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Abstract

Background: Identifying gene regulatory network (GRN) from time course gene expression data has attracted
more and more attentions. Due to the computational complexity, most approaches for GRN reconstruction are
limited on a small number of genes and low connectivity of the underlying networks. These approaches can only
identify a single network for a given set of genes. However, for a large-scale gene network, there might exist
multiple potential sub-networks, in which genes are only functionally related to others in the sub-networks.

Results: We propose the network and community identification (NCI) method for identifying multiple subnetworks
from gene expression data by incorporating community structure information into GRN inference. The proposed
algorithm iteratively solves two optimization problems, and can promisingly be applied to large-scale GRNs.
Furthermore, we present the efficient Block PCA method for searching communities in GRNs.

Conclusions: The NCI method is effective in identifying multiple subnetworks in a large-scale GRN. With the
splitting algorithm, the Block PCA method shows a promosing attempt for exploring communities in a large-scale
GRN.

Background
Rapid advances in high-throughput DNA microarray
technology generate a huge amount of time course gene
expression data which, in turn, calls for efficient compu-
tational models to characterize the network of genetic
regulatory interactions. A number of methods have been
proposed to infer GRNs from gene expression data.
Boolean networks [1] use two states, “ON” or “OFF” to
represent the state of each gene, and each state at the
next time step is determined by Boolean logical rules.
Bayesian Networks [2] infer causal relationships between
two genes according to conditional probability functions.
The stochastic nature makes them more accurate in
modeling the dynamics and nonlinearity of gene regula-
tion in large-scale systems. Bayesian Networks, however,
usually do not include cycles and, thus, are difficult to
deal with feedback motifs. Ordinary differential

equations (ODEs) models [3-5] overcome this problem
by modeling GRNs as a set of differential equations.
Some other models such as signed directed graphs, mul-
tiple regression, state space model, etc., are addressed in
the survey [6].
Whereas most of the existing work focuses on small-

sized GRNs, limited attention has been given to interac-
tions among large scale genes. Conventional approaches
are usually designed for the network with connectivity
less than a small fixed number [7]. Computational com-
plexity is a major obstacle in reconstruction of large
scale GRNs as determining the parameters in such a
network is time-consuming. Sparsity is a common
assumption used in modeling GRNs to reduce the com-
putational complexity. Typically, in a sparse network,
one gene interacts with only a couple of genes [7].
Recently, Yuan et al. [8] proposed a directed partial

correlation (DPC) method for regulatory network infer-
ence on large-scale gene data. The DPC method com-
bines the directed network inference approach and
Granger causality concept for causal inference on time
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series data to reconstruct large-scale GRNs. Although
modular discovery was provided by biclustering in gene
expression data, the DPC method cannot present multi-
ple sub-networks simultaneously.
We propose the NCI method for subnetwork identifi-

cation by detecting community structures from large-
scale gene expression data. Usually, GRNs have commu-
nity structures: genes in the same groups are found with
high density of “within-group” interactions and genes in
different groups with low density of “between-group”
interactions [9]. Many algorithms have been proposed to
detect community structures by clustering [9-15]. To
accomodate the large-scale GRN inference, we particu-
larly propose a block principal component analysis
(Block PCA) method, which explores community struc-
ture information for the NCI method.
The NCI method repeats two steps: (1) N-step: iden-

tify possible gene regulatory networks; (2) C-step: esti-
mate community structure. At the N-step, a convex
quadratic programming, formulated for the community
structure, is solved to infer possible GRNs. This quadra-
tic programming can be identically divided into n (the
total number of genes) sub-problems, each of which has
a much smaller dimension, and, thus, adapt to large-
scale networks. At the C-step, the NCI method esti-
mates community structure from the GRNs identified at
the first step. When the algorithm terminates, a network
with community structures is obtained.

Methods
An ODE model for GRNs
The processes of transcription and translation in a GRN
consisting of n genes can be modeled as the following
dynamic system:

ẋ = Cx + Sr

r = f (x),
(1)

where vector x = [x1, x2, ..., xn]
T Î ℝn is the concen-

tration of mRNAs of n genes, C = diag [-c1,-c2, ..., - cn]
Î Rn × n, ci represents the degradation rate of gene i, r
= [r1, r2, ..., rn]

T Î ℝn is the reaction rates which is a
function of concentrations of some mRNAs, and matrix
S Î Rn × n represents the stoichiometric matrix of the
biological network. For simplicity, one can assume the
reaction rate r is a linear combination of mRNAs con-
centrations. Let FÎ Rn × n be the coefficient matrix.
Then,

r = Fx. (2)

