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Abstract

Often protein (or gene) time-course data are collected for multiple replicates. Each replicate generally has sparse
data with the number of time points being less than the number of proteins. Usually each replicate is modeled
separately. However, here all the information in each of the replicates is used to make a composite inference
about signal networks. The composite inference comes from combining well structured Bayesian probabilistic
modeling with a multi-faceted Markov Chain Monte Carlo algorithm. Based on simulations which investigate many
different types of network interactions and experimental variabilities, the composite examination uncovers many
important relationships within the networks. In particular, when the edge’s partial correlation between two proteins
is at least moderate, then the composite’s posterior probability is large.

Introduction
Often the laboratory collection of protein phosphoryla-
tion time-course data results not in a single set of time-
course data, but in multiple sets of time-course data.
Typically the data are sparse: the number t of time
points is significantly less than the number k of proteins.
Even though there are differences between these data
sets, the underlying biochemical interactions (signal) are
reflected in each of these data sets. Many times these
individual sets of time course protein data are modeled
individually. The discussion in this paper focuses on
protein measurements. However, it equally applies to
sparse time course measurements obtained through
gene microarrays.
The methods in this paper incorporate data from mul-

tiple replications of a systems biology investigation to
determine composite posterior probabilities of network
relationships. These methods are motivated by the
desire to predict interactions between proteins based on
probabilistically incorporating all of the data from sev-
eral independent investigations. Utilizing underlying
Gaussian-based regression likelihood, low informative

empirical priors and Bayesian model averaging, closed
form (up to a proportional constant) posterior probabil-
ities are computed of networks, each of which is a direc-
ted acyclic graph (DAG). Extensive searching through
the space of DAGs is performed with a multi structured
Metropolis-Hastings Markov Chain Monte Carlo based
algorithm. These model DAG posterior probabilities are
combined with Bayesian model averaging [1] to produce
posterior probabilities for relationships between the
proteins.
Since the combined likelihood from our m indepen-

dent replications has approximately m times more infor-
mation, whether Akaike, Bayesian, Dirichlet information
criteria or Fisher information, than that of a single repli-
cation, the combined technique tends to yield more pre-
cise estimates for posterior probabilities [2,3]. Also in
this paper, simulations demonstrate that this combined
analysis captures more of a network’s signal.
In a previous paper [4], an approximate Bayesian pos-

terior analysis for a single sparse replication was devel-
oped. As with the current paper, it used multiple
regression to model cotemporal associations between
the proteins’ measurements, where each sampled time
provided insight into the proteins’ relationships. Diag-
nostics to test the suitability of this [4] method for a
particular data set were presented. These diagnostics
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easily can be employed on each separate replication of a
multiple replication study in order to test the current
paper’s suitability for a particular multiple replication
study. Furthermore, many of the theoretical justifica-
tions from [4] carry over to the multiple replication set-
ting. In particular, the previous and current
methodology strongly relates to low-order (small num-
ber of predictors) dependency networks [5-7]. The use
of DAGs, with the proteins being the nodes and directed
edges signifying the relations, allows the splitting of a
replicates’ likelihood into conditionally independent
parts [6,8-10]. While in [4] approximate posterior prob-
abilities were obtained for a single replication through
the use of Bayesian information based scores, in the cur-
rent paper an exact Bayesian posterior probability is
obtained for the combined m replications.
Recent papers have examined combining data from

multiple studies. In [11], a score function based on the
expected number of associations was developed, and its
results were weighted in a Bayesian fashion with supple-
mentary information from gene ontology and protein
structures. In a frequentist, non-Bayesian manner, the
authors in [12] weighted different studies so as to maxi-
mize the statistical power (chance of claiming a true
positive). They also obtained integrated p-value esti-
mates. In [13], linear programming was used to find the
subnetworks which are most consistent from one repli-
cation to the next.

Methods
Edge probabilities are computed for an undirected graph
where the nodes represent individual proteins and where
an edge between two nodes represents a relationship
between the two corresponding proteins. These edge
probabilities are based on an algorithmic search through
the space of all models (DAGs) guided by the posterior
probability of the DAGs. This DAG posterior probability
takes into account all of the data sets. Verification of the
effectiveness of this technique requires simulations. A
simulation consists of generating multiple sets of data
from the same underlying signal. The following discus-
sions focus on each of the following important ideas:
DAG posterior probability, algorithmic search, testing
data sets and analysis techniques.

