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Abstract

Background: Microarray technology can acquire information about thousands of genes simultaneously. We
analyzed published breast cancer microarray databases to predict five-year recurrence and compared the
performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic
regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the
Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse.
After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The
bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate
genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using
accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression.

Results: The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the
test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21
most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a
3.53-fold (95% Cl: 2.24-5.58) increased risk of breast cancer five-year recurrence. . .

Conclusions: The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and
TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information
for patients when understanding the gene expression profiles on breast cancer recurrence.
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Background

Breast cancer is one of the most common cancers in
women worldwide. According to the American Cancer
Society, breast cancer is the second leading cause of
death among women in the U.S.[1]. However, signifi-
cantly different five-year recurrence rates and survival
rates have been observed among breast cancer pa-
tients with the same course of disease. In other words,
prognostic factors for breast cancer recurrence, such
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as histology and lymph node status, cannot entirely
correctly predict the subsequent clinical manifestations
of patients [2,3].

Microarray technology can be used to acquire infor-
mation about thousands of genes simultaneously.
Traditional statistical methods, such as logistic regres-
sion, have become increasingly difficult to use for sur-
vivability prediction models due to several constraints
that dictate the low statistical power with small sam-
ple size and complex polynomial interaction terms
with curvilinear effects among the relationship of vari-
ables. Data mining techniques, such as artificial neural
networks and decision trees, can process thousands of
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independent variables without the need to consider
constraints from statistical assumption and polynomial
interaction terms. Compared with logistic regression,
these techniques have a better potential and are more
advantageous for building survivability prediction
models.

Previously reported analyses of microarray data that
aimed to predict breast cancer recurrence rarely se-
lected the same groups of genes, possibly due to the
small sample sizes used [4-11]. One of the objectives
of the present study was to increase the sample size
through the integration of samples from multiple
breast cancer microarray databases. In addition, we
sought to assess the capacity of logistic regression, de-
cision tree and artificial neural network models to
predict breast cancer recurrence, with the goal of de-
veloping a more predictive gene profile for breast can-
cer relapse within five years and identifying important
risk genes that affect breast cancer recurrence.

Methods

Data sources

The present study used microarray datasets from the
Gene Expression Omnibus (GEO) database of the
National Center for Biotechnology Information (NCBI)
of the U.S. National Library of Medicine. The search
process for the datasets included in the study is
shown in Figure 1. There were 5,945 datasets in the
microarray database provided by GEO before June 30,
2011, of which 774 datasets were derived from Homo
sapiens. A total of 38 datasets were obtained when
“breast cancer (tumor)” and “survival” were used as
keywords to search the 774 datasets. After excluding
25 datasets without clinical survival information and
four datasets without clinical variable codebook or
survival time variables, nine datasets were left. Of
these nine remaining datasets, five used the same type
of microarray chip (HG-U133A). Of these five breast
cancer microarray datasets, four [11-14] were ultim-
ately included in the present study (Table 1); the
remaining dataset was excluded because its study sub-
jects overlapped with those of the other datasets.

Preprocessing of microarray data

The four breast cancer microarray datasets included in
this study all employed the HG-U133A oligonucleotide
Gene Chip from Affymetrix. This array is comprised of
22,283 probes for the simultaneous analysis of 20,000-
30,000 genes. In our meta-analysis, the probe data of
the four datasets were analyzed to obtain log conver-
sions, standardized Z values, the sum of each probe
score and quartile rankings for subsequent study. We
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Figure 1 Flow chart showing the protocol used for the search
and download of breast cancer microarray datasets from the
GEO database.

N J

used the GC Robust Multi-array Average (GCRMA)
method and R language software with procedures of li-
brary(gcrma) and library(precprocessCore) to remove
the chip background associated with the microarray
gene expression levels. The expression levels of the
probe sets were converted into gene expression levels.
Because the probe expression levels showed a skewed
distribution, the median probe expression in a gene was
calculated to represent the gene expression level. The
datasets were finally merged to obtain the expression
levels of genes, which conversion formulae 1-3 fol-
lowed by the quantile normalization [16,17] of all gene
expression values.