By substituting (2) into (1), we have

ẋ = Cx + SFx. (3)

A standard discretization of system (3) by using the
zero-order hold method on m observation points for a
given sampling time Δt is

x (k + 1) = Ax (k) , (4)

where A = eCΔt + (eCΔt - I)C-1SF.
Let X Î ℝn × m be a matrix of gene expression data,

with the columns being the measured gene expression
levels at m time points, and n being the number of
genes. Let X1 and X2 be the sub-matrices of X made up
by the first m - 1 columns and last m - 1 columns of X,
respectively. According to [16], the gene regulatory net-
work can be inferred by solving the following optimiza-
tion problem:

minA ‖AX1 − X2‖22
s.t. A is stable,

(5)

where ||·||2 is the Euclidean norm. Stability is usually
used as a criterion to determine the qualification of the
inferred GRN. For discrete models, A = (aij)n × m is
stable if

n∑
j=1

|aij| ≤ 1, for all i = 1, . . . ,n. (6)

Moreover, since the network is commonly recognized
as sparse, l1 regularization is added to Eq. (5) to obtain
a sparse matrix A. Hence, with the sparsity and stability
conditions, (5) becomes

minA ‖AX1 − X2‖22 + γ ‖A‖1,
s.t.

∑n

j=1

∣∣aij∣∣ ≤ 1, for all i = 1, . . . ,n
(7)

where g is a positive scalar, ||A||1 = ∑i, j |aij| is the l1-
norm of matrix A.

The NCI method
Since rows of A are independent in the objective func-
tion and constraints, problem (7) can be divided into n
sub-problems and solved individually [16]. However,
such a solution does not consider the information of
community structure which implies multiple subnet-
works. In this section, we propose the NCI method to
overcome this problem. An observation is that interac-
tions between genes in a community occur more fre-
quently than those between different communities. We
introduce a weighted matrix W = (wij)n × m to distin-
guish genes in the communities with those outside. wij

is assigned a small positive value or zero if gene i and j
located in the same community; a relatively large value,
otherwise.
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By adding term 〈W, |A|〉 to (7), we have

min ‖AX1 − X2‖22 + γ ‖A‖1 + μ〈W, |A|〉
s.t.

∑n

j=1
|aij| ≤ 1, for all i = 1, . . . ,n,

(8)

Where μ > 0 is a penalty parameter, |A| = (|aij|)n × m,
〈W, |A|〉 = trace (WT |A|) = ∑i, j wij|aij|. All elements of
matrix W are nonnegative.
We propose a clustering method, named Block PCA,

to update weight matrix W. With Block PCA, we can
obtain matrix L*, reflecting the community structure of
its corresponding network. Then, weight matrix W can
be updated by

W = 1n,n − L∗, (9)

Where 1n,n ∈ Rn×n is the matrix with all 1’s.
For example, consider a network with five nodes and

L∗ =

⎡
⎢⎢⎢⎢⎣
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ .

Node 1, 2, and 3 form a community, and node 4 and
5 form another community. Particularly, we apply sparse
singular value decomposition (SSVD) [17] on a general
L* to identify the communities in GRNs. The NCI
method is summarized in Algorithm 1.
Some additional details about Algorithm 1:
1. Stop criteria. The NCI algorithm stops when either

of the following two criteria meet. (1) Weighted matrix
W converges, that is, ||W(k) - W(k+1)|| ≤ tol for a pre-
defined constant tol > 0, where W(k) denotes W at itera-
tion k; (2) The number of iteration reaches the
threshold.
2. The efficiency of the algorithm mainly depends on

the estimation of the community structure of the under-
lying GRN. Since matrix A in (8) provides a base for
estimation of community structure L* computed by (12),
a poor estimation of A may result in an inaccurate W.
Hence, instead of using only one estimation of A, we

average out the errors by calculating a series of estima-
tions with different arguments g in (8) and combining
them together. More specifically, we choose a set of g1,
..., gq and compute the corresponding solutions A1, ...,
Aq. Then, A in Step 1 of Algorithm 1 is set as

aij = AP
ij,

with p = argmax{|Au
ij||u = 1, . . . , q},∀i, j.

