Bartlett et al. BMC Bioinformatics 2012, 13(Suppl 8):58

http://www.biomedcentral.com/1471-2105/13/58/S8
BMC

Bioinformatics

RESEARCH Open Access

An eQTL biological data visualization challenge
and approaches from the visualization
community

Christopher W Bartlett'"”, Soo Yeon Cheong’, Liping Hou', Jesse Paquette?, Pek Yee Lum?, Giinter Jager®,
Florian Battke®, Corinna Vehlow”, Julian Heinrich?, Kay Nieselt®, Ryo Sakai®, Jan Aerts®, William C Ray'"®"

From 1st I[EEE Symposium on Biological Data Visualization (BioVis 2011)
Providence, RI, USA. 23-24 October 2011

Abstract

In 2011, the IEEE VisWeek conferences inaugurated a symposium on Biological Data Visualization. Like other
domain-oriented Vis symposia, this symposium’s purpose was to explore the unique characteristics and
requirements of visualization within the domain, and to enhance both the Visualization and Bio/Life-Sciences
communities by pushing Biological data sets and domain understanding into the Visualization community, and
well-informed Visualization solutions back to the Biological community. Amongst several other activities, the
BioVis symposium created a data analysis and visualization contest. Unlike many contests in other venues, where
the purpose is primarily to allow entrants to demonstrate tour-de-force programming skills on sample problems
with known solutions, the BioVis contest was intended to whet the participants’ appetites for a tremendously
challenging biological domain, and simultaneously produce viable tools for a biological grand challenge domain
with no extant solutions. For this purpose expression Quantitative Trait Locus (eQTL) data analysis was selected.
In the BioVis 2011 contest, we provided contestants with a synthetic eQTL data set containing real biological
variation, as well as a spiked-in gene expression interaction network influenced by single nucleotide
polymorphism (SNP) DNA variation and a hypothetical disease model. Contestants were asked to elucidate the
pattern of SNPs and interactions that predicted an individual's disease state. 9 teams competed in the contest
using a mixture of methods, some analytical and others through visual exploratory methods. Independent
panels of visualization and biological experts judged entries. Awards were given for each panel’s favorite entry,
and an overall best entry agreed upon by both panels. Three special mention awards were given for particularly
innovative and useful aspects of those entries. And further recognition was given to entries that correctly
answered a bonus question about how a proposed “gene therapy” change to a SNP might change an
individual's disease status, which served as a calibration for each approaches’ applicability to a typical domain
question. In the future, BioVis will continue the data analysis and visualization contest, maintaining the
philosophy of providing new challenging questions in open-ended and dramatically underserved Bio/Life
Sciences domains.

* Correspondence: christopher.bartlett@nationwidechildrens.org; ray.29@osu.
edu

"The Research Institute at Nationwide Children’s Hospital, Columbus OH,
USA

Full list of author information is available at the end of the article

- © 2012 Bartlett et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
( B.oMed Central Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:christopher.bartlett@nationwidechildrens.org
mailto:ray.29@osu.edu
mailto:ray.29@osu.edu
http://creativecommons.org/licenses/by/2.0

Bartlett et al. BMC Bioinformatics 2012, 13(Suppl 8):58
http://www.biomedcentral.com/1471-2105/13/58/S8

Introduction

The biological sciences have a uniquely intertwined yet
strangely dysfunctional relationship with the bioinfor-
matics and visualization sciences. Bio/Life Sciences
researchers and practitioners regularly rely on visualiza-
tion techniques for solving a large range of problems,
including use of charts, graphs and interactive displays.
They frequently prefer these visualization techniques to
analytical techniques, methods of a computational and/
or statistical nature, even when the analytical techniques
produce more accurate results. For example every bio-
chemistry student knows how to calculate rate constants
for Michaelis-Menten [1] enzyme kinetics based on
extracting the slope and intercept from a hand fitted
double reciprocal Lineweaver-Burk plot [2]. Despite
years of understanding that the double reciprocal plot
distorts errors, making accurate hand fitting of the data
almost impossible [3], this and other problematic gra-
phical linearizations are still in use. At the same time,
most students would be hard-pressed to write down the
appropriate regression framework to calculate these con-
stants analytically. The extreme inertia of such visual
representation and problem solving methods in the bio-
logical sciences is not solely limited to approaches devel-
oped before the advent of modern high-speed
computers. Despite a direct statement that his clustering
and visualization methods were simply a first attempt at
analyzing MicroArray data, the hierarchical clustering
and heat map visualization from Michael Eisen’s seminal
1998 paper on microarray clustering [4], remain a de
facto standard which is only slowly being questioned
today [5].

Additional and profound examples of this odd rela-
tionship can be seen between bioinformatics and biology
as well. However enticing the size and rich complexity
of data sets produced by their biological peers, computa-
tional experts may be less excited by the prospect of
acquiring and encoding all of the domain knowledge
necessary to develop tools that are optimized to a biolo-
gical need. As a result, biological researchers often con-
clude that many computational contributions to
biological data analysis are driven more by what is com-
putationally interesting, or computationally expedient,
than by what is biologically appropriate. For example, a
seminal and ubiquitous computational strategy for iden-
tifying sequence similarity, the BLAST algorithm, ranks
search results based not on the likelihood of biological
relationship, which is how the typical working biologist
applies the results, but on a p-value-like statistic that
ranks results approximately based on the reciprocal of
the probability that the relationship occurred randomly
[6]. The ubiquitous p-value itself, long understood to be
a biased measure of effect size and not a measure of the
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strength of the evidence provided by a given dataset,
despite the fact that those are the most common uses of
the p-value, is only recently coming under fire as a pro-
blematic player that needs to be fixed, rather than a
suboptimal solution that needs to be lived with [7].

In this environment of interdependence across three dis-
ciplines with frequently misaligned goals, there is the
opportunity for a constant undercurrent of miscommuni-
cation. When computationalists are asked to provide
visualization tools for molecular motion using a represen-
tation that’s visually orthogonal to everything known
about representing complex motion in other motion-
intense fields such as Computational Fluid Dynamics
(CFD) [8], and biologists, unaware of the lessons from
CED, repeatedly request tools using this paradigm, both
groups quite rightly recognize that something has gone
wrong, but neither has the perspective to identify the pro-
blem. Other examples abound, and quite frequently the
result of collaborations on the part of the bio/life sciences
and computational sciences, is an unused tool and hurt
feelings all around. Yet even as problematic as the inter-
section of these fields is, their marriage is also one of the
great opportunities facing the community of Visualization,
Bioinformatic, and Bio/Life Sciences in the future. Rapid
advances in raw computing power and graphics processing
power make visualization approaches that could only be
dreamed about a few years ago, available on commodity
desktop platforms. At the same time, next-generation
sequencing, and other biological data-acquisition technol-
ogies are creating new data types and data sets that
researchers cannot hope to approach without revolution-
ary advances in visualization and summarization. It is into
this world of past failures, near misses, occasional brilliant
successes, and an exponentially growing, overwhelming
oncoming need, that the BioVis symposium was born. It is
clear that contributions to the domain will need to be
shepherded carefully; An inappropriate representation that
is adopted by the biological domain because it stands
alone in the field at the outset, could, if history is an indi-
cator, leave biologists using a crippled tool for decades;
One poorly explained biological need, and a flotilla of
inappropriate representations could be launched into use.
The Visualization expert holds a unique position in this
world, where their principled approach to appropriate
information representation, and quantitative concern for
accurate information transfer, can be applied to the benefit
of all three fields. In recognition of the opportunity, and
responsibility of that position the BioVis data analysis and
visualization contest was designed.