The Desmedt [12] dataset was selected as the refer-
ence standard in this study. The other three datasets
[13-15] (the Wang et al., Sotiriou et al. and Ivshina
et al. datasets) were subjected to log conversion so
that they were similar to the Desmedt et al. [12]
dataset in terms of central tendency (mean), disper-
sion tendency (maximum, minimum, range and stand-
ard deviation), skewness and kurtosis. The conversion
formulae for the chip value of each dataset were as
follows:
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Table 1 Breast cancer microarray datasets

GEO Year Author  Paper title Chip  Number
number type of study
subjects
GSE7390 2007 Desmedt Strong time HG- 198
etal. [12] dependence of the U133A
76-gene prognostic
signature for node-
negative breast cancer
patients in the
TRANSBIG multicenter
independent validation
series.
GSE2990 2006 Sotiriou  Gene expression HG- 189
etal [14] profiling in breast U133A
cancer: understanding
the molecular basis of
histologic grade to
improve prognosis.
GSE4922 2006 Ivshina Genetic reclassification  HG- 249
etal. [13] of histologic grade U133A
delineates new clinical
subtypes of breast
cancer.
GSE2034 2005 Wang Gene-expression HG- 286
etal. [15] profiles to predict U133A

distant metastasis of
lymph-node-negative
primary breast cancer.

Abbreviations: GEO, Gene Expression Omnibus; GSE, GEO Datasets Number
Prefixes; HG-U133A, a type of oligonucleotide Gene Chip from the Affymetrix.

Table 2 Clinical variables of each dataset
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(1)Sotiriou et al. [14]
Y = Log,(2.2¥ — 8) (Formulal)
(2)Ivshina et al. [13]
Y = Log,(2.65° — 0.1) (Formula2)
(3)Wang et al. [15]
Y = Log,(X) (Formula3)

X: original value, Y: converted value.

Following log conversion, the four datasets were fur-
ther standardized into Z values with a mean value of 0
and a standard deviation of 1. Compared with the ori-
ginal data, the standardized Z values did not show sig-
nificant differences in distribution among study objects.

The HG-U133A gene chip used in this study is com-
prised of 22,283 probes that cover 13,452 genes. Each
gene is covered by 1-14 probes. Of the 13,452 genes,
5,107 (38%) are covered by more than two probe combi-
nations. For genes covered by multiple probe combina-
tions, this study adopted the median method. For
example, when the expression level of the HFE gene was
reflected by the levels of 13 probes, the level of the sev-
enth (the median number) probe was chosen to repre-
sent the expression of the HFE gene.

Definition and selection of clinical variables

The clinical and survival variables provided by the four
datasets of this study are shown in Table 2. The dependent
variable is defined as death from breast cancer within five

Item Wang et al. [15]

Ivshina et al. [13]

Sotiriou et al. [14]

Desmedt et al. [12]

Combined database

Clinical data  Lymph node status

Estrogen receptor

Treatment Estrogen therapy
Adjuvant therapy
Surgical therapy

Survival Distant metastasis events

Distant metastasis time

Lymph node status
Estrogen receptor
Age

Tumor size
Histopathologic grade
Estrogen therapy
Adjuvant therapy
Surgical therapy

Relapse events®

Relapse time

Lymph node status
Estrogen receptor
Age

Tumor size
Histopathologic grade
Tamoxifen therapy

Surgical therapy

Relapse events °

Relapse time

Distant metastasis events

Distant metastasis time

Lymph node status
Estrogen receptor
Age

Tumor size
Histopathologic grade
Surgical therapy

Relapse events ©
Relapse time
Survival events

Survival time

Distant metastasis events

Distant metastasis time

Lymph node status
Estrogen receptor
Age

Tumor size
Histopathologic grade
Surgical therapy
Tamoxifen therapy
Estrogen therapy
Adjuvant therapy
Relapse events ©

Relapse time

@ Data includes death by breast cancer or any form of breast cancer recurrence (including local lymphatic drainage and distant metastases).
P Data includes any form of breast cancer recurrence (including local lymphatic drainage and distant metastases).
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years or any form of relapse, as evidenced by, for example,
local lymphatic drainage or distant metastases.