After the iteration terminates, model (8) is solved
again to compute the matrix A with g = gτ, where gτ, is a
parameter in Algorithm 1.
3. The complexity of the subproblem is our primary

concern about the design of the NCI algorithm. Since
the subproblems may be called iteratively in Algorithm
1, the complexity of the NCI algorithm is determined by
those subproblems. Both sub-problems (8) and the
Block PCA model are convex, and can be efficiently
solved by CVX [18] and and the proposed splitting algo-
rithm, respectively. As aforementioned, model (8) is
dividable: rows of A in the objective function and the
constraints are independent. Hence, it is equivalent to n
sub-problems:

minai∈Rn

∥∥XT
1ai − X2,i

∥∥2
2 + γ 〈μ/γwi + 1, |ai|〉

s.t. ‖ai‖ 1 ≤ 1
(10)

for i = 1, ..., n, where XT
2,i is the i-th row of the matrix

X2, 1 = [1, . . . , 1]T ∈ Rn,wT
i , a

T
i is the i-th row of W

and A, respectively. Sub-problem (10) can be trans-
formed into a standard (convex) quadratic program-
ming, and solved by software packages such as Mosek
or CVX [18].

The Block PCA model
The Block PCA model is motivated by Robust PCA
model [19]

minL,E ‖L‖∗ + λ‖E‖1
s.t. D = L + E,

(11)

which ||L||* is the nuclear norm of the matrix L, and
D is a given matrix.

Algorithm 1

Algorithm 1: The NCI algorithm

Input: X;

Output: matrix A and communities of the GRN;

Step 0. (Initiation) W : = 0 Î ℝn × n. Select μ > 0, gτ >0, l1Î (0, l2).
Step 1. (N-step: identify possible Networks) Solve (8) to find an approximate matrix A.

Step 2. (C-step: estimate Community structure) Calculate weighted matrix W1 by Eq. (13), then solve the proposed block PCA model (12) to
calculate L*.

Step 3. (Update weight matrix) Update W by Eq. (9). If stop criteria are not satisfied, go to Step 1.

Step 4. (GRN identification) Identify the communities of the computed GRN by SSVD.
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The block PCA aims to seek a block submatrix in D
by solving optimization problem

minL,E ‖L‖∗ + λ1〈W1, |L|〉 + λ2‖E‖1
s.t. D = L + E

(12)

where W1 is a weight matrix with all elements
nonnegative.
In Block PCA, D Î ℝn, n is set to be matrix

1n,n ∈ Rn×n with all 1’s, l2 is constantly set as 1/
√
n,

and l1Î(0, l2). For a network with n nodes, we define
weight matrix W1 = (w1ij)n × n, where

w1i,j = (pij/ p0)2, (13)

pij is the length of the shortest path between the node
i and j, p0 ≥ 0 is a parameter less than the diameter of
the network.
As in Robust PCA (11), the nuclear norm || · ||*

usually induces a low rank matrix and the l1 norm || · ||
1 induces a sparse matrix [19,20]. The constraint D = L
+ E enforces to split matrix D into a low rank matrix L
and a sparse matrix E. Different with Robust PCA, the
Block PCA adds an extra term l1 〈W1, |L|〉 = l1 ∑w1ij·|
Lij| to (11). The nonnegative weight matrix W1 stands
for the prior knowledge about low rank matrix L.

Splitting algorithm for solving Block PCA
Block PCA model (12) can be transformed to a linear
semidefinite programming (SDP)

min
W1,W2,L,E

1
2
[trace(W1) + trace(W2)] + λ1〈W1, |L|〉

+λ2〈1n,n, |E|〉

s.t.
[
W1 L
LT W2

]

 0;

L + E = D.

(14)

However, this transformation increases the size of the
variable matrix from n × n to 2n × 2n. Existing SDP solvers
such as CVX [18] can not solve large-scale SDP problems.
Instead, we solve Block PCA problem (12) by extending
the splitting method [21] for optimization problem

min
∑m

i=1
θi(xi)

s.t.
∑m

i=1
Aixi = b.

(15)

Where θi: Rni → R are closed convex functions,
Ai ∈ Rl×ni , bÎℝl.
Note that Block PCA (12) can be recast as

min
L,E,U

‖L‖∗ + λ1〈W1, |U|〉 + λ2‖E‖1

s.t.
[
D
0

]
=

[
L
L

]
+

[
E
0

]
−

[
0
U

]
.