Our goals for the contest were threefold:

1. The development of a better-informed Vis com-
munity, provided with deeper domain-specific
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intuition into the actual issues of interest to the user
community.

2. A better-tooled biological community, provided
with enhanced applications specifically adjusted to
meet their analysis needs.

3. Finally, a mechanism to strongly promote fund-
able peer collaborations between Visualization and
Bio/Life-Sciences researchers.

To meet these goals, the contest was designed so that
each theme spanned multiple symposia years, with an
outgoing advanced phase, and an incoming basic phase
running in parallel. In 2011, our first year, we ran only
the basic challenge. During the contest, a web forum
was available for discussion of the challenge domain in
general as well as specifics of the challenge data, both
between teams and with contest-provided domain
experts. At the symposium, a session was available for
entrants to discuss their entries with each other and
with the contest judges and the domain expert (Chris
Bartlett) who created the data. Future advanced-phase
challenges will provide entrants the opportunity to
further develop their basic-phase approaches based on
feedback and new insights gained during the contest
and via the symposium session.

Biological domain

A new biological domain will be introduced each year
and retained for two years. The first year is a Phase I
practice dataset to introduce the topic while the second
year, Phase II, dataset is larger in scope and size. Every
year after 2011, there will be two concurrent contests,
one for Phase I and one for Phase II. As 2011 is the
inaugural year, the only contest was Phase I of expres-
sion Quantitative Trait Locus (eQTL) data [9]. eQTL
experiments catalog massive collections of correlated
genotype and phenotype data, in the hope of detecting
important genome-sequence variations that affect RNA
expression levels and identifying the underlying mechan-
isms. The mechanisms often are networks of interacting
polymorphisms that non-linearly affect specific expres-
sion levels, conditional on the presence of (possibly mul-
tiple) other polymorphisms, and on the tissue type in
which they are acting. eQTL analysis is a nascent field,
because broad-coverage genotype and expression sur-
veys are only just becoming feasible. It is an attractive
field for Visualization and Visual Analytics, both because
it is a “hot topic,” and because it is a phenomenally
data-rich and information-dense domain. A typical com-
plete analysis will eventually survey a few million geno-
typic loci and tens of thousands of expression levels,
differentially in up to 100 tissue types, across 1000 or
more subjects [10]. The magnitude and complexity of
this data absolutely demands sophisticated mechanisms
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for summarizing and presenting the data. eQTL analysis
is also an ideal model for the emerging field of persona-
lized medicine, because the decision support problem
for Personalized Medicine “have I considered all of the
important factors in making this decision?” is exactly
the same as the eQTL interaction-network-discovery
problem of “have I identified all of the relevant interact-
ing factors?”. Our contest data was generated from
actual published and publicly available eQTL data, using
an observation-shuffling technique. This technique pre-
served the biological complexity of the data, while allow-
ing us to “spike in” a network of synthetic interactions
for the purpose of establishing specific items of ground
truth for contestants to find.

Because our goals are to encourage and enable the
Visualization community to produce tools that are
highly relevant to the Bio/Life-Sciences community, it
was important that we maintain realistic complexity
within the data. By maintaining realism, we assure that
tools that address the contest data, are directly relevant
for real data, and we enhance our participants’ apprecia-
tion of the depth and breadth of opportunity in the
domain. Simultaneously, because the tools produced are
immediately useful and relevant, our approach
encourages the Bio/Life-Sciences community to better-
engage the Visualization community.

Visualization and analytical complexity

eQTL analysis provides a target-rich domain for visuali-
zation and visual analytics approaches. With the goal of
“convey how it works”, across data with potentially mil-
lions of variables, just the sheer size makes visual
abstraction and summarization a practical necessity. The
complex and conditional interrelations, and the neces-
sity of communicating these as a goal, further cements
the importance of visualization to this domain. While
one might think of an eQTL data set as being repre-
sented by a graph with nodes representing genomic loci,
and edges representing relationships, the requirements
for eQTL analysis and representation go beyond tradi-
tional network/graph representation techniques, and no
extant technique is completely adequate to convey the
conditional, and biologically error-laden results.

Even raw statistical analysis of this data is problematic.
It is fairly easy to analyze single-locus direct effects
where, all other things being equal, the presence of a
particular allele at some locus predisposes an expression
level to be elevated or depressed. This can be easily
accomplished with the popular analysis program PLINK
[11]. It is harder to analyze multi-locus direct effects,
where the specific alleles at a pair of loci modulates
expression. It becomes computationally intractable to
calculate indirect effects where a complex combination
of an unknown number of alleles interact in affecting an
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expression level, or combination of expression levels.
And of course, even if the raw statistics could be calcu-
lated, thousands or millions of ranked lists of millions of
interacting SNPs and expression levels, with each list
potentially depending on numerous factors, would be
impossible to interpret directly.

Using the array of commonly available tools (summar-
ized here [12]), only small slices of the eQTL visualiza-
tion problem can be effectively tackled. The utility of
such a piecewise approach is highly dependent upon the
judgment and skill of the user, and the best way to
approach this data and its analysis, is as yet undefined.
Static or animated, fixed representation or interactive,
exploratory or explanatory, displaying statistics, or guid-
ing calculations to perform, it is hard to imagine any
representation that cannot provide some useful insights
into the data, and equally hard to imagine any that
come close to being completely adequate for all uses. In
the 2011 BioVis contest, entrants explored a large range
of themes, and demonstrated tools that applied several
of these themes.

Judging

The specific question to be addressed by the contest-
ants, was the elucidation and explanation of the factors,
and the pattern of interaction amongst the factors, influ-
encing the incidence of a particular phenotype. We con-
ceived of this phenotype as a disease severity, for an
invented disease, hoomphalitis. The incidence of hoom-
phalitis was influenced, but not strictly dictated, by the
sum of the expression levels for the 8 genes in the
spiked-in expression network. If the sum of the expres-
sion levels for these genes fell below a certain threshold,
then that individual was 80% likely to be affected by
hoomphalitis. If their summed expression levels
exceeded the threshold, they were unambiguously unaf-
fected. Contestants were specifically tasked with “Using
the data provided, identify the pattern of genome-
sequence variations, and expression-levels, that predict
the occurrence of hoompalitis. To as great an extent as
possible, elucidate and explain these factors, and the
pattern of interaction amongst the factors, influencing
the incidence of hoompalitis”. A bonus question regard-
ing a specific locus and a specific individual was also
provided near the end of the contest. This question was
“For a specific individual (person 1, family 425), if we
were to modify his or her genotype at SNP rs12955865
to TT, what is your prediction regarding their affection
status?”. This question served as a test to see if the
entrants could use the tools they had built, to answer a
question that would be archetypical in the domain. Con-
testants were provided with eQTL data detailing 500
individuals, each genotyped at 7500 genomic loci, and
with expression levels determined for 15 genes, as well
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as PLINK single-locus and two-locus analysis results for
the entire dataset. The generation of this data is dis-
cussed in Simulating eQTL data.