Study subject selection

The merged dataset of this study consisted of 922 study
subjects. Two of the subjects were excluded due to the
missing value of relapse status (dependent variable).
Within the merged dataset, the Sotiriou et al. dataset
had 34 cases with positive lymph nodes or missing
values, and the Ivshina et al. dataset had 90 cases with
positive lymph nodes or missing values. Positive lymph
nodes are an important factor that affects breast cancer
relapse and survival. Lymph node-negative patients are
clinically classified as early-stage patients, with better
survival rates and recurrence rates than lymph node-
positive patients. The present study intended to identify
the risk genes that can be used to effectively predict the
future risk of breast cancer relapse at the early stage of
breast cancer pathogenesis. Therefore, the 124 study
subjects with positive lymph nodes or missing values
were excluded from this study, and 796 patients were
included. In addition, previous studies indicated that
75% of breast cancer patients experienced relapse within
the first five years. To avoid insufficient follow-up time,
39 subjects with follow-up times shorter than five years
were excluded; thus, a total of 757 subjects were
included in the present study (Figure 2).

' )
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information
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Figure 2 Flow chart of the protocol used for study
subject selection.
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Gene prediction model

A total of 200 subjects were randomly selected from the
combined dataset of this study for the selection of gene
loci using the Mann—Whitney U test. For the test, 200
rounds of bootstrapping were performed. For each gene,
the top and bottom 5% of P values were eliminated, and
a mean was calculated for the left 180 P values. The
obtained mean P values were ranked in order. The first
100 genes with the smallest P values were included in
the decision tree, artificial neural network and logistic
regression models (Figure 3). The 757 study subjects
from the combined dataset were randomly assigned as
the training samples or the test samples for 400 rounds,
with 370 training samples and 387 test samples in each
dataset.

The 100 genetic variables and six clinical variables
(age, tumor size, histopathological classification, estro-
gen receptor status, relapse occurrence within five years
and relapse onset time) from the 400 training and test
sample sets were subjected to statistical tests. The va-
riables without significant differences between the trai-
ning and test samples were selected to establish 20
training sets for a 20-fold cross-validation.

Construction of the prediction models

In this study, Clementine 10.1 was used to construct the
decision tree (DT), logistic regression (LR) and artificial
neural network (ANN) models. The ANN parameter of
over-training prevention was set as the percent diffe-
rence between the training samples and test samples.
The prediction accuracy of the test group was higher
than that of the training group without the setup of the
over-training prevention parameter. Therefore, the ANN
model of this study was set at 80% over-training preven-
tion, or ANNBS8O. Because LR does not have the option of
over-training prevention, another ANN model, ANN100,
was constructed without over-training prevention to
compare the predictive power of LR and ANN.

Because DT is capable of selecting important variables
from a field of many, the composite model of this study
first used DT to select important variables, which were
then integrated into the LR or ANN models. Three types
of composite models were used: the DT-LR composite
model (DL), the DT-ANN composite model with 80%
over-training prevention (DA80) and the DT-ANN com-
posite model without over-training prevention (DA100).

Criteria for assessing the results of the analysis

Three indicators were adopted to evaluate the predictive
ability of the models in this study. The first indicator
was accuracy (ACC). For this measure, the higher the
score, the better the predictive ability of the model. ACC
was calculated as follows:
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ACC = number of cases with correctly predicted breast
cancer recurrence within five years/total number of
cases.

The second indicator was AUC: the area under the
ROC curve drawn by sensitivity (X axis) vs. 1-specificity
(Y axis). This value can be used to determine the classifi-
cation ability of a model: the higher the AUC, the better
the predictive ability of the model.

