid model
with only ACI is shown. As for IL-based therapy, we
simulated both piece-wise constant (left) and impulsive
(right) daily ACIs with initial configuration T(0) = 105

and E(0) = I(0) = 0. In the former case each therapy ses-
sion lasts A = 0.2 days and bi = 25 · 104 for i = 1, . . . ,
30. In the latter case at each therapy session 5·104 effec-
tor cells are injected, i.e. wi = 5 · 104 for i = 1, . . . , 30.
Thus the number of injected effectors is equal in both
cases. All the other parameters are as in Table 3.
Note that the figures show no remarkable difference

in the tumor response. In particular, in both the simula-
tions the eradication is obtained at around day 15. In
both cases, at the eradication day the number of effector
cells is around 6 · 105, and the density of IL-2 is of the
order of 102.
Finally, to discover the relation between the frequency

of the therapy sessions and the dosage of each session, in
Figure 3 a single stochastic run of the hybrid model with
impulsive weekly ACI is shown. In those simulations we
used an impulsive ACI with a weekly schedule (i.e. θi =
7i + 1 for i = 0, . . . , 3) with dosage wi = 35 · 104 for
i = 1, . . . , 30. Note that this means that once a week a
number of effectors is injected equivalent to the number
of effectors given in an entire week of Figure 2 (right).
The other parameters are as in Table 3.
Notice that it seems that the immune response is

slightly better stimulated with this therapy setting than
the one in Figure 2 (right). In fact, in this case the eradi-
cation day is around 12. The number of effector cells
and the density of IL-2 are similar to those in Figure 2
(right).
Combined therapies
In Figure 4 a single stochastic run of the hybrid model
with combined impulsive IL-2 and ACI daily immu-
notherapies is shown. In (left) both the therapies are
given at the same day (i.e. with the same Θ). In (right)
the therapies are asynchronous with a shift of 0.5 days,

Figure 1 Single run, IL-2 mono-therapy. Single-run of piece-wise constant (left) and impulsive (right) IL-2 daily immunotherapy. In (left) A =
0.2 and di = 4 · 107/A for i = 1, . . . , 30. In (right) ui = 4 · 107 for i = 1, . . . , 30. In both cases T(0) = 105, E(0) = I(0) = 0 and pE = 20 · 0.1245. All
the other parameters are as in Table 3.
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i.e. �IL
i = i + 0.5 and �E

i = i for i = 1, . . . , 30. Again, the
initial configuration is T(0) = 105, E(0) = I(0) = 0. The
parameters for the therapies dosage and duration are
the same for both cases. As far as IL-2 therapy is con-
cerned, at each therapy session the value ui for the
injection is ui = 106 for i = 1, . . . , 30. Differently, in
each ACI session 104 effector cells are injected, i.e. wi =
104 for i = 1, . . . , 30. Notice that both the values are
smaller than those used in the corresponding mono-
therapy scenarios of Figures 1 (right) and 2 (right).
Moreover, as in the case of single IL-2 therapies the
value of pE is set to pE = 20 · 0.1245. All the other para-
meters are as in Table 3.
As expected, this combined therapy eradicates even

though the parameters are lower than those used in the
scenarios where the single therapies are used (i.e. Figure 1
(right) and 2 (right)). In both cases the eradication is
observed a few days after the end of the therapy. In the
case of synchronous therapy ter ≈ 39, in the asynchronous
case ter ≈ 37. In both cases at the day of eradication the
number of effector cells is around 2 · 105 and the density
of IL-2 is around 10. In both therapies the maximum size
of the tumor is almost equal, i.e. it is around 2.5·105.

Finally, since in both cases the proliferation of effector
cells is almost equal, it seems that no remarkable differ-
ences are observed with these therapy schedules.
Larger initial tumor and ACI
We analyzed the effect of varying the initial number of
tumor cells in a scenario with impulsive ACI. Again, we
analyzed this scenario because it was the one which per-
mitted a computationally easier analysis. In Figure 5 a
single stochastic run of the hybrid model with T(0) =
106 (left) and T(0) = 107 (right) is shown. In both cases
E(0) = I(0) = 0. Notice that in this case T(0) is either 10
or 100 times larger than the value used in Figure 2. In
left panel of Figure 5 at each therapy session 5 · 104

effector cells are injected, i.e. wi = 5 · 104 for i = 1, . . . ,
30, and the eradication is reached at ≈ 24.5 days. On
the contrary, in the case where T(0) = 107 and the same
schedule is applied the eradication was not observed
and the tumor size reached, quite rapidly, a size of the
order of 109. In order to obtain eradication also for T(0)
= 107, as shown in the right panel of Figure 5, we
increased the number of effectors injected at each ther-
apy session, i.e. wi = 20 · 104 for i = 1, . . . , 30 (i.e. each
injection is 4 times bigger than the one shown in the

