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Abstract

Background: Scientists routinely scan DNA sequences for transcription factor (TF) binding sites (TFBSs). Most of the
available tools rely on position-specific scoring matrices (PSSMs) constructed from aligned binding sites. Because of
the resolutions of assays used to obtain TFBSs, databases such as TRANSFAC, ORegAnno and PAZAR store unaligned
variable-length DNA segments containing binding sites of a TF. These DNA segments need to be aligned to build a
PSSM. While the TRANSFAC database provides scoring matrices for TFs, nearly 78% of the TFs in the public release do
not have matrices available. As work on TFBS alignment algorithms has been limited, it is highly desirable to have an
alignment algorithm tailored to TFBSs.

Results: We designed a novel algorithm named LASAGNA, which is aware of the lengths of input TFBSs and utilizes
position dependence. Results on 189 TFs of 5 species in the TRANSFAC database showed that our method
significantly outperformed ClustalW2 and MEME. We further compared a PSSM method dependent on LASAGNA to
an alignment-free TFBS search method. Results on 89 TFs whose binding sites can be located in genomes showed
that our method is significantly more precise at fixed recall rates. Finally, we described LASAGNA-ChIP, a more
sophisticated version for ChIP (Chromatin immunoprecipitation) experiments. Under the one-per-sequence model, it
showed comparable performance with MEME in discovering motifs in ChIP-seq peak sequences.

Conclusions: We conclude that the LASAGNA algorithm is simple and effective in aligning variable-length binding
sites. It has been integrated into a user-friendly webtool for TFBS search and visualization called LASAGNA-Search. The
tool currently stores precomputed PSSM models for 189 TFs and 133 TFs built from TFBSs in the TRANSFAC Public
database (release 7.0) and the ORegAnno database (08Nov10 dump), respectively. The webtool is available at http://

biogrid.engr.uconn.edu/lasagna_search/.

Background

A transcription factor is a protein that regulates the
expression of its target genes by physically binding to the
promoter regions of these genes. The binding sites of a
transcription factor (TF) naturally share similarity with
each other. The common pattern shared among the bind-
ing sites of a TF is called a motif. In general, there are
two approaches to computational motif analysis, de novo
motif discovery [1-12] and transcription factor binding
site (TFBS) search [13-17]. As the name suggests, de novo
motif discovery algorithms find over-represented patterns
in sequences without prior knowledge of the binding TFs.
The input to these algorithms is usually the upstream
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region sequences of genes putatively co-regulated by one
or more common TFs. The output is one or more motifs
or patterns whose instances are over-represented in the
input sequences. On the other hand, a TEBS search algo-
rithm takes binding site sequences of a TF as input. It
learns from these known binding sites and builds a TF
model out of them. The TF model can then be used to
scan sequences for putative binding sites. While the two
approaches are tightly connected, we focus on the TFBS
search problem and assume that a TF has known binding
sites available.

A typical TFBS search algorithm requires aligned
TFEBSs. This requirement allows simple representations
of TF models. Types of TF models include consensus
sequences, position-specific scoring matrices (PSSMs)
[18], etc. The PSSM method is a widely used method
among the available TFBS search algorithms. Given
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aligned binding sites of a TF, the TF model is essen-
tially a 4 x [ matrix, where [ is the length of the binding
sites. Column i of the matrix stores the scores of match-
ing the i letter in a sequence of length [ (an /-mer) to
nucleotides A, C, G and T, respectively. The score of an [-
mer is then calculated by summing up the scores of letter
1 through letter /. Depending on the variant of PSSM, the
score of A at position i can be the count of A at position
i in the known TFBSs, the log-transformed probability of
observing A at position i, or any other reasonable num-
ber. Once constructed, the matrix of a TF can be stored
in a database to scan sequences for binding sites of the TF
in the future without resorting to the actual binding sites.
In fact, many tools [14,19-24] depend on matrices stored
in at least one of the databases, JASPAR [25], RegulonDB
[26] and TRANSFAC [27]. Since a matrix is constructed
from aligned binding sites, we cannot overemphasize the
quality of TFBS alignments.

Databases such as JASPAR, TRANSFAC and ORe-
gAnno [28] contain DNA segments bound by TFs. These
DNA segments can be seen as TFBSs with some irrele-
vant bases on one or both sides because of the resolutions
of techniques used to obtain TFBSs. The DNA segments
belonging to a TF are therefore unaligned variable-length
sequences. While the DNA segments for most TFs in the
JASPAR database are aligned, this is not the case for the
TRANSFAC public and ORegAnno databases. About 53%
(983 out of 1867) of the TFs in the TRANSFAC Pub-
lic database (release 7.0) have unaligned variable-length
DNA segments. Moreover, nearly 78% (1447 out of 1867)
of TFs having curated DNA segments do not have a
matrix. Focusing on TFs with variable-length DNA seg-
ments, about 71% (669 out of 983) of them do not have a
matrix. On the other hand, the ORegAnno database stores
experimentally validated DNA segments bound by TFs
but does not provide matrices. About 31% (175 out of 572)
of the TFs therein have variable-length DNA segments. In
the absence of a matrix, to search for binding sites of these
TFs using a matrix dependent tool, one needs to first align
the curated DNA segments for each TF. In the rest of this
paper, we refer to (variable-length) DNA segments con-
taining TFBSs as (variable-length) TFBSs for simplicity
reasons.

In this work, we propose a novel TFBS alignment algo-
rithm named LASAGNA (Length-Aware Site Alignment
Guided by Nucleotide Association). The algorithm is
based on the hypothesis that binding sites of a TF share
a core [29], a short and highly conserved stretch of DNA.
Hence, a binding site can be seen as a core with some irrel-
evant bases on one or both sides. In general, shorter sites
tend to contain fewer irrelevant bases and are easier to
align. For this reason, we progressively align the binding
sites from the shortest to the longest ones. The algo-
rithm further exploits dependence between two positions
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in a binding site. Dependence between positions has been
shown to boost performance of TFBS search algorithms
[13,16] as well as protein structural motif recognition [30].
To our best knowledge, this idea has never been applied
to multiple sequence alignment. We further describe
a more sophisticated version, named LASAGNA-ChIP,
for aligning peak sequences produced by ChIP-seq
experiments.