Posterior probability
Our mathematical space of network models consists of
directed acyclic graphs. The vertices represent proteins
and the directed edges signify parents-child linear asso-
ciations between the proteins. In particular, the set of
parents (predictors) of a particular child (response) is the
set of vertices which have directed edges going from the
parent to the child. In order to give equal consideration
to each child and each potential parent, each protein’s

time course values within a data set are standardized,
using its average and standard deviation. The number of
parents for any particular child is restricted to be less
than or equal to t - 2, guaranteeing valid regression set-
tings [14]. Acyclic refers to not allowing cycles in the
graph, i.e. not allowing a protein to be a direct descen-
dent of itself. In this paper, we present a theoretically
strong probabilistic method which comprehensively
incorporates multiple data sets. For convenience, the data
sets are referred to as reps, even though the reps may
have different signal parameters and may differ in their
variances about the underlying signal network. Separately
for each DAG, rep and child combination, we utilize
independent unit-informative empirical g-priors for the
slope parameters of the parents-child linear regression
relations that are specified by the DAG [15]. As well,
independent unit informative inverse gamma priors are
independently placed on the residual variances. Thus,
due to the prior structure, the reps’ data sets are indepen-
dent from one replicate to the next. In addition, due to
the DAG structure, each child’s conditional likelihood is
independent from that of another child [8]. Therefore a
particular DAG’s Bayes factor, is

Pr(Y|DAG) =
∏

children
i

∏
reps

j

Pr(Y
(j)
i |DAG)

(1)

where Y represents the (standardized) data, and Y(j)
i
is

the data for child i in rep j. Due to the conjugacy nature
of the priors, the child i rep j Bayes factor,
Pr(Y

(j)
i |DAG) , has a closed form expression [15, Chapter

9]. Specifically, this Bayes factor is given by

Pr
(
Y(j)
i |DAG

)
=

⎧⎨
⎩

π t/2 �((1+t)/2)
�(1/2) (1 + t)−P(i)/2 s2ij

(s2ij+SSR
(j)
i )

(1+t)/2 ifP(i) ≥ 1

(2π)−t/2e−(t−1)/2 ifP(i) = 0
(2)

where P(i) is the number of parents of child i for the
DAG, X(j)

i
is child i’s parents data matrix for rep j for

the DAG, s2ij is the corresponding residual regression
(error) variance, and

SSR(j)
i = (Y(j)

i )T
(
I − t

t + 1
X(j)
i ((X(j)

i )
T
X(j)
i )

−1
(X(j)

i )
T
)
Y(j)
i .

The simple value of Pr(Y
(j)
i |DAG)when i has no par-

ents is a consequence of the standardized data.
From Equations (1) and (2), a closed form is easily

found for the DAG’s overall Bayes factor. As is com-
mon, we assume that the prior probability of one model
(DAG) is the same as that of another. This yields that
the posterior probability of a particular DAG, given all
of the data, is proportional to the DAG’s (overall) Bayes
factor. Since for even a moderate number of proteins
the DAG space is too large for a census, an intelligent
search algorithm must be used.
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Algorithmic search
In a Markov chain manner, the Metropolis-Hastings
algorithm moves through the DAG space. From equa-
tions (1) and (2), for any element, a DAG, its Bayes fac-
tor (proportional posterior probability) can be
computed. Given a current element in the search space,
the algorithm generates a candidate element from the
current one. If the probability of the candidate is greater
than the probability of the current element, then the
candidate replaces the current element. If the probability
of the candidate is not an improvement over the prob-
ability of the current element, then the candidate
replaces the current element with a probability of
candidateBayesProb
currentBayesProb . For each of 10 runs there are 50 million
iterations, and the highest 200 scoring DAGs, along
with their Bayes factors, are collected. These 10 lists of
200 are amalgamated into one list, TopD. From the list,
TopD, probabilities for undirected graphs (TopU), pro-
tein-to-protein edge posterior probabilities, and other
network feature probabilities are computed. Details of
the Metropolis-Hastings algorithm are found in [16].
The Metropolis-Hastings algorithm used in this

research is a variation of the one presented in [4,17,18].
This paper’s single rep algorithm is a pure Bayes poster-
ior modification of the previous Bayesian information
criterion (BIC) based approximation algorithm [4]. The
multiple rep algorithm has similarities to the single rep
algorithm, but it moves through the DAG space based
on Bayes posterior probabilities after incorporating mul-
tiple reps, and it allows multiple edge insertions and
deletions.
The use of a single move, a single insertion or deletion

of an edge, in a Metropolis-Hastings search is common
and is motivated by the Metropolis requirement that all
moves be reversible with equal probability of a move
and its inverse [16]. In the multiple rep algorithm, sin-
gle, double, or triple reversible moves are allowed. Each
vertex in the directed acyclic graphs has bounded in-
degree (a maximum number of parents of a given child),
typically 3. This condition must be enforced as well.
The implementation of multiple moves is straightfor-
ward. First, the number of changes (1, 2 or 3) is chosen
uniformly. Second, using this chosen number, either
edge insertions or deletions are selected and applied
yielding a candidate directed acyclic graph. Third, if the
candidate directed acyclic graph is found to be infeasible
then the process of choosing a candidate starts over.

Testing data
In order to assess the quality of the models found by the
multiple rep algorithm, it is necessary to engineer repli-
cate data where the underlying signal is known. For this
paper, five studies of multiple replicate data are gener-
ated from known underlying signals.