The third indicator was extrapolation, or the difference
in ACC (or AUC) between the training and test samples.
This value represents the magnitude of change in the
predictive ability of a prediction model toward test sam-
ples after training with the training samples. This value
was calculated as follows:

AACC = ACC of training samples — ACC of test
samples
AAUC = AUC of training samples — AUC of test
samples

Analysis of recurrence risks and genetic and biochemical
pathways

In this study, SPSS14.0 software was used to perform a
Cox proportional regression to analyze the relative risks
of genetic characteristics with regard to breast cancer re-
currence. The log-rank test was used to determine the
survival curve variances of genetic characteristics, and
the Ingenuity Pathway Analysis database was used to
analyze and predict the major biochemical functions of
the identified genes. The net reclassification improve-
ment (NRI), which is available in a sub function of the
MATLAB [18], was used to compare AUC for cox
models that contained the predictors and those that did

not, as additional markers of incremental improvement
in risk prediction [19-21].

Results

In this study, we determined the average predictive
power of each model by using a 20-fold cross-validation.
For the training samples, DT showed the highest predic-
tive power; ANN100 and LR had similar predictive po-
wers, and the accuracy of ANN8O was the lowest. In
terms of the predictive power for test samples and ex-
trapolation, ANN8O was the best and DT was the worst
(Table 3). Among the composite models, DA100
displayed the best predictive power for the training sam-
ples, while DA80 showed the lowest accuracy. With re-
gard to predictive power and extrapolation within the
test samples, DA80 was the best model, while DA100
was the worst model (Table 4).

The top 10 most important genes based on rankings
from all of the single models tested in this study were as
follows: LMCD1, DEAF1, AP2A2, LMNBI1, ZFP36L2,
ABCC1, PLOD2, LARS2, CDCA3 and AACS. Of these,
LMCD1 was ranked first in three of the four models
(LR, ANN80 and ANN100), DEAF1 was ranked among
the top 10 most important genes in all models and
AP2A2 was ranked among the top 10 most important
genes in three models (DT, ANN80 and ANN100). The
overall top 10 important genes in all models were among
the top 40% of important genes in any single model.

The relative importance of the genes in each model
was integrated, and a group of samples in which there
was no significant difference among the 100 genes was
re-selected as the training set. Next, the genes were in-
corporated into the training sample group in order of
importance for a Cox proportional hazards model, and
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Table 3 Assessment of the predictive power of each single model using the 100-gene profile

Prediction ACC AUC

model Training sample Test sample A (Difference) Training sample Test sample A (Difference )
DT 93.63 6345 30.18 94.02 56.90 37.13

LR 82.53 64.12 18.40 87.68 58.96 28.72
ANN8O 7342 70.93 4.09 72.11 64.09 8.02
ANN100 84.63 69.54 15.09 84.98 63.88 21.09

Abbreviations: ACC, ACCuracy; AUC, Area Under the Curve; DT, Decision Tree; LR, Logistic Regression; ANN8O, Artificial Neural Network using 80% resampling set

(over-training prevention); ANN100, ANN using 100% resampling set (without over-training prevention).

risk scores for five-year breast cancer recurrence of the
training and test samples were calculated via standar-
dized Cox regression coefficients obtained from the
training samples. The correlation of the obtained recur-
rence scores with the predictive power for five-year
breast cancer recurrence is shown in Figure 4. The pre-
dictive ability AUC of the training samples gradually in-
creased with an increase of the number of genes, while
the prediction ability of the test samples displayed quad-
ratic characteristics. At first, the predictive ability in-
creased as the number of genes increased, but it then
started to decrease when the number of genes reached a
certain value. As shown in the Tables 3 and 4, the AUC
in the test dataset ranged from 0.61 to 0.64 using the
100 genes, it implicates that would be consistent with
marginal predictive ability at best and should refrain
from recommending such a model for use in clinical
practice. Therefore, the present study found and pro-
posed that 21 genes had the highest predictive power
among the test samples, with an AUC value of 0.7412 in
Figure 4.