To compare algorithms for TFBS alignment, we con-
duct cross-validation (CV) experiments on 4771 binding
sites of 189 TFs across 5 species extracted from the
TRANSFAC Public database (release 7.0). We compare
LASAGNA to ClustalW2 [31,32] and MEME [1]. Being
a widely used multiple sequence alignment algorithm,
Clustal W2 was used to produce gapped TFBS alignments
in creating the MAPPER database [33] as well as to pro-
duce both gapped and gapless TFBS alignments in [16].
ClustalW2 and other similar algorithms focus on produc-
ing structurally correct alignments, while other improved
algorithms rely on structural or homology information
[34]. ClustalW2 can be viewed as a representative of these
algorithms when no information other than sequences is
available. MEME, on the other hand, is a de novo motif
discovery tool, whose input is typically regulatory regions
of length 1,000 bp upstream of the genes presumably con-
trolled by a common TF [35]. Nevertheless, a motif found
in the input TFBSs can be used to align the TFBSs. In
fact, MEME is employed by the PAZAR database [36] to
dynamically align TFBSs and generate PSSMs. We show
that LASAGNA significantly outperforms ClustalW2 (p-
value: 1.22 x 10~1%) and MEME (p-value: 3.55 x 10~1°).

To scan promoters for new TFBSs based on variable-
length known TEFBSs, we couple a PSSM method with
LASAGNA, denoted by LASAGNA-PSSM. That is, the
input variable-length TFBSs are aligned by LASAGNA
and a PSSM model is built from the alignment. It
is useful to compare an alignment-based TFBS search
method to an alignment-free method. Therefore, we fur-
ther compare LASAGNA-PSSM to SiTaR [17], which
accepts variable-length input TFBSs. To our best knowl-
edge, SiTaR is the only alignment-free method capable
of handling variable-length input TFBSs at the time of
writing. Cross-validation results on 90 TFs whose bind-
ing sites can be located in respective genomes indi-
cate that LASAGNA-PSSM is significantly more precise
at fixed recall rates (p-value: 2.66 x 1078). The recall-
precision curve also shows that our method is constantly
more precise at any recall rate and more sensitive at any
precision.

Finally, we demonstrate the application of LASAGNA-
ChIP to ChIP-seq data using 38 mouse ChIP-seq exper-
iments. We show that, assuming the one-per-sequence
model, LASAGNA-ChIP is comparable to MEME in
revealing the motif of the ChIPed TF or its cofactor. For
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both LASAGNA-ChIP and MEME, the ChIPed TF motif
was found in 31 experiments, while a cofactor motif was
found in 3 experiments. While the two methods differ
in the rest 4 experiments, the found motifs have sim-
ilar information content and may belong to unknown
cofactors.

Methods

We describe our novel alignment algorithm in this section.
LASAGNA utilizes a search module to align a new bind-
ing site with a partial alignment. Thus, we introduce the
search module followed by the LASAGNA algorithm.

The search module

The search module of LASAGNA is a function learned

from a (partial) TFBS alignment to score /-mers. It consid-

ers nucleotide pairs in addition to individual nucleotides

so as to exploit dependence between positions. We intro-

duce our choice of the search module, the PSSM model

described in [13]. We denote it by PSSM5 () in this work.
Suppose that a PSSM is constructed from aligned

sequences of length /. The score of letter u at position i is

given by

Si(u)

faw’

where f;(u) is the probability of observing letter u at posi-

tion i and f(u) is the background probability of seeing

letter u. Similarly, the score of a pair of letters (u,v) at

position (i, ) is given by

Jij(u,v)

fu,v)’

where f; (4, v) is the probability of observing nucleotide

pair (u,v) at position (i,/) and f(u,v) is the background

probability of seeing the pair. The score of s, a sequence of

length /, is then

M;(u) = log

M;j(u,v) = log

K -k

ZM (si) + Z ZMU(SD 5, (1)

k=1 i=1

PSSMk (s) =

where s; denotes the i letter of s, j = i 4+ k and K is the
scope parameter defined in [13]. The parameter K con-
trols how far apart a pair of nucleotides can be. When
K = 1, only adjacent nucleotide pairs are scored. We
define PSSMq(s) = 25:1 M;(s;), that is, we do not score
nucleotide pairs when K = 0.

Our search module is a variant of (1). Let

o | ming M;(x)  if uis the gap letter
M) = {Mi(u) otherwise
and
miny, M;j(x,y) if u or vis the gap letter

U —
M;j(u,v) = { M;j(u, v) otherwise
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The search module is defined as follows:
K -k
PSSMi(s) = ZM®+ZZM&W’ (2)
k=1 i=1

where superscript a denotes alignment as this module is
used in our alignment algorithm.

The LASAGNA algorithm

The algorithm is based on the idea that the binding sites
of a TF share a common core, a conserved short DNA
sequence. A binding site can then be seen as a core with
a few irrelevant bases on one or both sides. Assuming
that each binding site fully contains the core, the shorter a
binding site, the fewer irrelevant bases it contains. There-
fore, we progressively align the binding sites by aligning
the shortest binding site with the already aligned binding
sites until all the binding sites are aligned.

The algorithm takes a set of unaligned binding sites, U/,
and parameter K, as inputs. Let A denote the set of aligned
binding sites. A binding site in A may have gap letters
added to one or both ends as a result of the alignment. The
algorithm works as follows:

1. Initialize A to {s}, where s, the seed site, a shortest
binding site arbitrarily chosen from U. Remove s
from U.

2. (a) Build PSSM}a(-) from A. Let the length of

this PSSM be 1.

