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Abstract

Alternative splicing, an unknown mechanism 20 years ago, is now recognized as a major mechanism for proteome
and transcriptome diversity, particularly in mammals–some researchers conjecture that up to 90% of human genes
are alternatively spliced. Despite much research on exon and intron evolution, little is known about the evolution
of transcripts.
In this paper, we present a model of transcript evolution and an associated algorithm to reconstruct transcript
phylogenies. The evolution of the gene structure–exons and introns–is used as basis for the reconstruction of
transcript phylogenies. We apply our model and reconstruction algorithm on two well-studied genes, MAG and
PAX6, obtaining results consistent with current knowledge and thereby providing evidence that a phylogenetic
analysis of transcripts is feasible and likely to be informative.

Introduction
Alternative splicing is a mechanism to produce different
proteins from the same gene–the end of the paradigm
“one gene, one protein.” In many genomes, several, or
even most, genes are split into pieces called exons, sepa-
rated by regions called introns, and a splicing mechan-
ism takes the transcribed string of exons and introns,
removes the introns, and splices the exons to form a
single continuous string that is then translated into a
protein. In alternative splicing, a mechanism underesti-
mated until 1990, the splicing produces variants in
which some of the exons can be omitted (and occasion-
ally even some of the introns retained), thereby causing
different proteins to be produced. Alternative splicing
exists to some degree in most eukaryotes, but is most
frequent in the more complex lineages. Thus it is pre-
sent, but limited, in plants and fungi, but quite common
in vertebrates–some researchers have conjectured that
up to 90% of the human genes are alternatively spliced
[1-3]. Alternative splicing is now recognized as a major
mechanism for proteome and transcriptome diversity
[4,5].
The implications of this shift in paradigm are signifi-

cant. The basic model of transcriptome evolution–DNA

modification at the gene level and alternative transcrip-
tion start sites–is incomplete: any modification that
affects the splicing mechanism has to be considered.
However, while evolution of DNA at the gene level has
been the subject of intense scrutiny for decades, very lit-
tle is known regarding the changes in the splicing pro-
ducts of alternative splicing. Thus there is a need to
define a model of evolution for transcripts, not at the
nucleotide level, but at the splicing level–which exons
(and introns) are included, which excluded?
A better understanding of the relationships among dif-

ferent transcripts would benefit annotation transfer. Dif-
ferent proteins from one gene may have different
functions, may be localized to certain tissues, or may be
present at different developmental stages. Knowledge of
their evolution would help in assessing the function of
their homologues. Transcript phylogenies would also
contribute to next-gen sequencing methods, especially
RNA-seq. For instance, the “DREAM6 Alternative Spli-
cing Challenge” asks to reconstruct alternatively spliced
mRNA transcripts from short mRNA-seq data without a
reference genome, but using the transcriptomes of other
organisms [6]. A transcript phylogeny would help in
assessing the support value of a predicted transcript.
In this paper, we propose a model of transcript evolu-

tion and an associated algorithm to reconstruct tran-
script phylogenies.
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Transcript evolution
Background
Many studies have been published on the rate of exon
insertion and deletion and on the statistics of different
types of splicing, but few researchers so far have studied
the evolution of transcripts [2]. Harr and Turner showed
that most transcripts among Mus subspecies were novel
[7]. Nurtdinov et al. compared the human and mouse
transcriptomes and concluded that half of the genes give
rise to species-specific isoforms and only three quarters
of all isoforms are present in their orthologous genes
[8]. Splicing is also affected by non-DNA events. Modifi-
cation of the chromatin structure can yield changes in
the expression of a given transcript and may even create
a new transcript or silence an existing one [1]. Finally, a
few groups studied the correlation between gene dupli-
cation and alternative splicing [9-11].
These studies indicate that alternative splicing is a

fast-evolving mechanism and hint that most of the tran-
scripts may be little more than evolutionary noise.
These studies also indicate that groups of species share
a significant number of transcripts, whose relationship
can only be delineated with a more complete model.