(16)

By letting θ1(·): = ||·||*, θ2(·): = l1〈W1, |·|〉, θ3(·): =

l2||·||1, and b =
[
D
0

]
,A1L =

[
L
L

]
,A2U = −

[
0
U

]
and

A3E =
[
E
0

]
, Block PCA (12) can be treated as a gener-

alized case of (15) with matrix variables L, E, U and lin-
ear operators A1, A2, A3.
Under the framework of [21], we next present an

implementable splitting algorithm for the Block PCA
model (12).
Define operator

Sε[t] =

⎧⎨
⎩
t − ε, if t > ε,
t + ε, if t < −ε,
0, otherwise,

(17)

t Î ℝ and ε > 0. It can be extended to an arbitrary
matrix X Î ℝn, n by applying element-wise operation,
denoted by Sε[X] .
Consider the sigular value decompostion (SVD) of the

matrix X

X = U�VT , (18)

where U and V are orthogonal matrices consisting of
singular vectors, and Σ is the diagnal matrix made up of
the singular values. For each τ >0, the soft-thresholding
operator Dτ is defined as [22]

Dτ (X) = USτ (�)VT . (19)

More generally, for a matrix W Î ℝn, n with all ele-
ments nonnegative, we define

SW[X] = (x̂ij), x̂ij = Swij[xij]. (20)

Particularly, if W is the matrix with all elements 1, ||
X||w degenerates to ||X||1, and SεW[X] degenerates to
Sε[X] .

Let β > 0,μ > 2,	k =

[
	k

1

	k
2

]
, where 	k

1,	
k
2 ∈ Rn,n .

Then, for the calculated (Lk, Ek, Uk, Λk), the steps for
each iterative (Lk+1, Ek+1, Uk+1,Λk+1) for solving (12) are
as follows.
Step 1. Solve Lk+1 by the following problem.

minL ||L||∗ −
〈
	k

1 + 	k
2, L

〉
+

β

2
||L + Ek − D||2

+
β

2
||L − Uk||2

(21)

By Theorem 2.1 in [22], the unique solution of (21) is

Lk+1 = Dτ [Y], (22)

where τ = 1
2β
,Y = 1

2 [D − Ek +Uk] + 1
2β

[
	k

1 + 	k
2

]
.
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Step 2. Update the Lagrangian multiplier⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	
k+
1
2

1 = 	k
1 − β(Lk+1 + Ek − D),

	
k+
1
2

2 = 	k
2 − β(Lk+1 − Uk).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	
k+
1
2

1 = 	k
1 − β(Lk+1 + Ek − D),

	
k+
1
2

2 = 	k
2 − β(Lk+1 − Uk).

(23)

Step 3. Solve Uk+1, Ek+1 by the following two problem.

min
U

{‖U‖λ1W1
+ 〈	

k+
1
2

2 , U〉 + βμ

2

∥∥∥U − Uk
∥∥∥2},

min
E

{‖E‖1 − 〈 1
λ2

	
k+
1
2

1 , E〉 + βμ

2λ2

∥∥∥E − Ek
∥∥∥2}.

By the property of the operator Sτ [Y ] shown in [23],

Uk+1 = Sτλ1W1 [Ũ], (24)

where
τ = 1

βμ
, Ũ = Uk − 1

βμ
	

k+
1
2

2 ,

Ek+1 = Sα[Ẽ], (25)

where
α = λ2

βμ
, Ẽ = Ek + 1

βμ
	

k+
1
2

1 .

Step 4. Update the Lagrange multiplier Λk+1 by Lk+1,
Ek+1.

	k+1
1 = 	k

1 − β(Lk+1 + Ek+1 − D),

	k+1
2 = 	k

2 − β(Lk+1 − Uk+1).
(26)

The algorithm can be terminated when√∥∥D − Lk − Ek
∥∥2 + ∥∥Lk − Uk

∥∥2
‖D‖ ≤ ε1

(27)

and√∥∥�Lk
∥∥2 + ∥∥�Ek

∥∥2 +
∥∥�Uk

∥∥2 ≤ ε2, (28)

for tolerance ε1 >0, ε2 >0, where ΔLk = Lk+1- Lk, ΔEk =
Ek+1 - Ek, ΔUk = Uk+1- Uk.
The splitting algorithm for solving Block PCA model

is summarized in Algorithm 2.
In Algorithm 2, arguments b and μ are currently set

constant. Adaptive settings of these arguments may
speed up the convergence. The discussion of this issue
in a simple case can be referred to [24].