(b) Remove the shortest binding site s from U.

(c) Create S, the augmented sequence of s, by
adding / — 1 gap letters to both ends of s.

(d) Score each I-mer of S by PSSM}‘<a (+) to find
the highest scoring one.

(e) Let s be its reverse-complement and repeat
c—d. That is, the opposite strand is
considered.

3. Add s to A if the highest scoring I-mer resides in s.
Otherwise, add its reverse-complement to A. Gap
letters are added to one or both ends of sequences in
A. This ensures that they are all of the same length
and each column of the alignment has at least one
non-gap letter.

4. Repeat 2—3 until U is empty.

In step 2b, there may be more than one shortest binding
sites in U. To break the tie, we use PSSM'}‘<a () to scan each
of the shortest ones. The “s” containing the highest scoring
[-mer is removed from U to align with sequences in A. In
the unlikely case of two or more shortest binding sites in
sharing the same highest score, one is arbitrarily chosen.
Figure 1 illustrates an iteration of the algorithm.

An alignment may be trimmed before building a PSSM.
We describe one way of trimming aligned TF binding sites
using two simple measures. Let [ be the length of the



Lee and Huang BMC Bioinformatics 2013, 14:108
http://www.biomedcentral.com/1471-2105/14/108

Page 40f 13

(a) -GCGCTAA- - (c) --GCGCTAA- -
--CGCCAAA- e CGCCAAA-
-GCGCCAAA- ----GCGCCAAA-
-GCGCCAAA- ----GCGCCAAA-
~GCGCCARA- (b) PSSM - - - -GCGCCARA-
-GCGCGAAA- ----GCGCGAAA-
-GCGCCAAT- ----GCGCCAAT-
-CCGCCAAA- ----CCGCCARA-
-CCGCGAAA- ----CCGCGARA-
A --cacceana A CGCGGAAA
-GCGCGAAG- - - - -GCGCGAAG-
-GCGGGAAA- ----GCGGGAAA-
-GCGCGATC- ----GCGCGATC-
-CCCGGAAA- C ----CCCGGAAA-
CGCGCCAAA- - - -CGCGCCAAA-
-GCGCGAAAA C e GMesS - - - -GCGCGAAAA
CCCGCCAGG- - - -CCCGCCAGG-
TTTCCCGCCAA- -
--------- TTTCCCGCCAA-------~--
[ TrTccceccaa [ TTIcececeara
TTTCGCGCCAAA TTTGGCGGGCGGCC
TTTGGCGGGCGGCC CAATTTTCGCGCGG
CAATTTTCGCGCGG CCATTTTCGCGGGAA
CCATTTTCGCGGGAA
Figure 1 An illustration of LASAGNA with K, = 0. (a) The aligned binding sites in A and the unaligned ones in U. The shortest binding site is in
bold. (b) The sequence logo [48] of the PSSM built from A aligns with the augmented sequence --------- TTTCCCGCCAA -~~~ - -~~~ , where the
matched portion is in bold. (¢) The updated A and U, where the newly added binding site is in bold.

aligned binding sites. We first compute and denote the
percentage of non-gap letters at position i of the align-
ment by C;, for i = 1,2,...,[ The information content
(IC) at each position is then computed with small sample
correction described in [37]. That is,

IC;=max {0, 2+ Z fi(w) log, fi(u) — e(n;) ¢ ,

ue{A,C, G, T}

where i € {1,2,...,1}, n; is the number of non-gap let-
ters at position i and é(-) gives the approximated sampling
error. Let Cuin and ICy, be the cutoff thresholds. The
alignment is examined from the left end to the right
until the first position j satisfying both C; > Cpin and
IC; > ICpn is encountered. The positions preceding j are
trimmed off. The trimming is similarly applied to the right
end.

LASAGNA for ChIP-seq data

Although LASAGNA is not specifically designed as a
de novo motif discovery algorithm, a more sophisticated
version, named LASAGNA-ChIP, is capable of handling
ChIP-seq data. Here, we refer to the previous section
and describe the additional steps that are necessary for
aligning ChIP-seq peak sequences. The flowchart in Addi-
tional file 1 gives an overview of LASAGNA-ChIP.

Before aligning ChIP-seq peak sequences, each
sequence is clipped to 100 bp surrounding the signal peak.
This is a common practice since, for most peak sequences
(> 90%), the actual TFBS is usually found within 50 bp of

the called peak [38]. In step 2a, we trim the partial align-
ment A if it contains more than two sequences. Unlike
TFBSs found in databases such as TRANSFAC, even after
clipping, a peak sequence contains much more irrele-
vant bases flanking the core. The trimming procedure
described in the previous section is used, where Cpin
(ICmin) is set to the mean C; (IC;) over all the columns of
A. The resulting alignment is further trimmed by IC such
that it has at most 15 columns and the columns on both
ends have positive IC. In step 2b, if there are more than 5
shortest binding sites in U. Only 5 are arbitrarily chosen
to break the tie by similarity to PSSMg (-).

The alignment A obtained by the modified procedure is
further refined as follows:

Set T to A trimmed to I columns as described above.
Build PSSM?(B(-) out of T.

Initialize R to {}, the refined partial alignment.

For each peak sequence s,

L

(a) Create S, the augmented sequence of s, by
adding [ — 1 gap letters to both ends of s.
Score each I-mer of S by PSSM?Q(-) to find
the highest scoring one.

Let s be its reverse-complement and repeat

a-b.

(d) Add s to R if the highest scoring I-mer
resides in s. Otherwise, add its
reverse-complement to R. Gap letters are
added to one or both ends of sequences in R.

(b)
(©)
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5. Set A to R and repeat 1-5 until the sum of IC across
columns of T does not change in 3 iterations.