A model of transcript evolution
In the description of alternative splicing, the simplest
concepts are those of constitutive exons, which are part
of every transcript, and of cassette exons, which may or
may not be present in any given transcript. In general,
any exon that is not constitutive is called alternative.
There exists other types of splicing mechanisms, of
which alternative 3’- or 5’-sites and intron retention are
the most frequently cited [1,3,5,12,13]. Note that the
definition of a constitutive exon requires that all tran-
scripts for a given gene be known. If, however, alterna-
tive splicing is closer to a biased random sampling from
the space of all possible isoforms (so that every possible
splice form is produced at some or other time), then
there may be no such thing as a constitutive exon. As
the debate on this issue continues and as our aim is to
provide a model against which to test various hypoth-
eses regarding transcript evolution, we develop a model
in which we consider the existence of constitutive exons
as a given.
We thus model a transcript as a subset of the gene

exons. We model alternative 3’- or 5’-sites as constitu-
tive exons with two or more internal states–each state
encoding for one particular configuration. Finally, we
assimilate intron retention to cassette exons. We model
transcript evolution as a two-level process. The gene
structure, viewed in terms of its collection of exons and
introns, constitutes one level, while the collection of
transcripts obtained from that structure constitutes the

other level. Modification of the gene structure affects
the transcriptome, but modification of the transcriptome
does not affect the gene structure. Peng and Li [14]
showed that the status of an exon, constitutive or alter-
native, is conserved through tandem exon duplication, a
finding that hints at a model of evolution where the sta-
tus of an exon is encoded at the gene level. Conse-
quently we have three possible exon states in our model
of gene evolution: absent, constitutive, or alternative.
We assume that all transitions–birth, death, and muta-
tion between constitutive and alternative–are equally
likely.
In addition to the model of exon evolution at the gene

level, transcripts can gain or lose exons. Table 1 sums
up the possible evolutionary changes at the transcript
level, given the evolution of a particular gene exon.
Note that a transition from alternative to alternative
does not imply that the exon will still belong to the
same transcripts.
Finally we assume that a transcript can undergo a

lethal mutation or be subject to regulation and disap-
pear at any time. In a manner similar to gene duplica-
tion, new transcripts may also be created at any time
during evolution.
The model focuses on transcript evolution and the

cost reflects only transcript events. Any gene-related
evolutionary event–gene duplication and loss, exon gain
and loss–has zero cost. For instance, the gain of a con-
stitutive exon in the gene will automatically affect all
transcripts and thus will not be reflected in the total
cost. This concept is illustrated through an example in
Figure 1.
Our model yields a forest of transcript trees, which

represents the evolution from ancestral transcripts to
observed transcripts. Each transcript tree is a subtree of
the gene tree, since all transcripts arise from that gene

Table 1 Evolutionary events on the transcriptome

↗ 0

0 No transcript had this exon and none will have it.

1A Some transcripts had this exon and none will have it.

1C All transcripts had this exon and none will have it

↗ 1A
0 No transcript had this exon and some will have it.

1A Some transcripts had this exon and some will have it.

1C All transcripts had this exon and some will have it.

↗ 1C
0 No transcript had this exon and all will have it.

1A Some transcripts had this exon and all will have it.

1C All transcripts had this exon and all will have it.

All evolutionary changes for transcripts for a given exon at the gene level. 1c:
constitutive exon 1A: alternative exon, 0: no exon
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family and, if they evolve, must evolve on the same tree.
If a new transcript arises from an existing one, the new
transcript will be considered as the root of a new tran-
script tree. Our basic model uses a fixed cost for the
creation of new transcripts. Of course, the basic model
does not assume that transcripts are created ab initio;
rather, it postulates a hidden relationship with an
unknown ancestor.
New transcripts arise from existing ones and thus are

the result of evolutionary changes that may legitimately
correspond to different costs. We use a fixed cost for
simplicity and also because it leads to a very efficient
pruning of the search space. We have designed and
implemented an extended model in which the creation
of a new transcript is dynamically assigned a cost that
corresponds to its evolution from its closest ancestor
(a maximum parsimony approach). However, the
dynamic cost computation prevents good pruning and

makes the problem intractable for medium-sized
instances.
Our algorithm starts by reconstructing the exon struc-

ture of the ancestral genes, then looks for the most par-
simonious forest of transcript trees. For the ancestral
gene reconstruction algorithm, we used a maximum
parsimony approach, using Dollo’s parsimony–that is,
an exon cannot be created twice [15,16].