Results and discussion
We examine the NCI method based on two synthetic gene
regulatory networks with different sizes. The GRN in first
test is a small-sized network consisting of 14 genes and 27
interactions. There exist two communities in this GRN. In
the second test, the network consists of 50 genes and 100
interactions and the data come from the Artificial Gene
Network database [25]. Since the gene network is syn-
thetic, the corresponding matrix A in (5) is known before-
hand. We solve the GRN by the NCI method and
compare it with A to evaluate the performance of the algo-
rithm. Moreover, we examine the performance of the pro-
posed splitting algorithm in the third test.
The metric used in the performance examination was

introduced in [16]. It compares the signs of the esti-
mated matrix Ae with A. The accuracy is defined as

accuracy = (r11 + r22 + r33) /n2, (29)

where r11, r22, and r33 are the number of correctly
identified positives, zeros and negatives, representing
promotions, repressions, and no interaction, respectively.
The algorithm runs on a computer with Pentium (R)

dual-core CPU E5200 2.50GHz, and RAM 2.0GB. The
parameters of the algorithm are chosen as follows. In
Test 1, g in problem (8) is chosen from {0.05, 0.02,
0.008} to find possible GRNs and gτ = 0.02. In Test 2, g
is chosen from {0.02, 0.005, 0.001} and gτ = 0.005. In the

Algorithm 2

Algorithm 2: Splitting algorithm

Input: W1.

Output: low rank matrix L.

Step 0. Initiation. Set k = 0, b > 0, μ > 2, D = 1n,n . Set ε1 >0, ε2 >0, λ2 = 1/
√
n , l1 Î (0, l2), L0 = D, E0 = 0, U0 = D.

Step 1. Solve Lk+1 by Eq. (22).

Step 2. Update the Lagrangian multiplier
	k+

1
2 by Eq. (23).

Step 3. Solve Uk+1, Ek+1 via Eq. (24) and (25).

Step 4. Update the Lagrange multiplier Λk+1 via Eq. (26).

Step 5. Terminate if the stop criteria (27) and (28) are satisfied; otherwise, k: = k + 1, goto Step 1.

Liang et al. BMC Bioinformatics 2012, 13(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/13/S9/S3

Page 5 of 10



Figure 1 Synthetic small gene network. This synthetic gene network consists of 14 genes and 27 interactions. There are two communities:
gene 1-5 form a community, gene 6-10 form the other. “®” indicates promotion interaction, while “⊣” indicates repression.

Figure 2 Accuracy of NCI with the 30 runs. The accuracies of the NCI method and SGN method are shown in (A), (B) with 30 random
experiments. (C), (D) shows the efficiency of searching multiple possible GRNs at N-step of NCI method. “NCI” indicates normal NCI method
searching multiple possible GRNs, “SGN” denotes the sparse gene regulatory network method [16], and “NCI-single” indicates the NCI method
searching a single GRN at N-step. In (A) and (C), the expression levels are accurate, while in (B) and (D) 10% elements of the expression levels
are incorporated with Gaussian noise with zero mean and unit variance.
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first two tests, μ is chosen as 10g for problem (8), l1 as
0.2l2 in the Block PCA model, and p0 as 1

4d for Eq. (9),
where d is the diameter of the corresponding network.
The algorithm terminates in 3 iterations.

Test 1. A small gene network with 14 genes
Figure 1 shows the network and its two communities.
The diameter of this gene network is 6. We choose dif-
ferent initial gene expression levels randomly for 30
times. The corresponding 30 accuracy rates of the calcu-
lated GRN are shown in Figure 2(A). “NCI” and “SGN”
denote the NCI algorithm and sparse gene regulatory
network method [16], respectively. Compared with the
SGN algorithm, the NCI significantly improved predic-
tion accuracy. In the noise case, 10% elements of the
gene expression matrix X are incorporated with Gauss
noise with zero mean and unit variance. The accuracy
rates of two methods are shown in Figure 2(B). In both
of the noise-free (Figure 2(A)) and noise cases (Figure 2
(B)), the NCI method has much better performance in
most of the 30 runs. In the noise-free case, the NCI
algorithm increases the average accuracy from 78.8% to
83.5%. In the noise case, the NCI algorithm increases
the average accuracy from 87.3% to 88.9%.
To show the effectiveness of the NCI method at N-

step in searching multiple possible GRNs, we compare
the accuracy rates with the results of one iteration at N-
step (g = gτ at N-step). As shown in Figure 2(C), the
average accuracy is improved from 78.5% to 83.5% in
the 30 runs. In noise case (Figure 2(D)), the average
accuracy is improved from 87.6% to 88.9%. Thus, a
number of iterations at N-step is necessary for finding
accurate GRNs with the NCI algorithm.