The simulated sets of data are sampled directly from
multivariate normal distributions, hence no preproces-
sing transformations are needed. To generate the data
for a particular rep of t time points and k proteins, we
draw t independent samples from a k-dimensional mul-
tivariate normal distribution which has a mean vector of
zeros and a selected generating covariance matrix,
which provides the selected network signal. We use cov-
ariance matrices that are block diagonal with first-order
autocorrelations [14, page 414] within the blocks (and
zero correlations between blocks). Specifically, if pro-
teins p1, p2, and p3 constitute a block of 3 correlated
proteins, then the covariance (equivalent to signal Pear-
son correlation) block corresponding to them is of the
form:

⎡
⎣1.0 ρ ρ2

ρ 1.0 ρ

ρ2 ρ 1.0

⎤
⎦ (3)

where r is the Pearson correlation between adjacent
proteins within the block. We say that the (triple) block
of three vertices is correlated with intensity r.
One benefit of the block structures is that we obtain

closed-form solutions for the generating partial correla-
tions [14, page 160] between the proteins. For the triple
block with associated covariance matrix (3), the partial
correlation matrix is:

⎡
⎢⎢⎣

1.0 ρ√
ρ2+1

0.0
ρ√
ρ2+1

1.0 ρ√
ρ2+1

0.0 ρ√
ρ2+1

1.0

⎤
⎥⎥⎦ (4)

For a block of 4 proteins, the partial correlations
between p1 and p2 and between p3 and p4 equal

ρ√
ρ2+1,

while the partial correlation between p2 and p3 is
ρ

ρ2+1.
All other pairs of the four proteins have a partial corre-
lation of zero.

Analysis of data and models
Our overall strategy is to conduct five illustrative simula-
tion studies where each study consists of a set of three
reps, each generated from a specific signal. Each of the five
studies are designed to examine potentially different char-
acteristics of biological networks. The three reps in a study
mimic biological replicates. For each study, the multiple
rep Bayesian Metropolis-Hastings algorithm is applied to
all three replicates, giving the composite results. For com-
parison purposes, the single rep algorithm is applied to
each of the three individual reps. Separately, for the com-
posite and for each of the individual executions of the
modeling algorithms, the matrix of protein-protein edge
posterior probabilities and the vector of within-block con-
nectivity probabilities are obtained.
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Given a block of nodes, they are connected if given
any pair of the nodes in the block, there exists a
sequence of edges from the first node in the pair to the
second node in the pair, where each edge is incident
only with nodes in the block. The probability that a
block of nodes, representing our proteins, is connected
is estimated by the sum of the probabilities of the top
undirected graphs in which those nodes are connected.
Mathematically, this is:

NTopU∑
i=1

X (v1, ..., vn,TopUi)Prob(TopUi),

where the characteristic function c(v1, . . . , vn, G) has
the value 1 if and only if the vertices v1, . . . , vn are con-
nected in the undirected graph G. The computation of
the characteristic function c () for 3 and 4 nodes is
straightforward.

Results
Specific results of the five simulation studies are pre-
sented. The discussion of the first study is more detailed
than that of the remaining four since some of the details
of all five studies are quite similar. Following the discus-
sion of the individual studies, a further analysis of the
posterior probabilities is presented.

Individual studies
The first of five simulation studies is a set of three reps,
R(1)
2

, R(1)
2

and R(1)
3

. Each of these reps reflects t = 10
simulated measurements of twelve proteins,
p(1)1 , . . . , p(1)12 . Furthermore, the underlying generating
covariance matrix has assigned high correlation inten-
sity, r = 0.94, to each of the four blocks {p(1)1 , . . . , p(1)3 } ,
{p(1)7 , . . . , p(1)8 } , {p(1)7 , . . . , p(1)8 } , and {p(1)10 , . . . , p

(1)
12 } , as

described in the Methods. The observed Pearson corre-
lations in the reps are close to the Pearson correlations
of their generator.
Table 1 shows that for the four blocks of signal corre-

lated proteins, our model exhibits extremely high pos-
terior connectivity probabilities. In all the reps, except
for the blocks {p(1)1 , . . . , p(1)3 } , and {p(1)10 , . . . , p

(1)
12 } in

R(1)
2

, the triple connectivity probability of the highly cor-
related proteins is 1.0. In addition, the average of the tri-
ple connectivity probabilities over all false triples does
not exceed 0.0641.
Figure 1 displays the moderate to high edge posterior

probabilities of Study1. From Equation (4), the generat-
ing partial correlations between p(1)1

and p(1)2
and

between p(1)2
and p(1)3

equal 0.685, and the generating
partial correlation for p(1)1

and p(1)3
is zero. It is no

coincidence that the edge posterior probabilities for
p(1)1 − p(1)2

and p(1)2 − p(1)3
are no lower than 0.9139 in

any one of the reps and the composite. Furthermore,
the edge probabilities for p(1)1 − p(1)3

do not exceed
0.0501. However, as seen in Table 1, the triple connec-
tivity probabilities for proteins p(1)1