Results
The algorithm was tested on two well studied gene
families to assess the correctness of the model on biolo-
gical data. Further testing was done on simulated data
to test the algorithm itself.

Results on the MAG gene
The Myelin-Associated Glycoprotein (MAG) is a neuro-
nal transmembrane glycoprotein that acts both as a

Figure 1 Illustration of the two-level model. The first level is represented in A where the gene evolution happens. In B, one can see the
transcript phylogeny. The total edge costs of TA and TB are both zero. While this is expected for TB as transcripts t11 and t21 share the same
exons, it is not obvious for TA. Transcripts t12 and t31 differ by exon C. However the latter was gained during the evolution from G0 to G12. This
event belong to the first level and thus has zero cost in the transcript phylogeny. The dotted line represents the hidden relationship of the new
transcript to its ancestor. In the extended model, that link would be revealed.
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ligand for an axonal receptor and as a receptor for an
axonal signal [17]. It has been extensively studied and
due to its short length and limited alternative splicing, it
makes a perfect candidate for testing our algorithm.
Two main isoforms are known in mammals: L-MAG

and S-MAG. The S-MAG is created by the inclusion of
the penultimate exon that creates an early stop codon
and hence removes the cytoplasmic domain. In rodents
the second exon is also alternatively spliced and occurs
in both the S- and L- forms, yielding four transcripts in
total [18]. Two major MAG isoforms have been
observed in both zebrafish and fugu: L-tail (exon 9,
from the left, is skipped) and XL-tail. The retention of
the eighth intron in the fugu fish yields a third form (S-
tail), which is not observed in the zebrafish [19]. The
transcripts corresponding to these isoforms are dis-
played in Figure 2.
Data
Transcripts and exons for the five species were compiled
from the literature [17-21]. The sequences and the gene
tree, as shown in Figure 3-A, were obtained from the
Ensembl database [22].
We concatenated the gene’s exons and aligned the

resulting sequences using Mauve [23]. Every exon either
was not aligned to any other exon or provided close to
one hundred percent coverage of its ortholog. The only
exception was the first human exon, which corresponds
to the first two exons of the rodents. Such a situation
might have posed a problem had the human exon been
alternative, but fortunately it is a constitutive exon. The
first human exon was consequently modeled as two
exons. The eighth intron of the fugu fish, which triggers
an early stop codon, could not be aligned to any exon
in any other species. Orthologous exons were then
inferred from this alignment and are shown in Figure 4.
Results
We tested two setups. In the first experiment, we used a
cost of infinity for exon gain/loss, cE= ∞, whereas in the

second we used a unit cost, cE= 1. An infinity cost for
exon gain/loss allows us to test if some transcripts are
exactly similar in the second level of the model. The
cost of every transcript tree is consequently either zero
or infinity. Note that two transcripts with different
exons can be reunited under a zero-cost tree as exon
gains and losses at the gene level may explain the differ-
ence. In both setups, the cost of transcript birth, cB, and
death, cD, was set to a single parameter and varied. As
shown in Figure 5, each experiment yielded solutions
consistent with our biological knowledge of the iso-
forms. The S- and L-forms in mammals and the L- and
XL-tail in fishes are clustered on their respective trees.
However, the relationship between the fish and mammal
isoforms is unclear. If the cost of exon gain is infinity,
then the only relation between fishes and mammals is a
link from the L-tail to the alternative L-form in
rodents–but our model requires such a link, since it
demands that all genes be connected. The same reason-
ing applies for cB= cD≤ 2 and cE= 1. The cost of con-
necting a mammal transcript to a fish transcript is
always greater than the cost of adding a new tree. The
S-tail in the fugu fish is isolated and shows no relation
to the S-form of mammals. Its distance to the mammal
S-form is too great to allow the two to be clustered.
There is no evidence that those two transcripts are bio-
logically related, nor do their sequences align well–their
only common feature is that both induce an early stop
codon.
Results with the extended model
Since the search space for the MAG instance is small,
we were able to run the extended model on it. As seen
in Figure 6, the result on cB= cD= 1 is the same as for
the basic model using cB= cD> 2, except that newly cre-
ated transcripts are linked to their closest ancestor. For
cB= cD> 1, our algorithm reconstructed three ancestral
transcripts. Isoforms are still well clustered within fishes
and mammals but the relationship between them seems