Six judges (Team Vis: Tamara Munzner, University of
British Columbia, Canada; Amitabh Varshney, University
of Maryland - College Park, USA; Ananth Grama, Pur-
due Unversity, USA, and Team Bio: Mark Logue, Boston
University School of Medicine - Biomedical Genetics,
USA; R. Wolfgang Rumpf, Rescentris Inc., USA; and
Shana Spindler, National Institute of Child Health and
Human Development, USA) participated on two judging
teams. Team Vis was asked to evaluate the entries based
on whether they were using appropriate and innovative
visualization/visual analytics approaches for analyzing
and communicating the domain. Team Bio was asked to
evaluate the entries based on whether they conveyed
information that agreed with the experts’ expectations
and intuition regarding the biological patterns in the
data. These tasks turned out to be considerably harder
than anticipated. This was largely because our spiked-in
data, incorporated into real biological eQTL data, pro-
vided knowledge of some effects that should be found,
but not all effects that could be found, or knowledge of
any effects that shouldn’t be found. Furthermore, the
goal of the contest combined both correctness and
information transfer. The raw PLINK output could be
considered to be completely correct, yet thousands of p-
values in a file is undoubtedly inadequate for under-
standing the pattern of effects. Clearly, the judges
needed to evaluate entries based on criteria beyond sim-
ple true and false positives and negatives.

Evaluating entries for this combined goal turned out to
be one of the largest challenges for the judges. After con-
siderable deliberation and discussion of how to evaluate
specific features of entries, it was discovered that all mem-
bers of Team Vis were in agreement on three entries that
they felt displayed the most appropriate approach and
innovation in the visual domain, and that all members of
Team Bio were in agreement on three entries in which
they felt the results agreed with biology, and for which
they thought they could immediately use the presented
tools in their research programs. Furthermore, there was a
single entry that matched between these lists, and which
both teams felt did an outstanding job in their respective
domains. The entry selected by both judging panels was
awarded the Overall Best Entry award, each teams top
pick from their remaining favorites was awarded an
Expert’s Pick award, and the remaining selected entry
from each panel awarded a special-mention award for the
team’s favorite characteristics in that entry.

Simulating eQTL data
A major challenge in assessing the utility of novel analy-
tical methods is posed by the trade off between having a
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known answer, which is created only by having a fully
parameterized and specified simulated dataset that will
lack many aspects of real biology, versus the natural
complexity of real biological systems where the true
depth and inner working remain at least partially hid-
den. Validation of analytical methods requires knowl-
edge of what is in the dataset to assess sensitivity and
specificity, making purely natural datasets less useful in
this context, but a simulated dataset, however well-
designed, may be too trivial to test the suitability of a
method to for analyzing real data. The balance between
these two competing virtues, specificity versus complex-
ity, is therefore important to consider when designing a
simulation to test methods, particularly when that data
is being used for a contest.

We chose to simulate an eQTL network including
three levels of complexity. First, genotypes and pheno-
types were derived from two published eQTL datasets
to ensure that natural relationships between the features
were preserved. Second, a fully specified eQTL network
was parameterized with a level of realism based on the
experience of the data contributors to ensure that
aspects of eQTL networks that scientific consensus indi-
cates should exist, were present in the data. Third,
model parameter values were chosen to be consistent
with the observed datasets. The simulated data was
“spiked-in” to data from the real eQTL datasets. This
allowed the contest data to have several known features
that could be extracted for comparisons and validation,
but to also retain additional true biological relationships
that were present in the data. Additionally, since biologi-
cal data are inherently noisy, both from measurement
error and the innumerable, apparently random fluctua-
tions in biological systems, this contest design required
entrants to identify the spiked in network in the context
of real biologically generated noise found in the datasets
underlying our simulation strategy. Our procedure,
which is not typical of simulations in human genetics
and was therefore implemented de novo here, represents
a meaningful compromise between specificity and
complexity.

Real datasets

We used two datasets to obtain real eQTL relationships.
The first dataset (Myers et al 2007 [13]) included 193
neurologically and psychiatrically normal postmortem
human brain samples with a microarray assay that pro-
vides data on gene expression from all known genes and
genomic data comprised of genotypes at 500,000 SNP
loci. The second dataset (Liu et al 2010 [14]) consisted
of 150 normal and psychiatrically diagnosed postmortem
human brain samples with directly analogous gene
expression and SNP data. For the contest, we used a
subset of these data in the simulation. A total of 15
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genes with gene expression and SNP data that passed
standard quality control procedures [13,14] were
selected from the cadherin protein superfamily, a class
of proteins involved in cell-cell adhesion. Many of the
15 genes had previous evidence of interactions between
them from other studies.

Processing real datasets

For all subjects in the two studies, gene expression data
from these 15 genes, as well as all SNP data within +/-
10,000 base pairs of each gene was used as the basis for
simulation work. Since the gene expression data
between the two datasets was not identically assayed
(different microarray platforms were used) we applied a
non-standard practice that we called “regularization”
where data that was normalized within datasets as part
of standard microarray gene expression data processing,
is further standardized across datasets by subtracting the
observed mean and then dividing by the observed stan-
dard deviation. The two datasets were then concate-
nated to create a “pooled” dataset. As both datasets
were genotyped on the same platform, no additional
processing steps were necessary except to exclude SNPs
that did not pass quality control in each individual data-
set. However, the number of SNP genotypes was far less
than is representative of human genetic variation.
Therefore we performed statistical imputation, where
missing data are either inferred with certainty from the
observed data or assigned upon the highest probability
guess based on the observed data. In the case of SNP
data, genotypes may be imputed based on the correla-
tion between observed SNP data and SNPs in a refer-
ence dataset. SNPs retain correlation with other nearby
SNPs on the same chromosome. Most normal human
cells have two copies of each chromosome, and corre-
lated SNP polymorphisms located on the same copy of
a chromosome are said to be on the same haplotype.
The imputation takes place when a correlated SNP hap-
lotype in the observed data also correlates to a reference
haplotype. If, as designed here, the reference haplotype
has more SNPs than the observed data, the additional
SNPs on the reference haplotype provide statistical
guesses for those unobserved SNPs in the real dataset.
We used reference haplotypes from the 1000 Genomes
Project [15] dataset that included 61 persons with com-
plete data (for our purposes) and an additional 38 per-
sons with data only in coding portions of the genes
(exome data) and none of the flanking sequence. The
software MaCH was used for genotype imputation
[16,17]. The final dataset was 7554 SNPs. As SNPs have
only two possible values (called alleles) the frequency of
which must sum to 1, we may characterize the informa-
tiveness of a SNP by reporting the allele frequency of
one allele. By convention in genetics the smaller of the
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two frequencies, known as the minor allele, is reported.
The average minor allele frequency over all SNPs was
0.17 with a total of 1557 having a minor allele frequency
of 0, indicating that these polymorphism are so rare,
they were not observed in our simulated dataset. The
range of minor allele frequency was 0-0.5, thus the
simulated dataset covers the full range of human varia-
tion in proportions observed in a real human dataset
[15]. Lastly, as required for simulations below, several
parameters were estimated. In each gene, a single SNP
was chosen to influence gene expression for the spiked-
in network. The average effect of each haplotype on that
gene’s expression was estimated by a series of linear
regressions to obtain the partial effect of each haplotype,
versus the average effect of haplotype substitution for
that gene.