, p(1)2
, and p(1)3

remain extremely high.
Consider a particular one of the generating 3 × 3

blocks in this first simulation, say based on the ordered
proteins: A, B, and C. It has high moderate Pearson cor-
relations between all of its protein pairs. There is also
substantial partial correlation between two adjacency
proteins, namely between A and B, and also between B
and C. However, there is zero partial correlation between
the non-adjacent proteins A and C. In other words, for a
fixed value of B, there is no correlation between A and C.
It is informative to compare this setting to the biological
setting where a parent protein A* has a causal influence
on a child protein B* which has a causal influence on a
grandchild protein C*. However, for a fixed result for B*,
A* has no influence on C*. Hence, there is no partial cau-
sal influence between A* and C*.
The estimation of partial correlation for sparse biolo-

gical data is accomplished through the Lasso, adaptive
Lasso and Ridge techniques [6,19-26]. Table 2 shows
sample partial correlation estimates for R(1)

1
using Lasso

and adaptive Lasso (entries above and below the main
diagonal, respectively). These two sets of partial correla-
tion estimates for R(1)

1
strongly reflect the true generat-

ing partial correlation. A sample partial correlation
estimate for R(1)

1
based on Ridge is shown in Table 3.

This estimate also captures the true underlying partial
correlation, though not as cleanly. There is much less
zero partial correlation from the Ridge technique than
there is from the Lasso and adaptive Lasso techniques.
Computationally, the Ridge technique involves a quadra-
tic penalty parameter on slope magnitude, while the
Lasso and adaptive Lasso techniques adopt a linear
penalty.

Table 1 Study 1 posterior probabilities

C(1) R(1)
1 R(1)

2 R(1)
3

p(1)1 − p(1)2 − p(1)3
1.0 1.0 0.9744 1.0

p(1)4 − p(1)5 − p(1)6
1.0 1.0 1.0 1.0

p(1)7 − p(1)8 − p(1)9
1.0 1.0 1.0 1.0

p(1)10 − p(1)11 − p(1)12
1.0 1.0 0.993 1.0

TFP Avg 0.0376 0.0246 0.0641 0.0346

TLFP Avg 0.0008 0.0008 0.0047 0.0017

For the first study, the posterior connectivity probabilities for the four signal
connected blocks are shown. For the composite model and the single rep
models, all of these are quite high. The last two rows indicate the posterior
probabilities (raw average and average via initial log odds transformation)
over all false possible threesomes of vertices. These average posterior
probabilities and average log odds are quite low.
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Figure 1 Study 1 undirected edge posterior probabilities. For the first study, (a), (b), (c) and (d) are representations of the undirected edge

posterior probabilities. These are computed for the composite of all the replicates, C(1), and for the individual replicates, R(1)
1

, R(1)
2

and R(1)
3

.

Blocks of vertices {p(1)1 , p(1)2 , p(1)3 } , p(1)4 , p(1)5 , p(1)6 } , {p(1)7 , p(1)8 , p(1)9 } , and {p(1)10 , p(1)11 , p(1)12 } are highly correlated, r = 0.94, by the

generating signal (3). In the diagrams, proteins p(1)1 , . . . , p(1)12
are represented by A, . . . , L for ease of reading. In all five figures, red, blue and

brown edges signify edge probabilities of greater than 0.9, between 0.8 and 0.9, and from 0.5 to 0.8, respectively. The composite has high

posterior probabilities for all edges with at least moderate network partial correlations. One of the three reps, R(1)
2

, misidentifies a small number

of edges.

Table 2 Lasso and adaptive Lasso partial correlation estimates for R(1)
1

p(1)1 p(1)2 p(1)3 p(1)4 p(1)5 p(1)6 p(1)7 p(1)8 p(1)9 p(1)10 p(1)11 p(1)12

p(1)1
1.00 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p(1)2
0.84 1.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p(1)3
0.00 0.48 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p(1)4
0.00 0.00 0.00 1.00 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p(1)5
0.00 0.00 0.00 0.58 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p(1)6
0.00 0.00 0.00 0.00 0.42 1.00 0.00 0.00 0.00 0.00 0.00 0.00

p(1)7
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.96 0.00 0.00 0.00 0.00

p(1)8
0.00 0.00 0.00 0.00 0.00 0.00 0.70 1.00 0.00 0.00 0.00 0.00

p(1)9
0.00 0.00 0.15 0.00 0.00 0.00 0.32 0.28 1.00 0.00 0.00 0.00

p(1)10
0.00 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.89 0.27

p(1)11
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.63 1.00 0.00

p(1)12
0.00 0.00 0.06 0.00 0.00 0.00 0.01 0.00 0.00 0.50 0.28 1.00

Sample partial correlation estimates for replicate R(1)
1

are computed using both the Lasso and adaptive Lasso methods. These estimates are shown below and

above the main diagonal, respectively. These replicate partial correlation estimates reflect the generating partial correlations, though not exactly.
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In Table 4, the protein to protein sample Pearson cor-
relations of R(1)

1
are shown. Note that, as expected from

the generator, p(1)1 − p(1)3
has high sample Pearson cor-

relation, despite its near zero sample partial correlation
estimates.
The second simulation study consists of t = 5 mea-

surements of 9 proteins, p(2)1 , . . . , p(2)9
. The replicate

data is generated from a signal giving correlation inten-
sity r = 0.9 to each of the two triple blocks,
{p(2)1 , p(2)2 , p(2)3 } and {p(2)7 , p(2)8 , p(2)9 } , as well as the block
of two proteins {p(2)4 , p(2)5 } . All other pairs of proteins
are assigned zero correlation. Note that protein p(2)6

has
zero signal correlation to all other proteins.
The triple and double probabilities also are examined.