Figure 2 Transcripts of the MAG gene family. Transcripts are color-coded by their isoforms.
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complicated. For instance, the fugu S-form is linked to
the “standard” L-form in mammals, which seems a bit
unlikely. When cE= ∞, no phylogeny could be found
that did not have an infinity score.
Many solutions of minimum cost may exist. Conse-

quently our algorithm can return several solutions. In
order to sort the best solutions, we computed the total
number of events including exon gain and loss at the
gene level. This process acts as a second filter. However,
the number of solutions is highly informative. For
instance, Figure 6-B shows only one of the 32 solutions
whereas only 2 solutions were found for cD= cB= 1. This
indicates that the phylogenies for cB= cD> 1 are far from
being certain and should thus be considered with
extreme care. Moreover, only constitutive exons are
shared between fishes and mammals. Consequently, the
edges linking a fish transcript to a mammal transcript
will highly depend on the ancestral gene reconstruction.

Results on the PAX6 gene
The PAX6 gene is part of the well-studied paired box
gene family (PAX), which encodes transcription factors
for many developmental processes and is subject to
heavy alternative splicing [24-26]–41 transcripts were
found in a gene in the pigeon retina [27]. The canonical
isoform is characterized by an N-terminal paired

domain followed by a linker, a paired-type homeodo-
main, and a (P/S/T)-rich C-terminal domain, yielding a
422-amino-acid protein (437 in zebrafish). The gene
undergoes alternative splicing and the best-known alter-
native isoform, +5a, differs from the canonical isoform
by the inclusion of exon 5a. This 14-amino-acid inser-
tion in the paired domain disrupts the DNA-binding
ability of the N-terminal domain and enhances the bind-
ing of the C-terminal domain, thus creating a new set of
interactions [28]. As can be seen in Figure 3-B, gene
duplication occurred in the fish species leading to two
PAX6 genes in the zebrafish and the fugu fish.
Transcripts and orthologous exons
Mammal transcripts were obtained from the Human-
transcriptome Database for Alternative Splicing (H-
DBAS) [29] and fish transcripts from the Ensembl data-
base [22]. In the H-DBAS database, we considered only
transcripts that were present in both the cDNA and
mRNA databases, except in the case of R. norvegicus,
where only the mRNA database was available. Similarly,
with the Ensembl database, we used only transcripts
that had CDS or UTR support. The gene tree was
obtained from the Ensembl database and genes are thus
named accordingly. The canonical and the +5a tran-
scripts were identified through their protein product
and the literature.

Figure 3 Gene trees. Gene trees for the MAG and the PAX6 gene families across five species.

Figure 4 Orthologous exons of the MAG gene family. A gray background indicates orthologous exons. Constitutive exons are shown in
black. Note that alternative exons are not conserved between mammals and fishes.
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The literature on the PAX6 gene in the fugu fish is
very sparse–we could find only one article, by Miles et
al. [30], but that article does not corroborate the infor-
mation in the Ensembl database. Thus we used the
Ensembl data, as it is more recent, but we have no
ground truth regarding the canonical or alternative
isoforms.
The H-DBAS database conveniently indicates ortholo-

gous exons for the mouse, rat, and human. We ran an
all-against-all semi-global alignment of all exons to con-
firm the mammalian orthologs and to obtain the ortho-
logs for the two fishes. Orthologous exons are shown in
Figure 7 and transcripts in Figure 8. In all species, we
observe that several transcripts can produce the same
isoform.