For ChIP-seq peak sequences, the shortest sequence
may miss or contain only a fraction of the core. Hence,
using the shortest sequence as the seed site sometimes
results in an alignment with less IC. For this reason, five
additional sequences are arbitrarily chosen as the seed site
to produce 5 additional alignments. Among the 6 align-
ments, the one with the most IC after trimming is chosen
as the final alignment.

Scoring a putative binding site

Although a PSSM suggests the length of a putative binding
site, we do not restrict the length of a candidate binding
site to the length of the PSSM. A putative binding site
could be of any reasonable length. If a true binding site
is flanked by a few irrelevant bases, this sequence should
be given a relatively high score compared to those of non-
binding sites. Therefore, to score a putative binding site s,
we slide s through the PSSM as described in the previous
section. The score of sequence s is given by

Scoreg,(s) =  max ., PSSMk, (Si(i+1-1))> (3)

ie{1,2,...,1+1l—
where [ is the length of the PSSM, [ is the length of s, S
denotes the augmented sequence of s with / — 1 gap letters
on both ends and PSSMk (-) is defined in (1).

Results and discussion
Comparison of alignment algorithms
Data sets
We downloaded all the TF binding sites from the TRANS-
FAC Public database (release 7.0). The binding sites were
grouped by species and TF. Binding sites having less than
4 nucleotides were discarded. TFs of each species were fil-
tered such that each TF has at least 10 binding sites. This
ensures that each TF has enough binding sites to con-
struct a PSSM. The numbers of TFs and TFBSs are listed
in Table 1.

To facilitate experiments, we planted each TFBS in a
2000 base random sequence simulated by a first-order

Table 1 TFBSs in TRANSFAC public database by species

Species # TFs! # TFBSs?
Homo sapiens 68 1984
Mus musculus 53 966
Rattus norvegicus 26 633
Drosophila melanogaster 29 935
Saccharomyces cerevisiae 13 253
Overall 189 4771

1. The total number of TFs.
2. The total number of TFBSs.
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Markov chain of the species in question. Except for Sac-
charomyces cerevisiae, the Markov chain of a species was
learned from promoter sequences in the UCSC Genome
Browser database [39]. For Saccharomyces cerevisiae, the
promoter sequences were retrieved from the SCPD [40]
using the yeast gene list in euGenes [41].

Performance assessment and evaluation metrics

Since the purpose of aligning TFBSs is to construct a
PSSM, the quality of an alignment is best measured by the
search performance of the PSSM. The performance of a
TFEBS search method is evaluated by v-fold CV. Consider
a TF with # binding sites. The n TFBSs are first divided
into v sets, each of which contains | '] or || + 1 TFBSs.
At each iteration of the v-fold CV, one of the v TFBS sets
called the test TFBS set, Piest, is left out. The rest of the
TFBSs are aligned to build a PSSM. Each test TFBS in
Pyt is then planted in a 2000 base random sequence and
scanned by the PSSM, scoring each /-mer, where [ is the
length of the test TEBS. We score both the forward and
reverse strands of an /-mer and assign the higher score to
it. An [-mer is considered a hit if it shares more than |//2]
bases with the test TFBS. The /-mers can then be divided
into two sets, H and N, where H is the set of hits and N
is considered the set of non-binding sites. The score of
the test TEBS is the highest score of hits in H. For each
test TFBS ¢t € Piest, we find its rank relative to all the
non-binding sites in N. Formally, the rank of binding site ¢
equals 1 + |{s € N|Scoreg,(s) > Scoreg, (t)}|.

After the v-fold CV, we end up with n ranks, each of
which corresponds to a TFBS. We use the area under the
ROC curve (AUC) to gauge the quality of alignment. The
ROC curve is a plot of true positive rate (TPR) against
false positive rate (FPR), displaying the trade-off between
TPR and FPR. We refer readers to [42] for an introduc-
tion to this metric. In this study, v = 10 for all the CV
experiments.

Comparison with ClustalW2

In general, gapless alignment is preferred over gapped
alignment for aligning TFBSs. Because of the nature of
ClustalW2, the alignment of TFBSs may contain gaps in
the middle of some binding sites. This is disadvantageous
to ClustalW2 as the PSSM method does not allow inser-
tion of gaps into the sequence being scanned. Hence,
we turned off gaps by setting the gap opening penalty
parameters to a large value, i.e., we set both GAPOPEN
and PWGAPOPEN to 100000. Indeed, results indicated
that overall the “gapped” ClustalW2 performs slightly
worse than the “gapless” variant (p-value: 0.277). For both
LASAGNA and ClustalW2, parameter K; in Eq. 3 was
searched from 0 to min{10, /i, — 1} for each TF and the
one producing the highest AUC is used, where /iy is the
minimal length of the TFBSs. For LASAGNA, parameter
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K, of the LASAGNA algorithm was set to K as the two
parameters are closely related.

We conducted 10-fold CV on each TFE. The overall ROC
curves are shown in Figure 2. The ROC curves are based
on the ranks of 4771 TFBSs of 189 TFs. It shows that
LASAGNA has invariably higher true positive rate than
ClustalW2. The AUC score was calculated for each TF and
for each method. To gauge the significance of difference,
the Wilcoxon signed-rank test [43] was performed for
each species. The tests showed that LASAGNA is consis-
tently better than Clustal W2 across the 5 species. Table 2
shows the test results. Overall, LASAGNA performed sig-
nificantly better than ClustalW2 in terms of AUC scores.
The species-wise p-values shows that LASAGNA is signif-
icantly better (< 0.05) than Clustal W2 for aligning TFBSs
of all the 5 individual species.