Table 5 depicts the analysis of these posterior probabil-

ities. An interesting result is the low {p(2)1 , p(2)2 , p(2)3 } tri-

ple probability of 0.0416 for R(2)
2

. This is due to R(2)
2

having low double probabilities amongst proteins

p(2)1 , p(2)2
and p(2)3

(see Figure 2). For R(2)
2

, the two

edges p(2)1 − p(2)3
and p(2)2 − p(2)3

have probabilities of

0.0880 and 0.1006, respectively. The sample Lasso and

adaptive Lasso partial correlations estimates in R(2)
2

for

these 2 edges are zero. Our composite analysis of C(2) as

well as the individual rep analysis of R(2)
1

are successful

in recognizing the generating signal, whereas individual

rep analyses of R(2)
2

and R(2)
3

do not fare as well. Many

of these R(2)
2

and R(2)
3

deviations from signal are asso-

ciated with corresponding deviations of their sample
partial correlations from the signal, which is most likely
caused by the small sample size of t = 5.
The third study contains 10 measurements of 10 pro-

teins, p(3)1 , . . . , p(3)10
. An underlying signal is generated

with correlation intensity r = 0.94 for the two quadruple

blocks of vertices {p(3)1 , . . . , p(3)4 } and {p(3)5 , . . . , p(3)8 } as

well as the double block {p(3)9 , p(3)10 } .

Table 4 Pearson correlations for R(1)
1

p(1)1 p(1)2 p(1)3 p(1)4 p(1)5 p(1)6 p(1)7 p(1)8 p(1)9 p(1)10 p(1)11

p(1)1
0.94 1.00

p(1)2
0.82 0.92 1.00

p(1)3
0.16 0.14 0.31 1.00

p(1)4
0.18 0.22 0.39 0.90 1.00

p(1)5
0.07 0.19 0.31 0.78 0.86 1.00

p(1)6
0.55 0.64 0.61 -0.06 -0.18 -0.09 1.00

p(1)7
0.51 0.61 0.62 -0.05 -0.16 -0.12 0.98 1.00

p(1)8
0.54 0.64 0.69 0.03 -0.07 -0.01 0.97 0.97 1.00

p(1)9
-0.20 -0.18 -0.08 -0.09 0.00 0.12 0.02 -0.02 0.01 1.00

p(1)10
-0.11 0.08 -0.02 -0.16 -0.06 0.08 0.17 0.10 0.13 0.97 1.00

p(1)11
-0.06 0.01 0.15 -0.01 0.09 0.22 0.26 0.21 0.27 0.95 0.95

Sample Pearson correlations for R(1)
1

.

Table 3 Ridge partial correlation estimates for R(1)
1

p(1)1 p(1)2 p(1)3 p(1)4 p(1)5 p(1)6 p(1)7 p(1)8 p(1)9 p(1)10 p(1)11

p(1)2
0.75 1.00

p(1)3
0.10 0.30 1.00

p(1)4
0.49 -0.49 0.00 1.00

p(1)5
0.00 0.06 0.13 0.54 1.00

p(1)6
-0.16 0.14 0.06 0.31 0.31 1.00

p(1)7
0.14 0.05 0.00 0.02 -0.07 0.00 1.00

p(1)8
-0.16 0.08 0.07 0.11 -0.05 -0.08 0.49 1.00

p(1)9
0.00 -0.04 0.16 0.13 -0.07 0.00 0.43 0.39 1.00

p(1)10
0.07 -0.09 0.00 0.18 0.00 0.00 -0.20 -0.05 -0.04 1.00

p(1)11
0.21 0.03 -0.08 -0.16 0.00 0.06 0.38 -0.00 -0.09 0.50 1.00

p(1)12
-0.21 -0.05 0.09 -0.22 0.11 0.05 -0.05 0.00 0.19 0.54 0.40

Sample partial correlation estimates for R(1)
1

are computed using the Ridge technique.
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High signal correlations between proteins yield high
sample Pearson correlations (ranging from 0.73 to 0.99)
within the reps. Additionally, the zero signal correlation
pairs yield low sample Pearson correlations, ranging
from -0.13 to 0.40.
The quadruple and double connectivity probabilities

are shown in Table 6. For signal blocks in C(3) , R(3)
1

,
R(3)
2

, and R(3)
3

, the computed quadruple and double
probabilities are all 1.0. This indicates each one of the
top undirected graphs has a connection within
{p(3)9 , p(3)10 } , {p(3)5 , . . . , p(3)8 }, and {p(3)9 , p(3)10 } . The average

connectivity probabilities for non-blocks is low, with
none exceeding 0.1203 in any of the models.
For the quadruple block of proteins,

