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Abstract

Background: RNA-Seq technology measures the transcript abundance by generating sequence reads and counting
their frequencies across different biological conditions. To identify differentially expressed genes between two
conditions, it is important to consider the experimental design as well as the distributional property of the data. In
many RNA-Seq studies, the expression data are obtained as multiple pairs, e.g., pre- vs. post-treatment samples from
the same individual. We seek to incorporate paired structure into analysis.

Results: We present a Bayesian hierarchical mixture model for RNA-Seq data to separately account for the variability
within and between individuals from a paired data structure. The method assumes a Poisson distribution for the data
mixed with a gamma distribution to account variability between pairs. The effect of differential expression is modeled
by two-component mixture model. The performance of this approach is examined by simulated and real data.

Conclusions: In this setting, our proposed model provides higher sensitivity than existing methods to detect
differential expression. Application to real RNA-Seq data demonstrates the usefulness of this method for detecting
expression alteration for genes with low average expression levels or shorter transcript length.

Background
Gene expression profiles are routinely collected to identify
differentially expressed genes and pathways across various
individuals and cellular states. Sequencing-based tech-
nologies offer more accurate quantification of expression
levels compared to other technologies. Early sequence-
based expression measured transcript abundance by
counting short segments, known as tags, generated from
the 3’ end of a transcript. Tag-based methods include
the Serial Analysis of Gene Expression (SAGE, [1]), Cap
Analysis of Gene Expression (CAGE), LongSAGE, and
massively parallel signature sequencing (MPSS). The
development of deep sequencing technology enables
simultaneous sequencing of millions of molecules and has
led to advanced approaches for expression measurement
[2,3]. Digital gene expression - tag profiling [4] adapted
the tag-based approach for use with the ‘next-generation’
sequencing platform. RNA-Seq is an alternative approach,

*Correspondence: lisa.chung@yale.edu; hongyu.zhao@yale.edu
1Department of Biostatistics, Yale School of Public Health, New Haven,
Connecticut, USA
Full list of author information is available at the end of the article

that is an application of ‘whole genome shotgun sequenc-
ing’. Briefly, it entails generating a cDNA library by ran-
dom priming off of fragmented RNA. The cDNA library
is then subject to next-generation sequencing to generate
short nucleotide sequences (reads) that correspond to the
ends of the cDNA fragments. RNA-Seq aims to measure
the entire transcriptome and is preferable to microarrays
and tag-based approaches since it provides more infor-
mation such as alternative splicing and isoform-specific
gene expression with very low background signal and
a wider dynamic range of quantification [5]. Moreover,
recent experiments revealed that the RNA-Seq measures
expression level with high accuracy and reproducibility
[6-9].
Sequence-based approaches quantify gene expression

as a ‘digital’ count and require modeling suitable for
a count random variable. The Poisson distribution has
been central in modelling expression data [10-12] and
commonly applied to RNA-Seq data [6,13]. In partic-
ular, Li et al. (2012) proposed a permutation-based
approach to generate the null distribution [14]. However,
Poisson-based approaches may not take all the varia-
tions between biological samples into account. The Beta-
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Binomial hierarchical model [15,16], overdispersed logis-
tic [17], and overdispersed log-linear models [18] were
proposed to capture extra variance for each gene sepa-
rately. Negative Bionomial models have been proposed
to estimate the overdispersion parameter by shrinkage
estimation [19-21], mean-dependent local regression [22],
or empirically derived prior distribution [23]. Alter-
natively, beta-binomial [24] and Poisson mixture [25]
models were proposed under the Bayesian modeling
framework. Nonparametric method with resampling was
also considered [26]. These approaches generally assume
that samples under two groups are obtained indepen-
dently. Recently, some of these approaches have been
extended to deal with multi-factor design structures
[14,16,21,22].
Many practical RNA sequencing studies collect data

with a paired structure, where the global expression pro-
files are measured before and after a treatment is applied
to the same individual. Appropriate modeling of such data
requires taking this design structure as well as the distri-
butional property of the data into account. The Poisson
model has been used to test the effect of drugs when
the observation occurs as paired data, such as predrug
and postdrug counts [27]. Lee [28] considered a mix-
ture model to account for extra variance among indi-
viduals over the level that would be expected under the
Poisson model. These approaches assume independence
of the paired observation conditional on the individual
mean. Bivariate Poisson or negative binomial distribu-
tion are alternative choices to model correlations between
observations [29,30].
In this paper, we propose a Bayesian hierarchical

approach to modeling paired count data that separately
accounts for the within and between individual vari-
ability from a paired data structure. Our work adopts
the Poisson-Gamma mixture model [28] and utilizes a
Bayesian approach to evaluate the expression difference.
We note that the Bayesian models are widely utilized in
microarray studies and have improved sensitivity to detect
differential gene expression by sharing information among
genes [31]. Mixture models are also commonly used
to model differential expression, where non-differentially
expressed and differently expressed genes correspond to
different mixture components. Various mixture model
specifications have been considered in the literature.
The gamma and log-normal distribution were used to
model the expression levels [32,33]. Smyth [34] assumed
a point mass at zero for log scaled fold change for
null genes and a normal distribution centered at zero
for non-null genes. Lonnstedt et al. [35] and Gottardo
et al. [36] proposed a mixture of two (null and non-
null) or three normal (null, over, and under expres-
sion) distributions. Non-parametric approaches have
also been utilized [31,37]. Lewin et al. [38] discussed

various choices of mixture component priors and model
checking.
The rest of this manuscript is organized as follows. Data