To better understand the results, we split the 189 TFs
into two groups. One contains TFs on which LASAGNA
performed better than ClustalW2 and the other contains
the rest of the TFs. Three factors are examined for each
TF. They are the number of TFBSs, the mean and stan-
dard deviation of TFBS length. For each factor, we looked
for difference between the two groups. Table 3 shows the
comparisons. It can be seen that LASAGNA produces bet-
ter alignments when a TF has fewer binding sites but the
difference is not significant. The mean and standard devi-
ation of TFBS length are the two more important factors.

Page 6 of 13

We believe that LASAGNA is well-suited for aligning
TEBSs that are longer and more variable in length.

Comparison with MEME

The MEME tool in the MEME Suite 4.8.1 was used. The
parameter minw, minimal width of motifs, was set to the
smaller of 6 and the minimal length of input TFBSs. The
option revcomp to search the reverse strand was turned
on. Finally, the parameter minsites was set to the num-
ber of input TFBSs since a common motif is supposed to
appear at least once in each TFBS. To ensure that MEME
functions properly, binding sites shorter than 8 bases are
padded with gap letters since genomic locations are not
available for most TFBSs.

The experiments were carried out in the same man-
ner as the ClustalW2 experiments. The overall ROC
curve in Figure 2 indicates that LASAGNA has consis-
tently higher true positive rates than MEME across dif-
ferent false positive rates. The overall and species-wise
comparisons between LASAGNA and MEME in Table 4
show that LASAGNA performed significantly better than
MEME. To gain some insights into the difference between
LASAGNA and MEME, we similarly examined the three
factors used to compare LASAGNA and ClustalW2. As
seen in Table 5, the number of input TFBSs is the only
significant (p-value < 0.05) factor out of the three. The
reasons are not clear but may be investigated in the
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Figure 2 Overall ROC curves for the three alignment algorithms. The left panel shows the curves at low false positive rates, from 0 to 0.02. The
right panel presents the curves at false positive rates from 0.02 to 0.6. The three methods are indistinguishable when the false positive rate is greater
than 0.6 and hence the region is not shown. We note that the vertical axes of the two panels are on different scales.
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Table 2 Species-wise and overall comparisons between LASAGNA and ClustalW2

Species # better!

H. sapiens 54 (79.4%)
M. musculus 42 (79.2%)
D. melanogaster 22 (75.9%)
S. cerevisiae 9 (69.2%)

R. norvegicus 20 (76.9%)
Overall 147 (77 .8%)

1. Number of TFs on which LASAGNA performs better than ClustalW2.

2. Number of TFs on which LASAGNA and ClustalW2 have the same performance.

3. Total number of TFs for a species.
4. Wilcoxon signed-rank test p-value.

future. Moreover, it will be helpful to identify other (bio-
logically meaningful) factors that can better explain the
performance difference.

Distribution of K

In Additional file 2, for LASAGNA, ClustalW2 and
MEME, we show the distribution of K; for a TF by
species and conserved domain. Overall, we observe that
small values are preferred for all three methods. By visual
inspection, LASAGNA appears more similar to MEME
than Clustal W2 in the usage of K. It can be seen that the
usage of K; differs among different conserved domains.
Related conserved domains such as ZF-H2C2_2 and ZF-
C2H2 display similar patterns. This is not surprising as
conserved domains in a protein are often computation-
ally predicted. Hence, a protein is likely to possess related
conserved domains. While overall the distributions seem
method-dependent, we observe that, for ZF-H2C2_2 and
ZF-C2H2, the distributions center around 4 across all
three methods. Finally, we note that these observations are
preliminary and more TFs are needed to draw statistically
sound conclusions.

Comparison of TFBS search methods

Data sets

To compare with an alignment-free TEBS search method,
SiTaR, [17], we retrieved real promoter sequences embed-
ding TFBSs. Specifically, we followed the curated location

Table 3 Comparison of two groups of TFs divided
according to results on LASAGNA and ClustalW2

Factor Group 1! mean  Group 22 mean p-value®
# TFBSs* 25.07483 25.83333 0.1409
Mean of TFBS length ~ 18.78626 1756167 0.08451
SD of TFBS length? 8.180204 6.921905 0.06295

1. LASAGNA performed better than ClustalW2 on TFs in this group.

2. ClustalW2 performed better than or equal to LASAGNA on TFs in this group.
3. Wilcoxon signed-rank test p-value.

4. Number of binding sites for each TF.

5. Standard deviation of binding site length for each TF.
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0 68 442 x 107/
0 53 141 x 107
0 29 9.89 x 1074
1 13 3.88 x 1072
1 26 154 x 1072
2 189 122 x 1071

of each binding site in the TRANSFAC Public database
(release 7.0) to retrieve the 1000-base sequences flanking
the binding site. We discarded binding sites that can-
not be found in the proximity of the curated locations.
The retrieved binding sites were grouped by TF and TFs
having less than 10 binding sites were removed. After fil-
tering, we ended up with 90 TFs and 1751 binding sites. A
TF may be present in more than one species as homologs
and hence the binding sites of a TF may be located in
genomes of multiple species. The species and respective
numbers of binding sites are shown in Table 6.

Performance assessment and evaluation metrics
To compare with SiTaR [17], we adopt the same v-fold CV
process used to compare LASAGNA with ClustalW2 and
MEME. However, we do not assume that a TFBS search
method scores all the /-mers in a promoter sequence,
where [ is the length of binding sites. Instead, a TFBS
search method scans a promoter sequence and predicts a
list of binding sites with respective scores. The predicted
binding sites may be of different lengths, which is the case
for SiTaR.

We describe how a hit is determined. Let the length of
a predicted binding site be / and the length of the test
TFBS in question be ;. The predicted binding site is con-
sidered a hit to the test TFBS if the overlap between the
two sequences is more than |/s/2] bases as in [17]. In case
this is not possible, i.e., I < |/s/2], the predicted binding
site must be embedded in the true one to be deemed a hit.