{p(3)1 , p(3)2 , p(3)3 , p(3)4 } , signal partial correlations between

p(3)1
and p(3)2

, and between p(3)3
and p(3)4

equal 0.685,

and the signal partial correlation between p(3)2
and p(3)3

is 0.499. All other combinations of two proteins in this
block have a signal partial correlation of zero. As might
be expected, the edge posterior probabilities for

Figure 2 Study 2 undirected edge posterior probabilities. For the second study, (a), (b), (c) and (d) are representations of the undirected

edge posterior probabilities. These are computed for the composite of all the replicates, C(2), and for the individual replicates, R(2)
1

, R(2)
2

and

R(2)
3

. Blocks of vertices {p(2)1 , p(2)2 , p(2)3 }, {p(2)4 , p(2)5 }, {p(2)6 }, and {p(2)7 , p(2)8 , p(2)9 } are highly correlated, r = 0.9, by the generating signal (3).

In the diagrams proteins p(2)1 , . . . , p(2)9
are represented by A, . . . , I for ease of reading. As in the first study, the composite has high posterior

probabilities for all edges with at least moderate network partial correlations. Overall, the smaller blocks were not identified as well as the triple

blocks. The signal was not identified as well for R(2)
1

.

Table 5 Study 2 posterior probabilities

C(1) R(1)
1 R(1)

2 R(1)
3

p(2)1 − p(2)2 − p(2)3
1.0 0.9902 0.0416 0.7189

p(2)7 − p(2)8 − p(2)9
1.0 1.0 0.9397 1.0

TEP Avg 0.1482 0.1053 0.1680 0.1440

TLFP Avg 0.0185 0.0212 0.0821 0.0377

p(2)4 − p(2)5
0.8624 0.9974 0.0659 0.3481

DFP Avg 0.1943 0.1493 0.2612 0.2174

DLEP Avg 0.0488 0.0536 0.1692 0.0996

For the second study, the posterior connectivity probabilities for the three signal connected blocks (r = 0.9) are shown on rows 1, 2 and 5. The posterior
probabilities averages are shown for all false triple and double possibilities on rows 3 and 4, and 6 and 7, respectively.
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p(2)4 − p(2)5 , p(3)3 − p(3)4
, and p(3)2 − p(3)3

are high, averaging

0.95 among the three reps and the composite. All other
edge probabilities within this block have an average of
0.105 (see Figure 3). Nevertheless, each of the probabil-
ities that all four proteins connect is 1.0 in all reps and
the composite (view Table 6).
The fourth study complements the first study but

with lower and decreasing correlation intensities
among the 4 blocks of three proteins. The assigned r
values to the four blocks of three proteins are 0.7, 0.6,
0.6 and 0.5, respectively. As in the previous three stu-
dies, average sample correlations between proteins in
different blocks remain low throughout the reps, ran-
ging from -0.0329 to 0.1159. The sample correlations

between proteins that are signal correlated within
blocks are representative of the signal correlations.
The exception occurs in R(4)

2
, where R(4)

2
has relatively

low within block sample correlations ranging from
-0.1141 to 0.7817. This influenced its signal inconsis-
tencies in edge probabilities (refer to Figure 4). In gen-
eral, triples associated with lower generating r values
receive lower and more inconsistent correlations,
which also speak to some edge probability inconsisten-
cies in Figure 4.
The triple connectivity probabilities can be seen in

Table 7. With lower signal correlations among the tri-
ples, the triple connectivity posterior probabilities are
not quite as strong as in the previous studies. However,

Figure 3 Study 3 undirected edge posterior probabilities. For the third study, (a), (b), (c) and (d) are representations of the undirected edge

posterior probabilities. These are computed for the composite of all the replicates, C(3), and for the individual replicates, R(3)
1

, R(3)
2

and R(3)
3

.

Blocks of vertices {p(3)1 , p(3)2 , p(3)3 , p(3)4 }, {p(3)5 , p(3)6 , p(3)7 , p(3)8 }, and {p(3)9 , p(3)10 } are highly correlated, r = 0.94, by the generating signal (3).

In the diagrams, proteins p(3)1 , . . . , p(3)10
are represented by A, . . . , J for ease of reading. The composite has high posterior probabilities for all

edges with at least moderate partial correlations. The composite analysis outperforms at least two of the single replicate analyses.