Overview of the simulation

The simulation was conducted in two stages. The first
stage was a data shuffling technique where two sets of
haplotypes (one for each copy of a chromosome in
human cells) across all genes were randomly assigned to
a simulated person and a rejection procedure was imple-
mented to ensure that the resultant gene expression
data was consistent with the correlational structure of
the observed data where the haplotypes were drawn.
The second stage was preparation and integration of
spiked-in data. Gene expression values for all 15 genes
were simulated with a subset of gene participating in a
gene expression network, parameterized in a 15 x 15 x
3 correlation matrix for all possible interaction of genes
by pairs of alleles (also called genotypes).

Data shuffling

As part of genotype imputation, the haplotypes of the
observed data were estimated. Each subject’s collection
of haplotypes was stored along with observed gene
expression values. A set of haplotypes, one for each
gene, was randomly chosen with replacement from a
randomly chosen subject, then a second set of haplo-
types was independently chosen using the same proce-
dure. Gene expression values consisted of the sum of
partial expression values (above) for each haplotype
selected for the simulated subject. A rejection proce-
dure was implemented to ensure that the observed
correlation in the simulated dataset was consistent
with the observed correlation structure in the real
dataset. As each set of gene expression values was
simulated, it was added back to the real dataset and
the observed correlation matrix was calculated. Devia-
tions from the original observed correlation matrix of
greater than 0.02 for any value was considered a
rejected set of simulated values.
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Spiked-in network

The spiked-in network (Figure 1) was modeled as a ser-
ies of correlations in a 15 x 15 matrix to express the
gene x gemne interaction, then an additional dimension
was added in to allow for specific effects of the 3 possi-
ble genotypes at single SNP in each gene, where this
single SNP was the only genetic variant in the gene that
affects gene expression in the network (as described in
Data processing section). The resulting correlation
matrix, which due to our standardization procedures
could be called a variance-covariance matrix, is not ideal
for further statistical analysis since it not a properly for-
mulated, symmetric positive definite matrix. Therefore
the closest proper variance-covariance matrix was esti-
mated [18] and used for the simulation. Using the R sta-
tistical language framework [19], the mvtnorm [20,21]
library function “rmvnorm” was used to simulate ran-
dom multivariate normal data using singular value
decomposition on this variance-covariance matrix and
genotypic means estimated in the data processing step
(above). This simulation was conducted for each simu-
lated person in the dataset conditional on the genotypes
from the data shuffling step. The result is 15 gene
expression values for each of 1000 simulated persons.
The gene expression values were finally spiked-in by
convolving the gene expression values from data shuf-
fling with the spiked-in network multiplied by a weight-
ing parameter. The weight of the spiked-in data was
varied for each set of simulations where the spiked-in
network was up-weighted in the first practice dataset (to
make the network easy to find) and reduced on each
consecutive iteration of practice datasets with the official
contest data having the smallest value, and therefore
these effects were harder to detect in the contest versus
practice.

Analysis of data available to all participants

We tested each gene expression-SNP pairs for associa-
tion using standard linear regression (of allelic dose on
expression) in PLINK [11]. We additionally ran every
possible SNP x SNP x phenotype combination to assess
SNP x SNP statistical interactions (non-linear effects)
where the PLINK method incorporates an additional
interaction term into the linear model and performs a
test of significance on that term. All gene expression-
SNP results were reported to contestants and all SNP x
SNP x gene expression results with p-value <0.05 were
also reported. Before data release, the weight of the
spiked-in data was validated by ensuring that all of the
gene expression x SNPs spiked-in were detected by
PLINK analysis in the first practice dataset and that pro-
gressively fewer signals (but always more than zero)
were detected in each data release with the contest data
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the simulation, as well as the real biological correlations across genes.

Figure 1 A heat map representation of the spiked-in correlation network in the simulated data. The heatmap is a two dimensional
projection of a four dimensional matrix, 15 X 15 genes X 3 X 3 genotypes. Here the 3 X 3 cross-genotype blocks are nested within each gene
block. As a self-correlation matrix, the column IDs are identical to the row IDs. The left panel shows the two sub-networks that were used to
drive the simulation, one involving CDH1 and CDH10, the second involving CDH19, PCDH1, PCDH10, and PCDH17. PCHD19 interacted with several
genes, but only under certain genotype configurations. This matrix also implies other high order dependencies that are not well shown in this
form, but can be observed by tracing from a significant value in a cell, to any other significant value for another gene that occurs in either the
same row or column. The number of steps along which such a chain may be followed, defines the number of interacting factors. The
correlation matrix re-derived from the output of the simulation (right panel) includes both the spiked-in network and stochastic variation from

containing the fewest. Participants were encouraged to
use their own analyses if they felt they could improve
on the PLINK results.

Additional data for bonus question

An optional contest feature involved the effect of a gene
therapy change to an affected person’s genotype and its
effect on disease status, which models the promise of
genomic medicine, yet to be realized. The question was
“What happens to the affection status of Family 425,
person 1 if we change their genotype for rs12955865 (in
CDH19) to ‘TT’? (Hint: Imagine that this is a gene ther-
apy trial and we want to know the prospects of suc-
cess.)” The disease status in the contest data was
calculated by summing the gene expression values for 8
of the 15 genes, then applying a threshold for affection
status, if the sum was below 2, the subject was defined
as affected 80% of the time. In order to solve the bonus
problem, we note that person 425-1 has a summed gene
expression value of 1.97, just below the threshold for
affection of 2.0. If we remove the effects of CDH19 by
subtracting the partial effect of the original simulated
CDH19 SNP, this person’s summed gene expression
value would be 2.8, which is above the affection thresh-
old and therefore unaffected. Next we add back in the
effect of a TT genotype for rs12955865 (in CDH19),

which exerts effects as a normal distribution with mean
= 0.957 and SD = 0.911. Integration of the normal prob-
ability density function yield a 29.69% chance that this
person will remain affected and a 70.31% chance they
will become unaffected.