Figure 2 Single run, daily ACI mono-therapy. Single-run of piece-wise constant (left) and impulsive (right) daily ACI. In (left) A = 0.2 and
bi = 5 · 104/(V A) for i = 1, . . . , 30. In (right) wi = 5 · 104 for i = 1, . . . , 30. In both cases T(0) = 105 and E(0) = I(0) = 0. All the other parameters
are as in Table 3.

Figure 3 Single run, weekly ACI mono-therapy. Single-run of piece-wise constant (left) and impulsive (right) weekly ACI, i.e. in both panels θi
= 7i + 1 for i = 0, . . . , 3. In (left) A = 1.4 days and bi = 35 · 104/V A i = 0, . . . , 3. In (right) wi = 35 · 104 for i = 1, . . . , 3. All the other
parameters are as in Table 3.
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left panel). In both cases all the other parameters are as
in Table 3.
In both cases the eradication is observed close to the

end of the therapy (i.e. day 25) with the number of
effector cells being around 106 (left) and 108 (right), and
the density of IL-2 of the order of 102 (left) and 107

(right). Notice that in (left) the line of the effectors is
interrupted at the eradication time since the simulation
is interrupted when T = 0. Moreover, Differently form
the other figures here the scales on the y-axes are differ-
ent since the maximum in (right) is 100 times bigger
than the maximum in (left).
Probabilistic analysis of IL-2 therapy
As we already said some of the simulations we per-
formed are time-consuming, especially when the value
of T or E become huge. This happens, for instance, in
the scenarios of Figure 6 where the simulation time
spans from 1 to 30 hours. However, single-run of sto-
chastic simulations are not much informative and, when
possible, any conclusion should be supported by a big
number of averaged simulations. To this extent, we per-
formed multiple runs of both the piece-wise constant
and the impulsive IL-2 immunotherapies of Figure 1.

This was possible since their running time is of the
order of some minutes.
We defined the following time-dependent property

over a single simulation: we want to evaluate

ter = min{t ≤ 70|T(t) = 0}
meaning that ter is the eradication time for tumor cells

before 70 days, more than twice the duration of the simu-
lated therapies. We evaluated the empirical probability
density function of ter, denoted ϱ(ter), by performing 102

simulations for both the scenarios in Figure 1. In all
simulations we used the same configuration used in such
a figure, that is in (left) A = 0.2 and di = 4 · 107/A for i =
1, . . . , 30 whereas in (right) ui = 4 · 107 for i = 1, . . . , 30.
In both cases T(0) = 105, E(0) = I(0) = 0 and pE = 20 ·
0.1245. All the other parameters are as in Table 3.
In case of daily delivery of the IL-2 mono-therapy,

Figure 6 shows the evaluation of ϱ(ter) for piece-wise
constant (left) and impulsive therapies (right). It is
remarkable that for all the simulations the eradication is
always reached (i.e. 102 times out of 102 simulations).
In Table 5 the average of ter, denoted 〈ter〉 and the

standard deviation s of ter are evaluated for the piece-

Figure 4 Single run, combined immunotherapies. Single-run of synchronous (left) and asynchronous (right) combined impulsive IL-2 and ACI
daily immunotherapies. The asynchronous delivery is a shift of 0.5 days. In (left) ui = 106 for i = 1, . . . , 30 and in (right) wi = 104 for i = 1, . . . ,
30. In both cases T(0) = 105, E(0) = I(0) = 0 and pE = 20 · 0.1245. All the other parameters are as in Table 3.

Figure 5 Single run, ACI mono-therapy and larger tumor. Single-run of impulsive daily ACI with T(0) = 106 (left) and T(0) = 107 (right). In
both cases E(0) = I(0) = 0. In (left) wi = 5 · 104 for i = 1, . . . , 30. In (right) wi = 20 · 105 for i = 1, . . . , 30. All the other parameters are as in
Table 3.
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wise constant (left) and impulsive (right) IL-2 immu-
notherapies of Figure 6. By means of the Wilcoxon sta-
tistical test, the non-parametric equivalent of the T-test,
we compared the observed realizations of ter. We
obtained that the differences in the values of Table 5
are statistically meaningful since p <2.2 · 10-16 for the
Wilcoxon statistical test.
Probabilistic analysis of ACI
As for the case of IL-2 mono-therapy the results on
ACIs in Figure 2 motivated us to to investigat the rela-
tionship between impulsive and piece-wise constant
ACIs, as well as the influence of the period P between
two consecutive therapy sessions. Again, we considered
the same time-dependent property over a single simula-
tion, i.e. ter = min{t ≤ 70 | T (t) = 0}. Also in this case
70 days is more than twice the duration of the therapies
that we simulated. We evaluated the empirical probabil-
ity density function ϱ(ter) by performing 102 simulations
for each of a set of parameter configurations. In all
simulations we used the initial configuration T(0) = 105