Using the z ranks of TFBSs from v-fold CV, we compute
recall (true positive rate), precision and the Fg-measure,
where 8 = 0.5 as in [17]. Let the recall rate be r. The num-
ber of TEBSs recalled by the method is pr = # x r. Let
the number of non-binding sites or false positives intro-
duced be pr. The precision is given by prij , while Fg =
1+ 8%

precision xrecall
B2 xprecision+recall *

Comparison with an alignment-free method
We conducted 10-fold CV on the aforementioned 90
TFs. The PSSM method dependent on LASAGNA
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Table 4 Species-wise and overall comparisons between LASAGNA and MEME

Species # better!

H. sapiens 41 (60.3%)
M. musculus 41 (77.4%)
D. melanogaster 26 (89.7%)
S. cerevisiae 10 (76.9%)
R. norvegicus 23 (88.5%)
Overall 141 (74.6%)

1. Number of TFs on which LASAGNA performs better than MEME.

2. Number of TFs on which LASAGNA and MEME have the same performance.
3. Total number of TFs for a species.

4. Wilcoxon signed-rank test p-value.

(LASAGNA-PSSM) was compared to SiTaR [17].
LASAGNA considered both strands of a sequence when
aligning binding sites. The parameters K, = K were
determined in the same way as in comparing LASAGNA
to ClustalW2. An alignment was trimmed with Cpin = 0.4
and ICpin = 0 before constructing a PSSM as described
in the method section on the LASAGNA algorithm. The
PSSM method uses a cutoff score to predict TFBSs. The
cutoff score is set to the minimal score of the constitut-
ing binding sites of the PSSM. The SiTaR method has a
mismatch parameter and the maximal value allowed by
its webtool is 5. We searched in the range from 0 to 5 to
find the mismatch value giving the highest Fg-measure
for each TE.

In terms of the Fg, no significant difference was found
between the two methods (p-value: 0.392 [43]). To ensure
a fair comparison, we fixed the recall rate for each TF
and compare the precision achieved by LASAGNA-PSSM
and SiTaR. The recall rate was set to the lower of the
recall rates attained by LASAGNA-PSSM and SiTaR. The
TF c-Jun (AC: T00132) was excluded from comparison
because SiTaR did not recover any TFBS. Figure 3a shows
the plot of precision by LASAGNA-PSSM against that
by SiTaR. At fixed recall rates, LASAGNA-PSSM is more
precise than SiTaR on 65 out of 89 TFs (p-value: 2.66 x
1078). Figure 3b shows the plots of precision against recall
based on all the recalled TFBSs by each method. It can
be seen that LASAGNA-PSSM is constantly more precise

Table 5 Comparison of two groups of TFs divided
according to results on LASAGNA and MEME

Factor Group 1! mean  Group 22 mean p-value®
# TFBSs* 23.33333 30.85417 0.03196
Mean of TFBS length ~ 18.33468 19.04125 0.3007
SD of TFBS length? 7.95844 7.730625 0.1846

1. LASAGNA performed better than MEME on TFs in this group.

2. MEME performed better than or equal to LASAGNA on TFs in this group.
3. Wilcoxon signed-rank test p-value.

4. Number of binding sites for each TF.

5. Standard deviation of binding site length for each TF.
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0 68 7.83x 1073
0 53 879 x 107°
0 29 1.02 x 1077
3 13 2,96 x 1073
1 26 1.73 x 107%
4 189 355 x 1071

than SiTaR at the same recall rate. Moreover, LASAGNA-
PSSM recovered substantially more TFBSs than SiTaR at
the same precision.

Results reported in [17] showed that SiTaR is highly pre-
cise and sensitive. Although SiTaR accepts variable-length
binding sites, all the experiments presented in [17] used
fixed-length binding sites as inputs. It is therefore not
clear how SiTaR performs on TFs having variable-length
binding sites. It is also not clear whether SiTaR prepro-
cesses highly variable-length binding sites as this was not
stated in [17]. These issues however are not the focus of
our work.

Application of LASAGNA-ChIP to ChIP-seq data

To demonstrate the use of LASAGNA-ChIP on ChIP-
seq data, we retrieved mouse ChIP-seq data produced by
the Encyclopedia of DNA Elements (ENCODE) project
[44] from the UCSC Genome Browser [39]. All the 38
peak files in the Narrow Peaks format that matches
pattern ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/
database/wgEncode*Tfbs*Pk* were downloaded on Oct.
12, 2012, where “*” is the wildcard character matching
zero or more characters. These files give signal peak loca-
tion besides start and end for each peak and hence the
corresponding signal files do not need to be processed

Table 6 Distribution of the 1751 binding sites of 90 TFs in
TRANSFAC public database

Species # TFBSs!
Homo sapiens 735
Mus musculus 346
Rattus norvegicus 278
Saccharomyces cerevisiae 158
Drosophila melanogaster 155
Gallus gallus 73
Bos taurus 5

Sus scrofa 1

1. Total number of TFBSs.


ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/wgEncode*Tfbs*Pk*
ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/wgEncode*Tfbs*Pk*
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Figure 3 Comparison of the PSSM method dependent on LASAGNA to SiTaR. (a) Scatter plot of precision by LASAGNA-PSSM against precision
by SiTaR at the same recall rate for each TF. Each point corresponds to a TF. Seventy-three percent (65 out of 89) of the TFs are above the reference
line, indicating that LASAGNA-PSSM is more precise for the 65 TFs. (b) Plots of precision against recall for LASAGNA-PSSM and SiTaR based on all the
90 TFs.

by a peak-finding algorithm. Four distinct cell types
and 17 distinct target TFs are present in the 38 ChIP-
seq experiments. Additional file 3 lists, for each ChIP-
seq experiment, the cell, target TF, number of peaks
as well as the minimum, maximum, mean and stan-
dard deviation of peak length. We observe that the peak
length varies greatly. The mean peak length can be as
long as 1124, while the highest standard deviation is
nearly 876.