The entries

With 53 individuals signed up for the contest web
forum and downloading the data, 9 teams containing 30
individuals submitted entries. Numerous approaches
were demonstrated for analyzing the data and conveying
the results, sometimes several per team, with some
teams leaning more towards directly conveying specific
interacting SNP and expression loci, and others leaning
more towards conveying an overall picture of the inter-
action network, and enabling users to explore the net-
work to discover specific interactions. The modalities
ranged from one entry that did not apply any traditional
visualization, and instead relied purely on textual pre-
sentation, to one entry that used a highly novel visuali-
zation method and visual analytics approach, which,
despite confusing both the Vis and Bio judging teams
with respect to its exact interpretation, was nonetheless
quite favorably received. The final judges’ evaluation of
these entries displayed some interesting features, not the
least of which that there was little correlation between
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the overall accuracy of the entries, or even potential
accuracy, and their scoring. In no particular order, the
following are the highlights of each entry and the judges’
comments on them:

Zhou, Song, Wang and Zhu

This entry applied more sophisticated statistical techni-
ques to the raw data, to identify deeper associations
than were available from the provided PLINK analysis
[22,23]. Using the regularization shrinkage method, this
group applied multivariate multiple regression to reduce
the dimensionality of the data to a subset of SNPs
affecting expression, and to construct an association
map between SNPs and genes [24,25]. Beginning with
genetic correlation, they correctly identified the block-
structure of the SNP-expression interactions, which they
visualized as a Heat Map, and correctly deduced the
stronger cis-acting nature of most in-gene SNPs on
their gene expression levels. They applied hierarchical
clustering to identify highly-correlated SNP groups asso-
ciated with each gene, and Principle Components Analy-
sis to isolate the most probable functional SNP within
each cluster. Multivariate multiple regression was used
to identify the specific effects of the selected SNPs on
expression. The association maps were visualized as
sparse network graphs. Their methods correctly identi-
fied the genes involved in the spiked-in correlation net-
work, and many of the principal SNPs affecting these
genes, as well as a few multi-SNP interactions. However,
possibly due to isolation of only the first principle com-
ponent, and possibly due to the cutoff applied to identi-
fying clusters within their hierarchical clustering (R* =
0.9), their regression framework incorrectly predicted
that the SNP modified in the Bonus question, was unas-
sociated with any gene.

Younesy and Moller

This entry approached the gene expression-disease
aspect of the problem independently from the SNP-gene
expression aspect. Histogram-based approaches with
single genes demonstrated that expression levels for
both affected and unaffected individuals were approxi-
mately uniformly distributed. Two dimensional scatter-
plots of all combinations of genes however
demonstrated that for some gene pairs, affected and
unaffected populations could be partially separated. A
linear model was therefore constructed using all 15
genes and 500 individuals, resulting in a solution for 16
fixed coefficients that predicted a bimodal distribution
between affected and unaffected individuals. The 8
genes within the spiked-in correlation network were
correctly identified in this model as those with the lar-
gest magnitude coefficients. An interface was developed
to enable expert users to impress domain-knowledge on
these coefficients, by deselection of known-non-involved
genes, and recalculation of the implied coefficients. To
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identify SNP effects on gene expression levels, first-
order interactions, and then second-order interactions
between SNPs and expression levels were calculated.
This process was conducted by discretization of each
gene’s expression into high, medium and low expression
levels, and grouping of individuals based on this discreti-
zation. Consensus alleles were identified for the subpo-
pulation in the high and low groups, and ratios
calculated for each SNP for the probability of possessing
the high group consensus in the high group to the prob-
ability of possessing the high group consensus in the
low group, and of possessing the low group consensus
in the low group to its prevalence in the high group. A
log-log scatterplot of these ratios demonstrates that the
majority of SNPs - these being ones which have the
same probability of occurring in the high group as the
low group - lie along a line. Significant outliers predict a
deviation from equal probability. By plotting the magni-
tude of these outliers for each SNP, versus the gene-
coordinates for each SNP, pictures of the relevant SNPs
and their distribution across the genes were constructed.
Second order interactions were specifically examined in
the context of secondary silencing SNPs, which unfortu-
nately were not a large feature of the spiked in data,
resulting in the reinforcing secondary interactions pre-
sent in the spiked signal being mostly overlooked. The
method was sufficiently robust to enable a correct
answer to the Bonus question, and was selected by the
Team Vis for a special mention for ease of
interpretation.

Sakai and Aerts

This entry provided two exploratory tools, one to inves-
tigate the effect of gene expression on the disease, and
one to investigate the effect of SNP genotype on gene
expression. The expression-disease tool provided an
interactive interface using (modified) parallel coordinates
[26], which presented all of the individuals and expres-
sion levels simultaneously, and enabled the user to iden-
tify relevant factors through a visual analytics paradigm.
Simple differential histograms for each gene expression
in affected and unaffected individuals, and coloring of
each individual’s trace based on affected or unaffected
status, provided an interface to ordering the parallel
coordinates. This approach enabled correct isolation of
the spiked-in network, and its modulation of the
affected status for individuals, by iterative re-ordering of
the coordinates until the affected individuals and the
differential properties of their expression levels were
clustered within the display. The second tool provided
an interactive display of the PLINK-predicted effect of
each SNP on each RNA expression level, ordered by
genomic locus, and superimposed with the difference in
allele frequency between affected and unaffected indivi-
duals, as well as a Circos [27]/Mizbee [28] inspired
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circular display of two locus interactions. Although the
entry identified relatively few of the spiked-in SNPs spe-
cifically, it did describe many features of the expression
interactions that were associated with disease, and many
combinations of SNPs that affected expression. It cor-
rectly identified the specific effect of the Bonus-question
SNP on the gene containing it, but did not arrive at a
correct conclusion regarding this gene’s overall contri-
bution to affected status. This entry was overwhelmingly
selected by Team Bio as the entry that they would be
most comfortable using immediately in their research
work, and was selected for the Biology Experts Pick
award for the contest. A more in-depth discussion of
this entry, from Sakai and Aerts, follows in Awarded
Entries.

Paquette and Lum

Using Avyasdi’s data analysis and visualization tool, Iris,
this entry employed a unique topology-discovery and
exploration method to explore both SNP effects on gene
expression levels, and gene expression levels on disease.
Their method is based on visualization of the topology
implied by the similarity of different subsets [29]. In the
case of expression levels, the individuals were (multiply)
clustered by gene expression, the clusters connected by
edges when they shared an individual, and the resulting
graph laid out in a force-directed manner. By coloring
this graph differentially based on gene expression level,
or by affected and unaffected status, significant predic-
tors of differential membership were identified visually.
Using the same paradigm, SNPs were laid out based on
the similarity implied by pairwise mutual information,
and colored by the mutual information between the
SNP and the disease state, or by the F-statistic of
ANOVA between the SNPs and each of the 8 genes
identified as significant predictors in the gene-disease
visualization. Interpretation of these visualizations
involves the visual identification of “flares” within the
displayed data, where the flares display generally consis-
tent coloring internally, and differential coloration with
respect to the remainder of the bulk data. This entry
correctly identified the probabilistic effect of the SNP in
the bonus question, and also suggested additional infor-
mation and analyses that would be required to confirm
the potential change in affection status. This entry was
selected as the Overall Best Entry by the combined
panel of Vis and Bio teams, and is presented in more
detail by Paquette and Lum in Awarded Entries.