In this study, the sensitivity of the training samples for
five-year breast cancer recurrence was set above 80%,
and the recurrence score of the 21 genes at the highest
specificity was set as the cutoff point. The study subjects
were divided into high- and low-risk recurrence groups,
and Cox regression was used to analyze the 21 genes for
the prediction of breast cancer recurrence and survival
rate in each group (Figure 5). The results showed a sta-
tistically significant difference (P <0.001) in the recur-
rence time curve between the two groups.

The breast cancer recurrence risk (HR value) of the
high-risk group was 3.53 times that of the low-risk

group. We used test samples to assess the risk of breast
cancer recurrence via the 21 predictive genes and cli-
nical variables. As shown in Table 5, after adjusting for
other clinical variables through multivariate Cox regres-
sion, a statistically significant HR value for the predic-
tion of five-year breast cancer recurrence risk using the
21 identified genes was 2.60 (95% CI=1.44-4.68).
Pencina et. al, proposed NRI has been proven as an al-
ternative to the area under the curve of the ROC
[19-21]. In the multivariate Cox regression, the 21-gene
profile has a 0.454 NDI greater than age, tumor dia-
meter, histopathologic grade and estrogen receptor. It
concludes that addition of the 21-gene profile improved
classification for a net of 45.4 per cent of the five-year
breast cancer recurrence.

The Ingenuity Pathway Analysis database was used to
analyze the biochemical pathways with which the 100
identified genes are associated. Of these 100 genes, 28
are related to pathways involved with cancer, the cell
cycle and reproductive system diseases; 15 are related to
pathways involved in cell morphology, cellular com-
promise and cancer; 15 are related to cell cycle, amino
acid metabolism and post-translational modification
pathways; and 14 are related to cell cycle, cellular move-
ment and cancer pathways. A total of 65 genes found in
this study function in biochemical pathways related to
the cell cycle and cancer; of these, 28 genes (the largest
group and those with the highest scores) are involved in
pathways related to cancer, the cell cycle and reproduc-
tive system diseases. Therefore, these 100 breast cancer
recurrence-related genes most likely participate in path-
ways that regulate the DNA damage checkpoint at the
G2/M phase of the cell cycle. Figure 6 shows the

Table 4 assessment of the predictive power of the composite models using the 100-gene profile

Prediction ACC AUC

model Training sample Test sample A (Difference) Training sample Test sample A (Difference)
DL 75.60 68.90 6.69 77.59 61.66 1593
DA80 7269 69.30 339 7192 64.20 772
DA100 89.91 65.91 22.56 87.74 61.65 26.10

Abbreviations: ACC, ACCuracy; AUC, Area Under the Curve; DL, Decision Tree combined with Logistic regression; DA80, Decision tree combined with Atrtificial
neural network using 80% resampling set (over-training prevention); DA100, Decision tree combined with Artificial neural network using 100% resampling set
(without over-training prevention).
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relationships of the 11 reported breast cancer-related
genes and proteins with the regulation of the DNA dam-
age checkpoint at the G2/M phase of the cell cycle.
Three genes identified in this study, CCNB1, PLK1 and
TOP2A (shown in green), were also found to be in-
volved in this biochemical pathway. This finding sug-
gests that the genes identified in this study are
associated with the same biochemical pathways as the
genes involved in breast cancer and thus may have im-
pacts on breast cancer development.