It is useful to know if LASAGNA-ChIP is able to align
peak sequences and reveal the motif of the ChIPed TF. To
align peak sequences, parameter K, was searched from 0
to 8 to obtain the alignment with the highest IC. MEME
was also used to align peak sequences because it is often
the choice of method. In fact, MEME is used by 5 out
of 6 tools compared in [45] for ChIP-seq data analysis.
The MEME parameters are described in section Compari-
son of alignment algorithms, where the one-per-sequence
model is assumed. To ensure that both methods finish
within reasonable time, for each experiment, we randomly
sampled 300 peaks for alignment. We did not distinguish
large peaks from small ones because ChIP-seq experi-
ments require large numbers of cells and hence “a small
peak could represent very strong binding in only a subset
of the cells” [46].

For each alignment, we searched for the resulting motif
in 386 UniPROBE mouse motifs and 398 motifs derived
from all the matrices in the TRANSFAC Public database.
The search was accomplished by software TOMTOM
[47]. We used Pearson correlation as the distance mea-
sure, required a minimal overlap of 5 nucleotides, and set
the E-value cut-off to 5. Additional file 4 shows, for each
ChIP-seq experiment, the sequence logos of motifs found
by LASAGNA-ChIP and MEME. The matching motifs

found by TOMTOM are listed under each sequence logo
[48] by E-value. In case more than 10 significant motifs
were found, only the 10 most significant ones were shown.
The one matching the ChIPed TF is highlighted in yellow
for each ChIP-seq experiment.

We first notice that overall the motifs found by
LASAGNA-ChIP and MEME are very similar by visual
inspection. No significant difference is observed in terms
of motif IC (p-value: 0.1252). For both LASAGNA-ChIP
and MEME, the ChIPed TF motifs were found for 31
experiments. Among the other 7 experiments are one
MYB in MEL cells, all the ETS1 in CH12 and MEL cells,
one JUND in MEL cells, one MAX in C2C12 cells, all the
TBP in CH12 and MEL cells. Interestingly, LASAGNA-
ChIP and MEME differ only for 4 out of these 7 exper-
iments. They are one ETS1 in CHI12 cells, one MAX
in C2C12 cells and two TBP in CH12 and MEL cells.
Although LASAGNA-ChIP and MEME differ in these
cases, the found motifs still warrant further analyses.
For instance, the motif for ETS1 in CH12 cells found
by LASAGNA-ChIP resembles the secondary motif of
Gabpa, which is a known paralog.

For the other 3 out of the 7 experiments, LASAGNA-
ChIP and MEME produced similar motifs. The one found
for MYB in MEL resembles those of GATA proteins.
This agrees with a recent study reporting that MYB and
GATA-3 cooperatively regulate IL-13 by direct binding to
a conserved GATA-3 response element [49]. Since this
motif is based on 300 peak sequences, it is likely that the
two proteins similarly regulate other genes in MEL cells.
The motif for ETS1 in MEL cells also matches those of
GATA proteins. Cooperation between ETS1 and GATA-3
in regulating IL-5 was also suggested [50,51]. Finally, while
the motif for JUND in MEL cells matches two motifs in
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Figure 4 Partial results of scanning the promoter of human gene CCL2. The list of predicted binding sites are sorted by p-value in ascending
order while only the top-4 hits are shown. The best hit is visualized in the context of other binding sites over a stretch of the promoter, where the
height of a box is — log; o p-value. CCL2 is known to be a target gene of AP-1, Sp1 and p50 [28]. These 3 binding sites are not in the TRANSFAC
public database and were not used to build the PSSMs.
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the TRANSFAC and UniPROBE databases, the matches
are likely false positives since no literature support was
found.

While it is not specifically designed to be a de novo
motif discovery method, LASAGNA-ChIP aligns all the
peak sequences and finds the most informative motif. The
assumption that a motif instance is present in each peak
sequence may not hold for some experiments. Because
of several possible binding models [46], two or more
motifs may be present in subsets of the peak sequences.
Discovery of more than one motif will be enabled for
LASAGNA-ChIP in the near future.

LASAGNA is simple and effective

Unlike MEME and similar methods, the order in which
the input sequences are aligned is crucial to LASAGNA
and ClustalW. ClustalW relies on a guide tree based on
pairwise alignments to decide the order. LASAGNA, on
the other hand, depends on the length of a sequence
and its similarity to the partial alignment. LASAGNA-
ChIP is well-suited for a TF whose shortest site misses
the core or contains only a fraction of it. We, however,
observed no significant difference between LASAGNA
and LASAGNA-ChIP on TFBSs in the TRANSFAC Public
database. This is because, for these TFBSs, a shortest site
often fully contains the core.Hence, our assumption holds
true in general.

For ChIP-seq data, the assumption that short sequences
contain less irrelevant bases flanking the core may not
hold. However, we observe that, under the one-per-
sequence model, LASAGNA-ChIP performed compara-
bly well to MEME in aligning ChIP-seq peak sequences.
We attempted other orders such as from the longest
sequence to the shortest one and found that aligning
the shortest sequence first does have its advantage (data
not shown). Also, we note that, for 11 out of 38 exper-
iments, the peak sequences are all at least 100 bp (see
Additional file 3) and hence all the peak sequences are
100 bp long after clipping. This implies that LASAGNA-
ChIP is capable of handling sequences of the same
length.

LASAGNA-ChIP, MEME and methods alike produce
gapless alignments and do have their limits. When a TF
binds to two cores separated by a variable-length spacer,
these methods are expected to align the canonical TFBSs
containing spacers of the most prevalent length. These
binding patterns are also known as two-block motifs.
Gapped alignment or explicit modeling [52] is needed to
correctly align TFBSs of this nature.