Jdger, Battke, Vehlow, Heinrich and Nieselt

This entry applied canonical graph-layout approaches
(GraphViz [30]) to a filtered list of the provided PLINK
one-locus and two-locus results, and iHAT [31], an in-
house tool designed for visualizing Genome Wide Asso-
ciation Study (GWAS) data, to the SNPs that were com-
mon to both the single, and two-locus PLINK analyses.
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In iHAT, a heat-map type visualization was created
using rows for each individual and columns for each
SNP, with colors assigned according to the agreement
between each SNP and the reference SNP in release
37.1 of the genome sequence. Additional columns were
created for the metadata of affected status, and the gene
expression levels for each individual. By sorting this dis-
play according to affected status, they correctly identi-
fied, though visual means, that no clear pattern of SNPs
was differentially associated with affected versus unaf-
fected status. The affected and unaffected groups were
then aggregated, and the heat map reassigned with color
based on the value (complete agreement, partial agree-
ment, or complete disagreement with respect to the
reference genome) most prevalent for that group in the
column, and saturation based on the uncertainty of that
consensus value. Visual filtering was then applied to
identify the subset of SNPs that appeared differential
between the groups. This filtering reduced that data to
29 SNPs of predicted relevance, and further, correctly
identified the spiked-in subset of differential expression
levels modulating affected and non-affected status. Inter-
estingly, this group approached the answer to the Bonus
question using different tools than they produced for
their primary elucidation of the effectors of disease sta-
tus. Starting with the 29 SNPs that they isolated as
being the most highly predictive of disease status, they
identified the subset of individuals with a similar profile
to the bonus-question individual across these 29 SNPs,
and the Bonus SNP, using their clustering tool Mayday
[32]. This identified a single individual with an identical
profile across these SNPs, who, like the individual indi-
cated for the Bonus question, was affected. They then
searched for individuals who matched the profile,
including the proposed “gene therapy” change to the
bonus SNP. This identified a different individual that
matched the updated profile, who was unaffected. From
this they correctly inferred the probable effect of the
proposed change, from affected to unaffected. This entry
was chosen by Team Vis for the Visualization Experts
Pick award for the contest. A more in-depth discussion
of this entry, from Jéger et al. is included in Awarded
Entries.

Kreisberg, Lin, Erkkila, May, Bressler, Eakin, Rovira and
Shmulevich

This entry applied Regulome Explorer[33] to the pro-
blem of elucidating multivariate nonlinear relationships
within the contest data. The team applied a decision
tree approach, supported by the RF-ACE[34] machine
learning algorithm for discovering multivariate associa-
tions. Dimensional reduction was accomplished by
growing an ensemble of decision trees, and rejecting fea-
tures that did not participate in any tree. Random For-
ests were also used to identify features relevant to
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particular gene expression levels [35]. This approach
correctly identified the 8 genes in the spiked-in interac-
tion network, and furthermore correctly identified many
of the spiked-in interactions between the expression
levels, though it did not identify any of the cis-acting
SNPs contained in these genes. It also identified a
strong disease-related expression interaction that was
not part of the spiked-in network. This interaction was
not identified by any other team, but because the con-
test data was built with real biological variation, this
finding cannot be considered a false positive, as it may
be a natural feature of the underlying data to which this
approach is more sensitive than those of the other
entries. The primary visualization of the results was pre-
sented as a Circos [27]/Mizbee [28] type circular inter-
action diagram, with overlaid metadata. The RF-ACE
machine-learning engine was unable to predict the likely
change of affected status conveyed by the Bonus ques-
tion SNP, though this may have been due to an overly
stringent confidence threshold.

Keller

This entry took a self-proclaimed most-naive approach
to the analysis. Effectively, Keller considered the two
locus results, which present pairs of SNP loci that affect
some gene expression level, and the genes implicated by
the single-locus results for each of the SNPs in the pair,
as implying relationships between this set of genes. He
visualized this data using simple force-directed graph
layout methods. This approach produced a surprisingly
accurate recapitulation of the subset of genes in the
spiked-in interaction network, as it closely linked 7 of
the 8 spiked in genes, and produced the sole stated
observation of the underlying biological regulatory
mechanism we were working with in the data - that of
cadherin regulation of protocadherins. Keller then
imputed directionality upon the edges based on a set of
possible regulatory mechanisms that might exist if either
one, or both of the genes in the single-locus results dis-
agreed with the gene predicted in the two locus result.
This directionality was used to re-position gene-nodes
in pseudo-hierarchical form, emphasizing sources and
sinks. Several additional “blobby” Hypergraph-based dis-
plays [36] were computed, showing genes as nodes, and
variably imposing edges based on genes sharing SNPs in
the single locus results, genes sharing gene-gene SNP
pairs in the two locus results, and overlayed edges indi-
cating both shared SNP results, and edges from the
gene-concept lattice computed by Formal Concept Ana-
lysis [37]. Keller applied all of these tools in an iterative
and exploratory manner, to identify patterns of apparent
regulation in the data, and in fact met with surprising
success in producing an actual biological interpretation.
However, his results would not be conveniently
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replicated by another practitioner, due to the reliance
on exploration and intuition in choosing the displays to
construct and the concepts to analyze, and in fact he
approached the submission as an exercise in testing the
utility of the representations, rather than as a presenta-
tion of a proposed best approach. Nevertheless, Team
Bio found his representational methods familiar in their
similarity to a common representational idiom used in
developmental biology training, and chose this entry for
a special mention for clarity to the biologist based on
similarity to familiar representations. Keller did not
attempt to answer the Bonus question in his entry.
Fitzpatrick, Archambault, Shah and Shields

This entry demonstrated a considerable understanding
of the underlying biology and biostatistical problems
inherent in eQTL analysis, and applied sophisticated,
traditionally domain-appropriate statistical methods to
identification of cis and trans acting SNPs, including
appropriate filtering of uninformative minor alleles, and
multiple-testing correction. A linear regression model
was used as a first-pass analysis to identify main effects.
This was then extended to identify interacting eQTL
effects. At the thresholds applied, this approach identi-
fied the main effects within the spiked-in expression
network correctly, but did not capture the gene-gene, or
SNP-SNP-gene interaction effects in this network,
although they did correctly predict that there were no
significant SNP-disease, or SNP-SNP-disease associa-
tions (the SNP effects on disease in our model being
entirely driven by SNP modulation of expression in the
context of other effects, rather than by SNP direct con-
trol of disease). The authors then applied the Tulip
visualization framework [38] to visualize a node-link dia-
gram consisting of both genes and SNPs as nodes, and
SNP-gene, and gene-gene edges as implied by their
regression. This diagram was then used in an explora-
tory fashion by filtering it based on subnetworks implied
by particular genes. Per-gene scatterplots were also
used, displaying differentially colored cis and trans
SNPs, with each SNPs (X,Y) coordinates determined by
the negative log of the SNP’s association with disease,
and the negative log of the SNP’s association with the
gene expression level. Taken together, the approach
developed by this team enabled them to correctly iden-
tify both the genes present in the spiked-in expression
network, many of the spiked-in SNPs, and to character-
ize the overall negative correlation between the spiked-
in expression network and disease. This elucidation that
downregulation of the spiked network predisposed indi-
viduals towards disease, was the sole specific and suc-
cinct statement of this paradigm observed by the judges.
Despite this correct recognition, the effect of the SNP
indicated in the Bonus question was accidentally
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characterized as decreasing the expression of a key gene,
and therefore the bonus question was not answered
correctly.