Results
As with the MAG gene, we tested two setups, with unit
and infinite costs for exon gain or loss. However no solu-
tion could be found with cE= ∞. Figure 9 reveals a correla-
tion between cB, cD and the number of ancestral
transcripts. A higher cB affects the total number of trees.
Any hypothesis should thus be tested under different para-
meters before drawing any conclusion. The best result
uses cB= cD= 5, showing well-clustered isoforms within
mammals. Note that the model imposes a link between all
genes, so that the relevance of a single connection between
fishes and mammals at low values of cB is uncertain.
The number of solutions with minimum cost also

increases along with cBand cD. The algorithm returns 36
solutions of equal cost for cB= cD= 5. We tested the

Figure 5 Transcript phylogenies for MAG under the basic model. Inferred transcript phylogenies for the MAG gene under the basic model
and different costs. Transcripts Sb and Lb in rodents represent the S- and L-forms in which exon 2 is skipped. Thicker trees contain similar
transcripts. Only solutions with a minimal number of events are displayed.

Figure 6 Transcript phylogenies for MAG under the extended model. Inferred transcript phylogenies for the MAG gene under the extended
model and different costs. Note that we have 3 transcript losses for cB= cD> 1.
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same setup under a wrong gene tree. As shown in Fig-
ure 10, we kept the structure but shuffled the leaves.
Under this setup, the number of solutions increased
nearly tenfold for the same parameters–a change that
gives us confidence that phylogenetic information is
indeed contained in the transcripts. Note that Figure 9
shows only solutions that have a minimum number of
evolutionary events among solutions of minimum cost.

Results on simulated data
In order to test the performance of the algorithm, we
designed a simple scheme to generate transcripts with a

given tree structure. Starting with nT ancestral tran-
scripts at the root and nE random exons, each gene
exon can either be born or die independently along the
tree. The same evolutionary process applies to tran-
scripts with exon gain or loss depending on the current
set of gene exons.
The reconstruction algorithm works by splitting the

search space into topologies–a topology being a forest
of transcript trees whose leaves are not assigned. Figure
11 illustrates the topology space on a simple 3-gene
example. The algorithm first explores the topology
space rapidly then finds the best leaf assignment on

Figure 7 Orthologous exons of the PAX6 gene family. Orthologous exons of the PAX6 gene for the 7 genes of the 5 species. A gray
background indicates orthologous exons. Constitutive exons are shown in black. Alternative 3’- and 5’-end are shown in gray. Note that only
exons belonging to a transcript are shown.

Figure 8 Transcripts for the PAX6 genes. The canonical isoforms are shown in black and the +5a isoforms in gray. Note that several
transcripts are translated into the same isoform.
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good candidates. (More details are given in the methods
section.) The search on the topology space is optimal,
but under unfavorable circumstances may explore the
entire search space. For a given number of genes, we
tested the algorithm on caterpillar trees (trees where
one of the two children is always a leaf) with a random

number of ancestral transcripts. Caterpillar trees repre-
sent difficult instances since the depth of the tree is
maximized for the number of leaves. Figure 12 shows
that the percentage of topologies that get passed on to
the leaf assignment procedure decreases quickly as the
number of leaves increases. The size of the search space

Figure 9 Transcript phylogenies for the PAX6 gene family. Transcript phylogenies for the PAX6 gene for different values of transcript birth,
cB, and death, cD. Multiple solutions are superimposed. Thicker lines connect similar isoforms.
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grows faster than exponential, but the search procedure
reduces the growth rate of the number of refined topol-
ogies. Still, the growth rate of the explored space is
large but it gets closer to an exponential behavior.
As the leaf assignment algorithm is not optimal, we

tested how often it yields the best solution. Given a gene
tree and its associated transcripts, for every topology,
every possible transcript assignment is generated. The
best score is retained and tested against the solution pro-
posed by the leaf assignment algorithm. We define
optimality as the percentage of occurrences where the
leaf assignment algorithm yields the same score as the
optimal solution during a single run. We performed one
hundred runs, each with randomly generated hundred-
exon genes, on difficult trees (caterpillar trees) and tested
the optimality for different numbers of genes and of tran-
scripts per gene. (The sizes of the instances are necessa-
rily limited by the exhaustive search.) Figure 13 shows
that, as expected, the optimality decreases as the number