Implementation

We have implemented a user-friendly webtool named
LASAGNA-Search, which is freely available at http://
biogrid.engr.uconn.edu/lasagna_search/. Useful features
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include automatic promoter retrieval, visualization of hits
locally and at the UCSC Genome Browser, and automatic
gene regulatory network construction based on significant
hits. LASAGNA-Search adopts the LASAGNA-PSSM
method and currently stores PSSMg, models (PSSM mod-
els for short), where Kj is determined by CV experiments,
for the 189 TRANSFAC TFs summarized in Table 1 as well
as 133 TFs from ORegAnno (08Nov10 dump). In Addi-
tional file 5, we list each model with its counterpart for
the same TF if one is found in matrices in TRANSFAC
Public. We do not evaluate models by IC because higher
IC implies higher specificity but not necessarily higher
sensitivity. Comparison with models in other databases is
beyond the scope of this study but will be investigated in
the near future.

LASAGNA-Search estimates p-values of PSSM scores
empirically because the PSSM model for a TF may score
nucleotide pairs in addition to individual nucleotides.
When K; = 0, a PSSM score is considered the sum of
independent variables and hence the exact p-value can be
efficiently computed [53]. Even with this independence
assumption, the scores of nucleotide pairs at (1, 2) and (2,
3), for instance, are never independent. Hence, a PSSM
score cannot be seen as the sum of independent variables
when nucleotide pairs are scored. The empirical PSSM
score distribution of a TF is obtained from scanning a ran-
dom sequence simulated by f(«), u € {A, C, G, T}, where
f(u) is estimated from all the TFBSs used to build the
PSSM. LASAGNA-Search focuses on only PSSM scores
in the upper 5% and hence scores in the lower 95% are
given a p-value of 0.05+. Currently, the smallest nonzero
p-value is 2.5 x 107> and 0 means any number less than
2.5 % 107>,

As a case study, we scanned the promoter region of
human gene CCL2 (NCBI Gene ID 6347), also known as
MCP1. CCL2 was arbitrarily chosen by browsing the ORe-
gAnno database [28]. The promoter sequence (-950 to +50
relative to the transcription start site) was automatically
retrieved and scanned for binding sites of all 68 human
TFs with the p-value threshold set to 0.001. Figure 4
displays a partial view of the search results ordered by p-
value. The only 3 true positive hits, AP-1, Spl and p50
(NFKB1), were found in the top-4 of the list. Accord-
ing to ORegAnno, CCL2 is a target gene of AP-1, Spl,
NFKBI1, STAT1 and GAS, where GAS likely refers to the
gamma activated site bound by STAT1. STAT1, however,
is not one of the 68 TFs and hence all the TFs known
to regulate CCL2 were recalled. The fact that AP-1, Spl
and p50 regulate CCL2 is also documented in TRANS-
FAC [27] (T00029, T00759 and T00593). The actual sites
(R14639, R14638 and R14640), however, are not in the
public release and were not used to build the PSSM mod-
els. We note that this case study is for illustration not
evaluation purposes.
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Conclusions

We proposed LASAGNA, a novel alignment algorithm
specifically designed for aligning variable-length tran-
scription factor binding sites. Cross-validation results
on 189 TFs and 4771 TFBSs indicated that LASAGNA
significantly outperformed ClustalW2 (p-value: 1.22 x
1071°) and MEME (p-value: 3.55 x 1071°). This is
because LASAGNA was specifically designed for align-
ing variable-length TFBSs. Based on the success of
LASAGNA, we developed LASAGNA-ChIP, which is
capable of handling sequences produced by ChIP-chip
and ChIP-seq experiments. While ClustalW2 is bet-
ter suited for producing structurally correct alignments,
LASAGNA-ChIP, MEME and methods alike can be used
to align sequences produced by ChIP-chip or ChIP-seq
experiments.

We compared LASAGNA-PSSM, the PSSM method
dependent on LASAGNA, to SiTaR, an alignment free
TEBS search method. Cross-validation experiments were
conducted on 1751 TFBSs of 90 TFs for both methods.
The results showed that, at fixed recall rates, LASAGNA-
PSSM is significantly more precise than SiTaR (p-value:
2.66 x 1078). The recall-precision curve showed that our
method is constantly more precise at any recall rate or
more sensitive at any precision.

We conclude that the LASAGNA algorithm is sim-
ple and effective in aligning variable-length binding sites.
It has been integrated into a user-friendly webtool for
TFBS search called LASAGNA-Search. The tool cur-
rently stores precomputed PSSM models for 189 TFs
and 133 TFs built from TFBSs in the TRANSFAC Pub-
lic database (release 7.0) and the ORegAnno database
(08Nov10 dump), respectively. In the future, more sources
of experimentally validated TFBSs such as the PAZAR
database will be incorporated into the webtool, making
variable-length TFBSs more accessible to scientists in the
field.

Additional file

Additional file 1: LASAGNA-ChIP flowchart.
Additional file 2: Distribution of K; by species and conserved domain.

Additional file 3: Summary of 38 mouse ChIP-seq experiments. Each
row shows the track name in the UCSC Genome Browser, cell type, target
TF, number of peak sequences as well as the minimum, maximum, mean
and standard deviation of peak sequence length.

Additional file 4: Motifs found by LASAGNA-ChIP and MEME. For each
ChIP-seq experiment, the sequence logos of motifs found by
LASAGNA-ChIP and MEME are shown. The matching motifs in the
TRANSFAC Public and UniPROBE databases found by TOMTOM are listed
below each sequence logo. The first ChiPed motif TF is highlighted in
yellow if it is among the matching motifs. When the found motif does not
resemble those of the ChIPed TF, the first cofactor of the ChiPed TF is
highlighted in blue if it is among the matching motifs. Other possibly
correct matches are highlighted in green.
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Additional file 5: List of LASAGNA-built models based on
TRANSFAC/ORegAnno TFBSs. Only models whose counterparts can be
found in matrices in TRANSFAC Public are listed. The IC and number of sites
are shown for each model.
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