Chalkidis and Tremmel

This entry applied joint and conditional Mutual Infor-
mation (MI) analyses [39], to measure the extent to
which gene expression levels, and SNPs, were informa-
tive regarding disease affected status. The MI data was
then used in developing communications channel mod-
els of the information transfer between SNPs and dis-
ease, and SNPs and expression levels. In constructing
these models the authors point out an interesting obser-
vation; that the entropy of the data defines the maxi-
mum information that can be discovered about it, and
that consequently, as information is gleaned, the amount
of information remaining to be discovered can be quan-
tified. The authors applied this idea to their channel
models to determine the proportion of the knowable
information being recovered with respect to the infor-
mation transfer from gene expression to disease, based
on different subsets of genes assumed to participate in
the communication. By testing this for different subsets,
they identified the subset of genes that provided the
greatest fraction of information regarding disease, and
the subset of SNPs that also provided the greatest infor-
mation regarding each gene expression level, and
regarding disease.

Interestingly, this was the only team to examine the
question of whether the expression levels caused the
disease, or whether the disease caused the expression
levels. Applying a communications-theory derived data
processing theorem [40], which states that the MI
between state X, and a subsequent state Y in a Markov
Chain, is at least as large as the MI between x and any
state following Y, and the calculated MI between the
SNPs and expression levels, SNPs and disease, and
expression levels and disease, the authors correctly
deduced that in our spiked-in model, SNPs drive expres-
sion, which subsequently affects disease.

The entry correctly answered the bonus question, and
was awarded a special mention for correctly identifying
the greatest number of actually known-positive main
interaction effects amongst all of the entries. It however
caused considerable consternation amongst both judging
teams, as it presented the results entirely textually, and
did not rely on Visualization for either analysis or
presentation.

Awarded entries

Three entries were selected by the Judging teams for
awards as the Visualization Experts’ pick, the Biology
Experts’ Pick, and the Overall Best Entry. The winning
teams were invited to summarize their entries for this
manuscript:
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Visualization experts’ pick: Gliter Jager, Florian Battke,
Corinna Vehlow, Julian Heinrich and Kay Nieselt

We present Reveal, a tool for visual analyses of eQTL
data. The starting point of an analysis using Reveal is a
list of SNPs and genes, and data from a patient cohort
covering the presence of the sequence polymorphisms
and the expression values of the genes, as well as
PLINK results providing information on significant asso-
ciation between SNPs and SNP pairs and differences in
expression. A graph is constructed such that each gene
in the data set is represented by a node. For each gene
the number of significant SNP pairs with one SNP asso-
ciated with that gene is determined. Nodes of genes
with at least one such pair are assigned a unique color,
all other nodes are painted using a gray fill.

Edges are added between nodes as follows: Based on
the p-values computed for the association between SNP
pairs and gene expression, create a triple < g, g;, g« >of
genes for each SNP pair with partners in g; and g; that
is significantly associated with the gene expression of g.
For each gi, add an edge between the nodes of g; and g;
with weight w = |{< g, g g« >}| and color c(gy). As
SNPs located in, or close to, g; and g; can form pairs
which influence the expression of different target genes,
the graph can contain multi-edges which differ only in
color, and possibly in weight. The resulting network is
shown in Figure 2 (a). All SNPs represented in the net-
work are then displayed in the association viewer iHAT
[31] that supports the visualization of multiple sequence
alignments, associated metadata, and hierarchical clus-
terings. Moreover, data-type dependent colormaps and
aggregation strategies as well as different filtering
options support the user in finding correlations between
sequences and metadata. SNPs are colored green if both
bases are identical to the reference sequence, yellow if
one of the two alleles differs from the reference and red
in the case that both alleles differ from the reference.
Patient data included affection status (either affected
‘red’, or unaffected ‘white’), is visualized as a meta infor-
mation column. Furthermore, the gene expression data
of the fifteen genes is also visualized as metadata using
a color gradient blue-white-red representing low to high
expression.

Next we sorted the column ‘affection’, resulting in the
two groups of ‘affected” and ‘not affected’ patients. Each
group was then aggregated, with the aggregate value
taken as the specific value observed with the largest
relative frequency. The hue of the aggregated SNP value
is chosen according to the color scheme for the SNPs
described above, and the saturation and value of the
color indicates the uncertainty of the aggregate consen-
sus. By visual inspection we then filtered all those SNPs
that displayed distinctly different colors between the
‘affected’ and the ‘unaffected’ groups (Figure 2 (b)).
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where the ‘affected’ and ‘not affected’ groups display different colors.

Figure 2 The Visualization Experts’ pick. (a) Association gene network ed from all pairs of 3843 SNPs with a significant association (p <0.05,
PLINK two-locus results) with the gene expression of the 15 genes and filtered such that only SNP pairs containing at least one highly
significant SNP (R? >0.1 and p <0.05, PLINK single locus results) remain. All edges with weight w > 40 are shown. Nodes represent genes, edges
represent significant SNP pairs. Genes significantly associated with SNP pairs are colored using a distinct color, genes with no significant
association are drawn with gray fill. Each edge conveys four pieces of information: An edge e of weight w starting in node s, ending in node ¢
and drawn with color ¢ represents w SNP pairs, where each of them has one SNP in gene s and one in gene t. These SNP pairs are significantly
associated with the expression of the gene whose node is filled with color ¢; (b) Aggregated iHAT visualization of 29 visually selected SNPs

Biology experts’ pick: Ryo Sakai and Jan Aerts
We present an exploratory tool for visual analytics in
eQTL data. We performed minimal processing of the
provided genotype and phenotype data and instead
developed representations for the data in its original
form. This decision was based on two factors: First, as
the domain expert is already familiar with this type of
data, he or she could interpret the visualization without
learning new data-related concepts, and therefore could
more readily interact and explore new hypotheses; Sec-
ond, we believe that close interaction and iterative
development in collaboration with domain experts is
required for developing meaningful processing strategies,
and the contest timeline could not accommodate this.
In order to explore and analyze the different aspects
of the data, three different visualization modules were
created. The first module (Figure 3) utilized parallel
coordinates [41] defined by the fifteen gene expression
levels to visualize each individual as a polyline. Different
colors were used to distinguish cases from controls. A

histogram was added for each axis/gene representing
the distribution of gene expression levels, also stratified
by case or control. Simple interactions and filter func-
tions allowed the user to study combinations of different
gene expression levels. These interactions included
showing only cases or controls, filtering the expression
values of any gene by value, and rearranging parallel
coordinate axes. In addition, individuals could be filtered
by any allele for any given SNP. The second module was
targeted at exploring the single locus eQTL analysis
data. The display consisted of a matrix of barplots; each
bar representing the impact of a single SNP on a speci-
fic gene. This module clearly showed that the trans-
interaction of single SNPs is limited in this dataset,
although occasional signals were visible. The third mod-
ule visualized the two locus data to study the networks
of interacting SNPs that affect specific gene expression
levels. Association between two SNPs is shown as lines
within a circular representation, similar to that used in
the Circos tool [27]. This representation clearly
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Figure 3 The Biology Experts’ pick. Parallel coordinate display of gene expressions per individual. Vertical axes represent expression level for a
given gene; horizontal polylines across the display represent each individual. Individuals are stratified in case (pink) versus control (grey). At the
top of each vertical axis a histogram displays the distribution of expression levels of that gene over all individuals, stratified by group. The data
for genes 1, 3, 5 and 6 are filtered for high and/or low values in this figure.

indicated groups of genes that are part of co-expression
networks, including the known co-expression network
of CDH22 and CDH?. Future work includes integrating
these three modules into one cohesive visualization tool
and conducting usability studies with domain experts to
get insight to iterate both visual and interaction design
for the analysis of eQTL data.