Table 6 Study 3 posterior probabilities

C(3) R(3)
1 R(3)

2 R(3)
3

p(3)1 − p(3)2 − p(3)3 − p(3)4
1.0 1.0 1.0 1.0

p(3)5 − p(3)6 − p(3)7 − p(3)8
1.0 1.0 1.0 1.0

QFP Avg 0.0611 0.0683 0.0809 0.0459

QLFP Avg 0.0035 0.0038 0.0059 0.0008

p(3)9 − p(3)10
1.0 1.0 1.0 1.0

DFP Avg 0.094 0.1203 0.1044 0.0751

DLEP Avg 0.0232 0.0094 0.0144 0.0045

For the third study, the posterior connectivity probabilities for the three signal connected blocks, r = 0.94, are shown on rows 1, 2 and 5. The posterior
probabilities averages for all non-signal generated quadruple and double possibilities are shown on rows 3 and 4, and 6 and 7, respectively.
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the composite performs at least as well if not better
than each of the individual replicates.
The fifth study uses the signal topology of the first

and fourth studies. However, the first replicate has cor-
relation intensity of r = 0.9, the second replicate has r
= 0.82 and the third replicate has r = 0.7. In this study
the generating signal is not as strong as the signals in
the first three studies. The block correlations for each
replicate are derived from the r value assigned to each

rep. As expected, R(5)
1

has the highest sample correla-
tions among triple signal correlated proteins, followed
by R(5)

2
and lastly R(5)

3
. All have small sample correla-

tion averages among signal zero correlated proteins. The
edge probability diagrams (Figure 5) are symbolic of
these results.
Table 8 shows triple connectivity posterior probabil-

ities. Analyses for C(5) and R(5)
1 show triple connectivity

probabilities of 1.0 for all blocks, while the single rep

Table 7 Study 4 posterior probabilities

C(4) R(4)
1 R(4)

2 R(4)
3

p(4)1 − p(4)2 − p(4)3
1.0 1.0 0.0 1.0

p(4)4 − p(4)5 − p(4)6
0.9874 0.3109 0.6007 0.8037

p(4)7 − p(4)8 − p(4)9
0.0455 0.0021 0.0095 0.0106

p(4)10 − p(4)11 − p(4)12
0.3655 0.0038 0.1190 0.0117

TFP Avg 0.0853 0.0467 0.0692 0.0700

TLFP Avg 0.0043 0.0018 0.0046 0.0068

For the fourth study, the posterior connectivity probabilities are shown for the four signal connected blocks with r values of 0.7, 0.6, 0.6, and 0.5, respectively.
For the composite models and the single rep models, all these are quite high. The last two rows indicate the posterior probability averages over all other non-
block threesome of proteins; these averages are very low.

Figure 4 Study 4 undirected edge posterior probabilities. For the fourth study, (a), (b), (c) and (d) are representations of the undirected edge

posterior probabilities. These are computed for the composite of all the replicates, C(4), and for the individual replicates, R(4)
1

, R(4)
2

and R(4)
3

.

Blocks of vertices {p(4)1 , p(4)2 , p(4)3 }, {p(4)4 , p(4)5 , p(4)6 }, {p(4)7 , p(4)8 , p(4)9 }, and {p(4)10 , p
(4)
11 , p(4)12 } are signal correlated with r values of 0.7, 0.6,

0.6 and 0.5, respectively for each block (3). In the diagrams proteins p(4)1 , . . . , p(4)12
are represented by A, . . . , L for ease of reading. With this

study’s smaller partial correlations within blocks, the network signal is not recovered as well as in the three previous studies. Still, the composite
model outperforms each of the individual replicates’ models.
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analysis for R(5)
2 does not recognize signal in

{p(5)1 , p(5)2 , p(5)3 } (see Figure 5). The analysis for R(5)
3

,
which was generated with the lowest correlation inten-
sity, does not recognize the signal as well as those of
R(5)
1 and C(5).

ROC analysis of posterior probabilities
The receiver operating characteristic (ROC) curves [27]
for the composite and the individual replicates from

each of the five studies are shown in Figure 6. The ROC
(x, y) coordinates are generated by the decreasing
sequence of edge posterior probability cutoffs (i.e. lower
limits for classifying positive edges). The y-coordinate,
the true positive rate (TPR), is the fraction of signal
edges that are classified as positive edges. The x-coordi-
nate, the false positive rate (FPR), is the fraction of sig-
nal non-edges that are classified as positive edges. In
each of Figures 6(a)-6(d), comparisons are made

Figure 5 Study 5 undirected edge posterior probabilities. For the fifth study, (a), (b), (c) and (d) are representations of the undirected edge

posterior probabilities. These are computed for the composite of all the replicates, C(5), and for the individual replicates, R(5)
1

, R(5)
2

and R(5)
3

.

Blocks of vertices {p(5)1 , p(5)2 , p(5)3 }, {p(5)4 , p(5)5 , p(5)6 }, {p(5)7 , p(5)8 , p(5)9 } and {p(5)10 , p
(5)
11 , p(5)12 } are signal correlated in R(5)

1
are with r = 0.9,

in R(5)
2

with r = 0.82, and in R(5)
3

with r = 0.7 (3). In the diagrams proteins p(5)1 , . . . , p(5)12
are represented by A, . . . , L for ease of reading.