and E(0) = I(0) = 0.
Figure 7 shows the evaluation of ϱ(ter) for a daily ACIs

with piece-wise constant (left) and impulsive (right)
infusions. We studied the effect of varying the dosage of
the therapy on ter. Given w* Î {5, 2.5, 2, 1.5, 1}, in (left)
each therapy session lasts A = 0.2 days and bi = w* ·
104/(V A) for i = 1, . . . , 30 and in (right) wi = w* · 10

4

for i = 1, . . . , 30. The other parameters are in Table 3.
For any simulation (i.e. 102 times out of 102 simula-

tions) the eradication was found if w* ≠ 1. In the case of

w* = 1 only half of the simulations predicted eradication
before day 70. However, at around day 70 the tumor
was small (i.e. always less than 100 cells) meaning that
the eradication could have been reached immediately in
the days after the 70-th. Interestingly, in both cases it
seems that [1.5; 2] is a range for w* to have eradication
before the end of the therapy, as often desired. In Table
6 the average of ter, i.e. 〈ter〉, and its standard deviation s
are evaluated for the piece-wise constant (left) and
impulsive (right) ACIs of Figure 7.
In case of weekly delivered therapy, we considered the

simulated therapies where the quantity of effectors are
injected each week is equal to the one injected per week
in the daily therapies above described. This implies θk = 1
+7 * k, k = 0, . . . , 4 and bk = w* · 10

4/(V A) for piece-wise
constant therapy (left) and wk = w* · 10

4 (right). The den-
sities are plotted in Figure 8, and the corresponding
mean and standard deviation are shown in Table 7.
By means of the Wilcoxon statistical test we compared

the observed realizations of ter, grouped by kind of delivery
(i.e. impulsive or piece-wise constant) and by frequency (i.
e. daily or weekly). We obtained that (i) if delivered daily
the eradication times of the piece-wise constant and the
impulsive ACIs are not statistically different (i.e. p > 0.05
for all doses). Also, (ii) if delivered daily the eradication
time of the impulsive therapy is significantly smaller than
the one with piece-wise constant therapy (i.e. p <10-12)
and (iii) for impulsive ACI the eradication time of the
weekly delivered therapy is significantly smaller than the
one of the daily delivered therapy (i.e. p <10-12). Finally,
(iv) for impulsive ACI the eradication time in the weekly
delivery is not statistically different from the one of the
daily delivered therapy (i.e. p > 0.05).

Conclusions
In this work we extended our hybrid model [39] with
IL-based immunotherapies and Adoptive Cellular
Immunotherapies (ACIs), both modeled as piecewise

Figure 6 Probability density function, IL-2 mono-therapy. Empirical evaluation of ϱ(ter) for different piece-wise constant (left) and impulsive
(right) daily IL-2 immunotherapies. In (left) A = 0.2 and di = 4 · 107/A for i = 1, . . . , 30. In (right) ui = 4 · 107 for i = 1, . . . , 30. In both cases
T(0) = 105, E(0) = I(0) = 0 and pE = 20 · 0.1245. All the other parameters are as in Table 3. The densities are obtained by performing 102

simulations for each configuration.

Table 5 Averages and standard deviation, daily IL-2
mono-therapy

〈ter〉 s 〈ter〉 s

19.34 0.33 22.71 0.41

Daily delivered IL-2 immunotherapy. Average of ter and its standard deviation
s evaluated for the piece-wise constant (left) and impulsive (right) therapies
of Figure 6.
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constant or impulsive functions. We performed analyti-
cal analysis of the corresponding deterministic model,
inspired by earlier work by Panetta and Kirschner [14].
We analyzed our hybrid model via stochastic simula-
tions which seem to suggest results of some interest,
which we briefly summarize:

(i) by the transitory analysis it turns out that IL-
based immunotherapies require very large values of
the parameter pE, which might substantially reduce
the number of patients to whom it may be used as
monotherapy;
(ii) in IL-based immunotherapies the piece-wise con-
stant delivery seems more effective for tumor eradi-
cation than the impulsive one although at the price
of very long infusion sessions;
(iii) in a daily delivered ACI the piece-wise constant
delivery seems more or less equivalent to the impulsive
one;
(iv) in a ACI the impulsive delivery seems slightly
more effective than the daily delivery: less frequent
deliveries of larger doses ensure a slightly more rapid
eradication than frequent deliveries of smaller doses.
Note that the latter type of delivery is called metro-
nomic delivery, and it is of great relevance for other
anti-tumor therapies such as anti-angiogenesis thera-
pies and chemotherapies [1,59,60]. Furthermore, for

those therapies the metronomic delivery is often
more effective;
(v) in a ACI the weekly impulsive delivery seems
slightly more effective than the weekly piecewise
constant delivery;
(vi) when combined impulsive therapies are consid-
ered both the synchronous and the asynchronous
delivery seem to be effective and no remarkable dif-
ferences are observable.

Other more predictable effects were observed such as
the synergistic effects of combined therapies, or the
dependence of the eradication on the initial values. Of
course, these results are strongly linked to the specific
model, to its ability in describing the dynamics of real
tumors and to the chosen parameters.
As far as the model is concerned, we have previously

stressed that maybe the hypothesis that the linear anti-
genic effect cT due to the tumor size should be corrected
by assuming a saturating stimulation cT/(1+dT); here we
also add that the assumption that E’ linearly depend on E
could be corrected, as there are cases where this depen-
dence might be nonlinear (see [26] and references
therein). Note also that, although computationally useful,
representing the piece-wise constant delivery of ACI by
means of a continuous input sE(t) is only an approxima-
tion. Indeed, in reality the infusion should be more realis-
tically represented as a series of injections of a group of
cells each Δt ≪ 1 time units. The time interval Δt should
be modeled as a Poisson random variable.
As far as the parameters are concerned, in order to

obtain more general biological inferences an extensive
and systematic exploration of the space of parameters is
mandatory. Of course this will require the exploitation
of intelligent algorithms (e.g. approximated stochastic
simulations [61,62]) to tackle the computational hard-
ness of model analysis.
Finally, here we have only explored the effects of the

intrinsic stochasticity on the dynamics of tumor-immune

Figure 7 Probability density function, daily ACI mono-therapy. Empirical evaluation of ϱ(ter) for different piece-wise constant (left) and impulsive
(right) daily ACIs. In (left) bi = w* · 10

4/(V A) for i = 1, . . . , 30 and in (right) wi = w* · 10
4 for i = 1, . . . , 30 where w* Î {5, 2.5, 2, 1.5, 1}. The value of w* is

given in the figure, all the other parameters are as in Table 3. The densities are obtained by performing 102 simulations for each value of w*.

Table 6 Averages and standard deviation, daily ACI
mono-therapy

w* 〈ter〉 s 〈ter〉 s

5 15.5 1.1180 15.2 1.7204

2.5 24.0 2.0 23.5 1.7078

2 27.6 1.9720 27 2

1.5 35.6 3.0397 34.7 3.1638

1 62.0 4.3204 61.0 4.3204

Daily delivered ACI. Average of ter and its standard deviation s evaluated for
the piece-wise constant (left) and impulsive (right) ACIs of Figure 7.
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system interplay under therapy. However, it has been
shown that without therapy the extrinsic stochasticity may
play a significant role in shaping tumor evasion from the
immune control [28]. Moreover, it has also been proposed
that realistic bounded stochastic fluctuations affecting che-
motherapy may deeply influence the outcome of che-
motherapies of solid vascularized tumors [63].
Note that the inclusion of realistic extrinsic noise would

require minor changes in the proposed hybrid simulation
algorithms besides the inclusion of the stochastic nonlinear
equations for correlated bounded noises [28,63]. However,
that would require extensive numerical simulations (e.g. a
higher number of samples of the stochastic process under-
lying the hybrid system) when inferring heuristic probabil-
ity densities of eradication times, for instance.

Additional material

Additional file 1: Supplementary Materials (text). Results about scalar
differential inequalities, scalar linear ODEs with periodic coefficients,
impulsive ODEs and combined impulsive immunotherapies are given.

List of abbreviations used
ACI: Adoptive Cellular Immunotherapy. IL or IL-2: Interleukin-2. ODE: Ordinary
Differential Equation. T-IS: Tumor-Immune system (interplay). KP: Kirschner-
Panetta (model). SSA: Stochastic Simulation Algorithm.
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