of leaves or transcripts increases. The large deviations
come from the simulation process that allows random
transcript birth and loss. Two instances may thus differ
quite significantly even though they share the same num-
ber of ancestral transcripts.
The optimality criterion, as we described it, is rather

strict. It fits well for small instances and allows tracking
of programming errors. (For instance a tree with one
transcript should always return the minimum score.)
However as the trees grow larger, the optimality criter-
ion will indicate that most solutions are not optimal but
will not give any information on the badness of the
non-optimal solutions. Consequently, we looked at the
difference between the optimal and reconstructed score
for each topology. As shown in Figure 14, the results do
not look as bad as with the optimality criterion. The dif-
ference is indeed increasing but in a logarithmic fashion
and seems to stabilize to a constant. As the number of
transcripts and leaves increases, few solutions will have
the optimal score but they will not be far from it. Note
that up to three leaves or if there is only one transcript,
the algorithm always returns the optimal solution. This
is due to the algorithm which, by design, performs an
exhaustive search for any tree of depth two or less.
We also tested the algorithm for scalability, since the

running time grows faster than exponential in the worst
case. Running the algorithm on the MAG gene takes a
few seconds while running it on the PAX6 gene takes a
few days. However our focus in this paper is to validate
the concept of transcript phylogenies and show that
reconstruction, within some limits, is possible. Past this
step, we are confident that a heuristic can be designed
to handle large problems with reasonable accuracy.

Methods
The input of the algorithm is a gene tree with a set of
leaf transcripts and orthologous exons. (Paralogous
exons are considered as unrelated.)

Figure 10 Wrong PAX6 gene tree. A wrong gene tree for the
PAX6 family. Some leaves are shuffled.

Figure 11 A topology example. The 9 topologies corresponding to a trivial 3-gene example. In a topology, a dot represents a transcript birth
and a square a transcript death. Grayed out topologies are not valid as some genes are unconnected.
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The algorithm begins by reconstructing the state of
the ancestral genes’ exons–absent, alternative, or consti-
tutive–using Sankoff’s algorithm for the small parsimony
problem [31]. Without any further knowledge on exon
evolution, we assumed that every transition has equal
cost. A constraint is added to the algorithm to ensure

that the result is consistent with Dollo parsimony–that
an exon cannot be created more than once.
Transcript phylogenies are then reconstructed using a

two-step algorithm. For each topology, a lower bound is
computed. If the lower bound is higher than the mini-
mum encountered so far, then the topology is discarded,

Figure 12 Efficiency of the search procedure. Percentage of topologies that get passed to the leaf assignment procedure. The average
number of topologies per number of leaves is plotted on the second Y axis. Box plots and average sizes were computed on 1000 runs.

Figure 13 Optimality of the leaf assignment. Optimality of the leaf assignment algorithm for caterpillar trees. Error bars show the standard
deviation on a hundred runs.
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since there could not exist a solution with this topology
with a lower score than the current optimum. Otherwise
the best solution for this topology is computed. We call
this last step the leaf assignment step; it is the only part
of the algorithm that makes use of the previously recon-
structed evolution of the gene’s exons.
Now, in order to prune the search space efficiently, we

need to establish quickly a rather good solution. Since
the algorithm explores the topology space in a determi-
nistic, breadth-first search manner, it could, in the worst
case, move from worst to best topology, improving the
score at each step, and thus unable throughout the pro-
cedure to prune any part of the solution space. To make
such a behavior extremely unlikely on any data, we
establish initial solutions by randomly sampling the
search space for each number of trees before the
exploration of the search space starts and retaining the
configuration with the lowest score as an upper bound.
When all topologies have been tested or scored, the

algorithm returns all solutions of minimum cost. This
process is described more precisely in Figure 15.
Our model makes no distinction between an event of

zero cost and no event at all. Yet we would like to see
only solutions that have the lowest number of events, so
our algorithm uses (a version of) the number of events
as a secondary criterion to rank the optimal solutions.
For each tree in a given solution, we sum over all leaves
the exons that are present in at least two leaves, and
then divide this value by the number of exons that are
present in at least one leaf and by the number of leaves.