Test 2. A gene network with 50 genes
The network in the second test consists of 50 genes and
100 interactions (See Figure 3(A)). Network statistics are
listed in Table 1. The nodes in red in Figure 3(A)) form
a unique community. The inferred network by NCI
algorithm contains 41 genes and 87 interactions. As
shown in Figure 3(B), the community identified by the
NCI algorithm has a very large overlap with the true
community. Among 34 genes in the true community, 23
important ones (with large in-degree and out-degree)
are successfully identified.

Test 3. The performance of the Block PCA and splitting
algorithm
The following experiments are specially designed to test
the efficiency of the Block PCA method and the perfor-
mance of the splitting algorithm as well. We randomly
generate three clusters with 30 points (See Figure 4(A)).
Three clusters calculated by K-means are shown in Fig-
ure 4(B). Based on the distances between these points,
matrix W1 is calculated by Eq. (13) with p0 = 0.684.
The results of the splitting algorithm are shown in Fig-
ure 4(C). The corresponding three clusters calculated by
SSVD are displayed with different colors in Figure 4(D).
Among 30 data points, two points (the point 25 and 30)

Figure 3 Inference of the web100-023 gene regulatory network. The web100-023 gene network consists of 50 genes and 100 interactions
which is shown in (A), where “®” indicates promotion interaction, while “┤” indicates repression. The 34 nodes in red in (A) form a unique
community. With the 34 genes in the true community, the community identified by the NCI algorithm has an overlap of 23 important genes
(with large in-degree and out-degree). The overlap is indicated by nodes in red in (B).

Table 1 Characteristics of web100-023 network

number of vertices 50 number of arcs 100

density 0.04 in-degree center Node 1

diameter 10 out-degree center Node 1

characteristic path length 13.0612 closeness center Node 14

average clustering coefficient 0.0747 betweeness center Node 1

These statistics come from [27].
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are outliers, not included in any cluster. The clustering
result of the remaining 28 points is identical with that
of K-means.
To verify the effectiveness of the argument l1, we

choose different values and the calculated low rank
matrices L are shown in Figure 5. It is shown that the
number of nonzero elements of L (white pixels of the
images) decreases, as l1 increases. The numbers of non-
zero elements of L are 804, 485, 284 and 100, with l1 =
0.2l2, 0.4l2, 0.6l2, and 0.7l2 in Figure 5(A), (B), (C) and
5(D), respectively.
We compare the performance of the splitting algo-

rithm with CVX and SDPNAL [26] by which the Block
PCA model is solved via the SDP formulation (14). The
results are listed in Table 2, where “Points30” indicates
calculating on the data of 30 points on a plane, “funVal”
indicates the calculated objective function value for the
Block PCA model, “split”, “cvx” and “sdpnal” indicate
splitting method, CVX and SDPNAL, respectively. It is
shown in Table 2 that splitting algorithm outperforms
others in all the tests.

Conclusion
We have developed the NCI method for gene regulatory
network reconstruction from gene expression data.

Figure 4 Clusters produced by Block PCA and K-means. In (A),
30 points are randomly generated on a plane. Three clusters
calculated by K-means are shown in (B). The low rank matrix
calculated by the splitting algorithm is depicted in (C). The
corresponding three clusters calculated by SSVD are displayed with
different colors depicted in (D). Among 30 data points, two points
(the point 25 and 30) are outliers, not included in any cluster. The
clustering result of the remaining 28 points is identical with that of
K-means.

Figure 5 Low rank matrices of the Block PCA model with various l1. The figure depicts the low rank matrices L of the Block PCA model
with different values of l1. In (A), (B), (C) and (D), the value of l1 of the Block PCA model is chosen as 0.2l2, 0.4l2, 0.6l2, and 0.7l2, respectively.
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Based on the convex programming technology, the NCI
method has shown the capability to identify multiple
subnetworks within a large-scale gene regulatory net-
work. The NCI method includes two main steps. At the
first step, the algorithm infers a gene regulatory net-
work. At the second step, the algorithm estimates
potential community structures. These two steps repeat
until the algorithm terminates. Furthermore, we have
proposed an efficient Block PCA method for exploring
communities within a GRN and the splitting algorithm
for the Block PCA model. Numerical experiments have
validated the effectiveness of the NCI method in identi-
fying GRNs and inferring the communities.

Abbreviations
GRN: gene regulatory network; NCI: network and community identification;
Block PCA: block principal component analysis.
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