The composite has high posterior probabilities for all edges with at least moderate network partial correlations. The composite model
outperforms each of the individual replicates’ models.

Table 8 Study 5 posterior probabilities

C(5) R(5)
1 R(5)

2 R(5)
3

p(5)1 − p(5)2 − p(5)3
1.0 1.0 0.0016 1.0

p(5)4 − p(5)5 − p(5)6
1.0 1.0 0.9874 0.9819

p(4)7 − p(4)8 − p(4)9
1.0 1.0 1.0 1.0

p(5)10 − p(5)11 − p(5)12
1.0 1.0 1.0 0.3477

TFP Avg 0.0643 0.0418 0.0854 0.0613

TLFP Avg 0.0019 0.0023 0.0017 0.0017

For the fifth study, the posterior connectivity probabilities for the four signal connected blocks are shown, where R(5)
1 ,R(5)

2 ,R(5)
3

are generated with three
different r values, 0.9, 0.82 and 0.7, respectively. For the composite model and the single rep models, all of these are very high. The last two rows indicate the
very low average posterior probability over all non-signal threesomes of vertices.
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between ROC curves whose signal edges are determined
by non-zero Pearson correlation (ranging from 0.250 to
0.940) versus those whose signal edges are determined
by non-zero partial correlation (ranging from 0.447 to
0.685). The signal partial correlation ROC curves tend
to be above and to the left of the signal Pearson correla-
tion ROC curves. This represents the algorithm’s ability
to identify, with higher posterior probability, signal par-
tial correlation edges over signal Pearson correlation
edges.
As can be seen in covariance block (3) and partial cor-

relation matrix (4), there are more signal Pearson corre-
lation edges than signal partial correlation edges. For
the ROC curves based on partial correlation edges, there
are only two edges within a triple block, and each has a
relatively high posterior probability. This leads to their
ROC curves increasing at a faster rate than those based
on Pearson correlation edges. Overall, the signal non-
zero Pearson correlation edges have lower posterior
probabilities than do the signal non-zero partial correla-
tion edges. In addition, the composite ROC curves tend

to be to the upper left of their corresponding individual
replication ROC curves. This corresponds to higher pos-
terior probabilities for the true signal edges under com-
posite analysis than under most individual rep analyses.

Conclusions
Structured Bayesian posterior probabilities are developed
for network features based on multiple sparse time-
course data sets. This methodology allows for the incor-
poration of data sets with varying degree of experimen-
tal variability. For our simulations, the multiple rep
composite method performs well in uncovering strong
network signals. The composite method does better
than a single rep method in uncovering moderate net-
work signals. The composite method assigns high pos-
terior probability to edges with at least moderate
network partial correlation, while it assigns moderate to
small posterior probabilities to edges with 0.0 network
partial correlation.
Composite ROC curves based on system non-zero

partial correlation (solid lines in Figure 6(a)) have small

Figure 6 ROC curves of edge posterior probabilities. The receiver operating characteristic curves (ROC) of edge posterior probabilities are
shown for the composite and replicate models in each of the five studies. In each graph, the solid and dashed lines are the ROCs
corresponding to the generating partial correlations and generating Pearson correlations, respectively. On each ROC curve, the ROC points
correspond to the decreasing sequence of edge posterior probabilities. The partial correlation ROC curves are better than (above) the
corresponding Pearson correlation curves. The composite’s partial correlation ROC curves outperform the corresponding curves for each of the
individual replications.
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area above them which signifies that our composite
method provides excellent detection of edges having
partial correlation.
The five simulation studies span a range of network

situations. The first three studies examine networks con-
sisting of block subnetworks with high signal correlations
within blocks. These blocks are of varying sizes. The
composite method is more successful in identifying
blocks of three or four proteins, rather than smaller
blocks. For study four, blocks with moderate, rather than
high, signal correlation within the blocks are examined.
The composite method does not perform as well for
these blocks but it does outperform the single rep
method for all study four’s subnetworks. In the fifth
study, the different reps have varying degree of experi-
mental variability. Still, the composite method recognizes
the network’s signals with high posterior probabilities.
The multiple rep method utilizes independent empiri-

cal priors acting on independent reps. Thus, as sug-
gested by the fifth study, this method can be used even
if there are major fixed, non-random differences
between the reps. Each rep still contributes information
about the network structure. This likelihood based
methodology automatically weights the reps in the sense
that reps having more experimental variability will
receive less weight in determining the subnetworks
which have highest posterior probability.
The computation of posterior probabilities lends itself

towards the identification of various network features.
These features can correspond to connected subgraphs
in the interaction network. With experimental data,
where the goal is to discover the generating signal,
searching for high probability features is quite valuable.
If there are strictly random differences between the

reps, it may be useful to employ a hierarchical structure
(e.g. assuming that parent-child regression slopes for
one rep come from the same distributions as do those
from another rep). This approach would involve sub-
stantially more complex Bayes factors, and thus would
be more computationally intensive. We are currently
developing methodology for this setting.
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