The result is an index between 0 (all exons are unique
to their leaves) and 1 (all leaves have the same exons).

Generating topologies
Topologies are generated with increasing numbers of
trees. For each topology with t trees (t-topology), any
edge removal yields a new topology with t+1 trees.
However, that process alone does not suffice to generate
all (t + 1)-topologies. Therefore, once that procedure
has been applied to all t-topologies (and duplicates have
been removed), we use branch-swapping to generate the
remaining (t + 1)-topologies. A branch swap disconnects
edge (n1, p1) from tree t1 and edge (n2, p2) from tree t2
and creates two new edges: (n1, p2) and (n2, p1). Here n1
and n2, and also p1 and p2, represent transcripts from
the same ancestral gene. The algorithm again checks for
duplicates, as it searches for all branch swaps on the set
of (t + 1)-topologies until no new topology can be
generated.

Scoring solutions and topologies
The score of a particular solution is composed of two
parts, the first reflecting the structure of the trees and
the second, SF, providing the parsimony score of the
trees. The cost of creating or losing a transcript is a
constant and thus we have

S = (cB · Ntree + cD · Ndeath) + SF (1)

where Ntree is the number of trees, Ndeath the total
number of transcript losses, and SF the sum of the

Figure 14 Difference to the optimal score. Average difference between the optimal and the reconstructed score per topology. Error bars
show the standard deviation on a hundred runs. Values seem to stabilize to a constant.
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maximum parsimony scores of each tree. SF is the only
quantity that depends on the evolution of the gene’s
exons. cB and cD are parameters that control the cost of
transcript birth and death.

A lower bound for topologies can be computed by
considering the first part of the scoring function, cB·
Ntree+ cD· Ndeath. This value does not depend on the
transcripts, but only on the topology. However, a better
lower bound can be computed by adding a lower bound
on the SFscore. For each tree, we compute the best leaf
assignment as if all transcripts were available, corre-
sponding to a topology with a single nontrivial tree. (In
the real leaf assignment procedure, of course, trees com-
pete for transcripts.) The sum of these values is a true
lower bound.

Leaf assignment procedure
Given a topology, leaf assignment remains challenging:
given N genes and k transcripts per gene, a topology
can lead to k!N-1 possible leaf assignments. To tackle
this problem, we combine a bottom-up dynamic pro-
gramming algorithm with Sankoff’s algorithm for the
small parsimony problem.
We define a state as an ordered list of transcripts for a

given gene. Each transcript t in a state has pointers to
its left and right children, l(t) and r(t)–if any. The order-
ing of the transcripts is the same in two states of the
same gene, but the pointers change to reflect phyloge-
netic relationships. The number of transcripts of ances-
tral genes (inner nodes) is defined by the topology.
For each ancestral gene, every possible state is gener-

ated. If a gene has kLR transcripts that have two chil-
dren, kL transcripts with a single left child, kR transcripts
with a single right child, and both children of the gene
have n transcripts, then we have up to

(
n
kLR

)
· n!
(n − kLR)!

·
(
n − kLR

kL

)
·
(
n − kLR

kR

)
(2)

possible states. The product of the first two terms of
Equation 2 is the number of possible assignments for
the kLR transcripts that have two children, while the last
two terms compute the number of assignments for the
transcripts that have only child. Since the first part
selected kLR elements, there remains only n - kLR ele-
ments to choose from.
However, this number is constrained by the topology:

a transcript in some state cannot be connected to any
transcript in its child’s state–the subtrees have to match.
We represent these constraints through a guide tree,
which indicates the possible interactions for each tran-
script. Figure 16 illustrates the guide tree for an example
topology. There could be up to 18 states at node A
without the topology constraints, but these reduce the
number down to just 4.
Our algorithm traverses the gene tree in postorder; at

each node N, it computes the parsimony score of each
state. Given a gene N, its parent P, and its two children