Discussion
In previous studies, Delen et al. and Snow et al. com-
pared artificial neural network models and logistic

regression in terms of their abilities to predict five-year
cancer survival rates. These authors found that the AUC
results of internal validation (using training samples) for
the artificial neural network model were superior to
those of logistic regression, a finding that is consistent
with the results of the present study [16,22-25]. Xu et al.
found that composite models with decision trees can ef-
fectively screen the characteristics of variables and that
the input of the important variables selected in a deci-
sion tree model into other models can improve the ex-
trapolation of the model. If the predictive power of a
decision tree is far worse than that of the other model,
the prediction accuracy of the composite model will not
be improved, but its extrapolation will still be improved
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Table 5 Cox regression analysis of the five-year breast cancer recurrence of the test samples
Item Univariate Multivariate

HR (95% ClI) P HR (95% ClI) P NDI
21 Genes Profile 3.53 (2.24-5.58) <.001 2.60 (1.44-4.68) 001 0454
Age 0.98 (0.96-1.00) 15 0.99 (0.977-1.02) 896 0.012
Tumor Diameter 1.54 (1.21-1.95) <.001 141 (1.07-1.86) 013 0.121
Histopathologic grade® 4.85 (1.94-12.09) 001 3.59 (1.41-9.16) 007 0.182
Estrogen Receptor b 1.50 (1.02-2.20) 035 1.03 (0.58-1.82) 902 0.035

Abbreviations: HR, Hazard Ratio. Cl, Confidence Interval. P, statistical P value. NDI, Net Reclassification Improvement. a, Histopathologic grade: assessed by the

Nottingham grading system. b, Estrogen receptor: negative or positive.

[26]. In the present study, the accuracy of the test sam-
ples was used to assess the predictive power of the single
and composite models. As shown in Figure 7, when lo-
gistic regression had a similar predictive power to that
of the decision tree, the predictive power of the logistic
composite model increased. However, when the predict-
ive ability of the decision tree was much lower than that
of the artificial neural network, the predictive ability of
the composite model decreased.

When we investigated the reproducibility of the se-
lected genes from each dataset, we found that only three
genes, CCNE2, GTSE1 and KPNA2, were included in
the lists of genes selected by the original authors,
suggesting a very low reproducibility of the selected
genes in different studies. The 100 genes selected in this
study were compared with the genes selected by the ori-
ginal authors. The results showed that 5 genes from this
study were also selected by Wang et al. and Desmedt

et al., 19 genes were also selected by Sotiriou et al. and
20 genes were also selected by Ivshina et al. Among
these genes, two genes, MLF1IP and PLK1, were se-
lected by Wang et al., Desmedt et al., Sotiriou et al. and
this study. The PLK1 gene was ranked among the top 10
most important genes in the DT and ANN100 models.
Xu et al. analyzed genes related to five-year metastasis
rates of breast cancer using four breast cancer micro-
array datasets that are available online [27]. Of these
four datasets, two (Wang et al. and Sotiriou et al.) were
also included in the present study. In addition, the Miller
et al. dataset is essentially equivalent to the Ivshina et al.
dataset included in this study because only three sub-
jects differed between the two datasets. Thus, the
Desmedt et al. dataset is the only dataset that was in-
cluded in the present study but not included in the 2008
study by Xu et al. (the Pawitan et al. dataset [28] was the
fourth dataset used in the Xu et al. study). Of the 112
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predictive genes identified by the Xu et al. study, 5 genes
were also selected by Wang et al. and Desmedt et al., 19
genes were also selected by Sotiriou and 19 genes were
also selected by Ivshina; this level of agreement is similar
to that observed in the present study. In this study, we
compared our 100 selected genes with the 112 genes
from the 2008 Xu et al. study. We found that 13 genes
were selected in both studies: AP2A2, ASPM, CDKN3,
EEF1E1l, IGHM, IGKC, LST1, MAD2L1, MELK,
MLF1IP, PRC1, RACGAP1 and STK6. Xu et al
addressed the same question as the present study and
conducted a meta-analysis using similar databases. The
percentage of identified genes that overlapped with those
in the original datasets is similar between our study and
the Xu et al. study, suggesting that, when compared with
genes selected using small sample sizes, selecting genes
by meta-analysis can improve the accuracy of predicting
breast cancer recurrence.