Overall best entry: Jesse Paquette and Pek Lum

Our approach focused on visualizing the contest dataset
with the Iris software platform (Ayasdi, Inc.), a topol-
ogy-based exploratory analysis platform for complex
datasets (http://www.ayasdi.com). Much as hierarchical
clustering produces heatmaps and dendrograms showing
how the points (rows) in a data set are related to each
other over its dimensions (columns), Iris utilizes topol-
ogy to capture geometric features in the data and pre-
sents relationships between points via interactive
network maps. Topological methods often identify
structures that elude linear clustering and projection
[4,42,43]. Our primary goal was to produce a network
map in Iris that visualized the effect of the SNPs on the
expression of the 15 genes. From the contest-provided
data, we produced a matrix M by calculating mutual
information (MI) between all pairs of SNPs over all 500

patients. The matrix M was loaded into Ayasadi’s Iris
Platform [44] and a topological network map was con-
structed using the program’s “Principal SVD lens” with
resolution = 30 and gain = 3, and “Correlation Metric”
[45].

Figure 4 shows the resulting network maps of SNPs
produced by Iris. Nodes in each map represent clusters
of SNPs and edges indicate clusters that have at least
one SNP in common. In other words, every SNP in the
dataset can be located in more than one node. The size
of each node is proportional to the number of SNPs it
contains. Note the starburst shape in the SNP data, with
large nodes at the middle and smaller nodes extending
towards the tips of the flares. All of the flares in the
starburst, except that labeled “Mixed”, contain SNPs
exclusively from a single locus and are labeled accord-
ingly. For example, all of the SNPs in the CDHI10-
labeled flare are in the CDH10 locus. The single-locus
flares recover an important pattern in the data: linkage
disequilibrium (LD) between SNPs.

The exploratory power of Iris visualization comes
from unsupervised construction of the network map,
followed by coloring of the map using phenotype values;
in this case the phenotypes for the SNPs are relation-
ships with gene expression and disease. Figure 4
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Disease

Figure 4 The Overall Best entry. A topological network map of SNPs produced by Iris. Each node represents a cluster of SNPs and nodes are
connected with an edge if they have any SNPs in common. The starburst shape indicates subgroups of SNPs with distinct linkage disequilibrium
patterns in the data set. A) Each flare of the starburst contains SNPs from a single locus and is labeled accordingly, except for the “Mixed” flare.
The nodes are colored by SNP mutual information with disease. Higher mutual information values are colored red and indicate a stronger
relationship. B) The nodes are colored by SNP ANOVA F-statistic with expression of CDH19. Higher F-statistics are colored red and indicate a
stronger relationship. The flare with the red tip contains SNPs from the CDH19 locus; see label in A. C) The nodes are colored by F -statistic to
expression of PCDH17. D) The nodes are colored by F -statistic to PCDHI10. E) The nodes are colored by F -statistic to CDHT1.

PCDH17

presents different colorings of the same network map;
each color scheme shows how the SNPs relate to disease
expression (Figure 4 panel A) or individual gene expres-
sion (Figure 4 panels B-E). The label in the bottom right
of each panel indicates the color scheme source. The
color of each node represents the mean of the statistic
for all of the SNPs contained within. For the color
scheme showing relationship to disease (Figure 4 panel
A), a MI statistic was calculated for each SNP with
respect to patient disease status. Larger MI statistics
indicate more significant relationships; red nodes con-
tain SNPs with the highest MI vs. disease. For example,
in Figure 4 panel A, the flares labeled CHDI9 and
CHD11 have the highest relationship with disease. For
each color scheme showing relationship to gene expres-
sion (Figure 4 panels B-E), an ANOVA F-statistic was
calculated for each SNP with respect to each gene’s
expression. Larger F-statistics indicate more significant
relationships; red nodes contain SNPs with the largest
F-statistic vs. individual gene expression. In short, the
flares with the warmest coloring are the most interest-
ing. If the disease were simply a function of SNP pro-
files, then the starburst colored by disease relationships
(Figure 4 panel A) would implicate SNPs in the CDH11
and CDH19 loci (the warm-colored flares) as important

influencers of disease. However, given the assumption
provided in the contest description that disease is a
function of gene expression, and gene expression in
turn is a function of SNP profiles, we turned our focus
toward the relationships between SNPs and genes.

The network maps in Figure 4 panels B-E illustrate
the relationships between SNP allelic patterns and gene
expression. One can see genes with cis affecting SNPs
(in Figure 4 panel B the red-colored flare with the high-
est F-statistic for CDH19 contains SNPs from the
CDH19 locus), trans affecting SNPs (in Figure 4 panel C
the red-colored flares with the highest F-statistic for
PCDH 17 contains SNPs from the CDH11 and CDHS
loci), and very complex expression relationships (e.g.
Figure 4 panel D). Insights gained from topological net-
work maps with subsequent exploration of color
schemes and flare structures can directly lead to hypoth-
eses that can be taken back to the wet lab (or other
datasets) and tested. For example, a researcher could
identify distinct subsets of SNPs that relate to the
expression of PCDHI17 and then design assays to dis-
cover which of those were actually affecting PCDH17
expression, and which ones were simply in LD with
them. Alternatively, transposing the SNP x patient
matrix yields a network map of patients. We are
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extending our methods to other domains such as gen-
ome-wide association studies and functional-genomics
data to uncover structure and yield new perspectives on
these areas.

Concluding remarks
If the brain were so simple we could understand it, we
would be so simple we couldn’t (Lyall Watson)

Judging the contest was only slightly less complex
than the actual practice of science. While the spiked-in
network provided some uniformity around which con-
testants answers could coalesce, there was not, nor was
there intended to be, a simple all-or-none, well-defined
solution. While some solutions were sensitive to the
spiked-in networks, it is possible that ostensibly less sen-
sitive methods are more sensitive to features in the
already present eQTL network from the underlying bio-
logical data. We did, after all, preserve this real eQTL
network in the data. Unfortunately, this single contest
with its single dataset cannot fully characterize the prop-
erties of the approaches, just as any one experiment
alone cannot rule out all competing theories. However,
when additional control experiments are performed, it is
possible to systematically rule out alternative explana-
tions. In 2011 we applied the lesson that simulated data
must be complex to be useful. In 2012 we will apply the
lesson that multiple datasets analyzed in concert, to pro-
vide virtual control experiments and contrasts, can help
us tease apart the spiked-in answers from the biological
data in the background.

Additionally, the burgeoning size of datasets will be a
challenge in the years ahead. For some visualization
methods, more data implies greater power, and realistic
problems will only become more exciting as more data
becomes available. However, for others, the first realistic
problem that will have to be overcome, with more data,
will be the presence of more data. Today’s eQTL experi-
ment involves several megabytes per subject, and several
thousand subjects. Tomorrow’s eQTL experiment could
easily involve several terabytes per subject. How small is
too small to be realistic, and how large is too realistic to
be useful? The BioVis community will soon have to
decide.
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