Figure 15 Main algorithm. Sketch of the main algorithm with and
without the extended model.
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L and R, the score for a given state s of N is given by

S(sN, sP) = min
sR∈R,sL∈L

{S(sR, sN) + S (sL, sN)

+
∑
t∈T

minMP(t) s.t.T = roots(sN, sP)} (3)

Where roots (sA, sparent) contains all transcripts of sA
that have no ancestor in sparent. (If sparent is null then it
is the set of transcripts in sA.)
minMP (t) is the parsimony score of transcript t as

inferred by Sankoff’s algorithm. A profile is built for
each exon and the score of exon i in state u is com-
puted by

tiu = min
x∈E

{c(u, x) + rix} + min
y∈E

{c(u, y) + liy}

where l and r are the left and right children of transcript
t, c(a, b) is the cost of evolving from a to b and E is the set
of all exon states. In our case we have c(a, b) = 0 for a = b
and c(a, b) = 1 otherwise. However the cost function must
be slightly modified to account for exon evolution at the
gene level. If a constitutive exon was gained or an exon
was lost (at the gene level), then we set the cost of the
change to zero. Additionally, if exon i is absent in the
gene, then for all transcripts in the gene we have tix= ∞,∀x
> 0. Note that the left and right children of t depend on
the choice of sLand sR. A similar equation can be derived
in case of single-child transcripts. minMP(t) is then the
sum over all exons of minutiu.
The values in Equation (3) are assigned during the

postorder traversal; once the score of every state at the
root of the gene tree has been computed, the minimum
score is retained. Backtracking from the root to the leaves
will then produce all optimal transcript phylogenies.

An extended model
The extended model sets a dynamic cost for transcript
birth, but retains a constant cost for transcript death.

Given a topology, the best leaf assignment is computed
and backtracking is used to reconstruct the ancestral
transcripts’ sequences. Creation of new transcripts is
assigned a cost that corresponds to its evolution from
its closest ancestor. The birth cost is added only once
the leaf assignment procedure has terminated and thus
has no influence on the transcript assignment, except in
case of multiple solutions, where only those that have a
minimum birth cost will be selected.
Developing a good lower bound on the birth cost

remains a challenge. This cost can vary between zero
and the number of exons, so that simply using the low-
est possible value would produce very loose bounds and
thus be of no help in the search. (On simulated data
and our two test genes, the search procedure using a
zero value as a bound on the birth cost always had to
look at every topology.)

Conclusion
In this study we addressed the lack of evolutionary
model for alternative splicing by presenting a two-level
model of transcript evolution and an algorithm to
reconstruct transcript phylogenies. Our work opens the
door for the study of transcript evolution, as it provides
tools for testing evolutionary hypotheses.
We presented two models. The basic model uses a

fixed cost for the creation of new transcripts–an unrea-
listic assumption, but one that greatly decreases the
computational cost. The extended model assigns a cost
dynamically by finding the closest (least cost) ancestor;
however, the dynamic nature of the cost defeats our
pruning strategy and the problem became intractable for
medium-sized instances.
Results on a well-studied gene, MAG, showed that the

extended model yielded results similar to those obtained
with the basic model. Good clustering of known iso-
forms was achieved with the basic model for both gene
families (MAG and PAX6) we studied.

Figure 16 The guide tree for a given topology. Topology: There are two ancestral transcripts at A. Another transcript is created at B, two are
lost between B and E, and a new transcript is created at E. A similar reasoning applies to C, F, and G. Guide tree: Boxes in the guide tree
indicate a specific subtree. For instance, at B, we have only two kinds of subtrees: B(D,E) and B(D,-), thus we have two boxes. Within a box, each
dot represents a transcript. At B we have two transcripts with subtree B(D,-), thus there are two dots in the second box.
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Future work involves a faster version of the algorithm,
and eventually approximation methods to enable us to
use the extended model on large problems.
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