Xu et al. predicted five-year breast cancer recurrence
rates using 112 selected genes, achieving a sensitivity of
88% and a specificity of 54.6%. The risk of recurrence
was 9.3-fold (hazard ratio =9.3, 95% CI: 2.9-29.9). The
risk of five-year breast cancer recurrence found in this
study was lower than that found in the 2008 study by
Xu et al. However, this study achieved a similar result to
that study with only one-fifth the number of genes,
suggesting that the 21 genes in this study can effectively
differentiate breast cancer patients with high and low
risks of recurrence.

The present study observes a proportion of genes con-
sistently identified by pooled microarray datasets of ag-
gregating several studies that can be a set of candidate
genes expression profile for a future work. It is very im-
portant to examine how reliable the set of signatures
proposed in this study can predict cancer relapse of
breast cancer patients in an independent replication
study. Furthermore, the candidate genes also are worthy
to investigate more characteristics on epigenetics and
genetics in breast cancers, like as DNA methylations,
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mRNA expressions, micro RNA interactions, bioche-
mical pathway and so on, for future studies.

One limitation of this study is that the pooled micro-
array datasets were obtained from multiple studies. It
can benefit from an increase of sample size but may also
compensate for study heterogeneity caused by the dis-
crepancies among studies. They lacked the complete col-
lection to identify the discrepancies of all breast cancer-
related variables among studies, as well as variables
affecting the survival of breast cancer patients, such as
the use of chemotherapy and radiotherapy, phenotype
definition, population ethnicity, genetic heterogeneity.
Therefore, this study did not effectively control for other
breast cancer-related factors that could affect the selec-
tion of the genes related to breast cancer recurrence.
However, we tried to adjust causes by the discrepancies
among studies, like as age, tumor diameter, histopatho-
logic grade and estrogen receptor. Although four
datasets were combined to increase the sample number
in this study, only 757 patients were left after excluding
those patients with positive lymph nodes or follow-up
times of less than 5 years. Additionally, several other
groups of study subjects, such as those treated with tam-
oxifen, chemotherapy or radiotherapy and those with re-
dundant database entries, were not excluded to ensure
an adequate number of samples for the study. The au-
thors of the original datasets mentioned that the inclu-
sion of patients who received these treatments would
not affect the results of their studies; thus, in the present
study, we assumed that the breast cancer recurrence
rates and gene expression levels among the selected
patients were not affected by interfering factors, in the
absence of more detailed information.

Conclusion

In the present study, after integrating the results of
breast cancer microarray dataset analyses using several
different models, we identified 21 genes that are closely
related to breast cancer recurrence: LMCD1, DEAFI,
AP2A2, LMNBI, ZFP36L2, ABCC1l, PLOD2, LARS2,
CDCA3, AACS, TNERSF25, SMC1A, ADIPOQ, DPP3,
FADD, PLK1, SDS, HSPB6, MTERFDI1, CHPF and
AQP1. Among these, the PLK1 gene was of particular
interest because it is involved in the DNA damage
checkpoint response at the G2/M phase of the cell cycle
and, along with other genes (such as CCNB1 and
TOP2A), plays a role in regulating cell cycle progression.
Regarding statement of translational relevance, we con-
cluded the most effective genes profiling and identified
21 genes that are closely related to breast cancer recur-
rence: LMCDI1, DEAF1, AP2A2, LMNBI1, ZFP36L2,
ABCC1, PLOD2, LARS2, CDCA3, AACS, TNFRSF25,
SMC1A, ADIPOQ, DPP3, FADD, PLK1, SDS, HSPBS,
MTERFD1, CHPF and AQP1. Among these, the PLK1
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gene was of particular interest because it is involved in
the DNA damage checkpoint response at the G2/M
phase of the cell cycle and, along with other genes
(such as CCNB1 and TOP2A), plays a role in regulat-
ing cell cycle progression. Two genes, MLF1IP and
PLK1, were selected by the most pooled microarray
datasets of Wang et al., Desmedt et al., Sotiriou et al.
and this study. The PLK1 gene was ranked among
the top most reproductive gene. These genes profiling
will be valuable to be as the targets of prognosis and
treatment.
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