Section introduces the biological problem and data that
motivated this study. Methods Section presents our para-
metric model and the Bayesian method to identify genes
with differential expression levels. The performance of the
proposed model is examined by Simulations. Two sets
of simulation studies are conducted: (1) those based on
the model assumption to investigate the accuracy of the
proposed method on parameter estimation, and (2) those
based on mimicking the motivating data set to exam-
ine the robustness of the proposed method. Finally, the
proposed method is applied to real data with detailed
discussion of the results and comparisons with other
methods.

Data
Qian et al. (Qian F. et al.: Identification of genes critical
for resistance to infection by West Nile virus using RNA-
Seq analysis, submitted) designed an RNA-Seq experi-
ment to study human West Nile virus (WNV) infec-
tion. One objective of this study was to identify altered
genes/transcripts from viral infection of primary human
macrophages in comparison to uninfected samples. This
study naturally has a paired design structure. A total
of 10 healthy donors were recruited according to the
guidelines of the human research protection program of
Yale University and cells were isolated from fresh hep-
arinized blood samples for infectionwithWNV (strain CT
2741, MOI=1, for 24 hours) as described previously [39].
PolyA+ RNA was prepared from uninfected and WNV-
infected primary macrophages, fragmented, and sub-
jected to sequencing using the Illumina Genome Analyzer
2. Approximately 50 million quality filtered reads were
obtained from each sample, and about 85% were mapped
to the human transcriptome (hg19) with ENSEMBL tran-
script annotations (Release 57) using TOPHAT v.1.1.4
[40]. Genes and transcript isoforms were scored for
expression by amaximum likelihood basedmethod imple-
mented in Cufflinks v.0.9.3 [41]. To analyze differential
expression, the data were first converted from the FPKM
unit (fragments per kilobase of exon permillion fragments
mapped) to the number of reads originated from each
transcript isoform. The trimmed-mean method [42] was
applied to further normalize the count expression values.
The processed data contains transcript-level expression
counts from a total of 20 samples consisting of 10 pairs
of uninfected and virus infected samples. For differen-
tial expression analysis, we removed transcripts with less
than 10 total counts across 10 uninfected samples or no
observed count from 6 or more individuals in the unin-
fected conditions. After these steps, 37,111 transcripts
were considered for data analysis.
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Methods
Bayesian mixture model for paired counts
Wenow describe our Bayesian hierarchical mixturemodel
to identify differentially expressed genes/transcripts from
paired RNA-seq data. As noted above, such data arise nat-
urally from experiments measuring the biological change
from treatments. We start with an overdispersed count
model [28]. The observations are denoted by a pair
(Ygi1,Ygi2), for gene g = 1, . . . ,G and individual i =
1, . . . , n, where Ygi1 is the observed baseline expression
level and Ygi2 is the observed level after treatment. The
sizes of the libraries are denoted as Ni1 and Ni2, respec-
tively. Let λgi denote the true baseline expression relative
to the library size. Then, Ygi1 can be modeled as a Pois-
son random variable with mean λgiNi1. Let χg denote the
expression level fold change after treatment so the true
expression level is χgλgiNi2, then Ygi2 can be modeled as a
Poisson random variable with mean χgλgiNi2. Our goal is
to test whether there is any treatment effect, i.e., χg �= 1,
where

Ygi1|λgi,χg ∼ Poisson(Ni1λgi),
Ygi2|λgi,χg ∼ Poisson(Ni2λgiχg). (1)

It has been shown that the variability among techni-
cal replicates for RNA-Seq data can be captured by the
Poisson distribution [6]. However, greater variance can
be expected, if observations are collected from individu-
als with differences in the underlying biological system.
One way to model the overdispersion among the Pois-
son counts is to mix it with a Gamma distribution [28].
In this model, we use a Gamma distribution to model the
baseline expected expression, λgi, across individuals with
shape parameter αg and rate βg ;

fλ(λgi) = β
αg
g

�(αg)
λ

αg−1
gi e−βgλgi . (2)

This model allows us to obtain a simpler form of the
predictive density, i.e., the λgi’s can be integrated out
(see Appendix).
Assuming independence between the baseline expres-

sion and treatment effect, we use a two-component mix-
ture model to characterize the fold change distribution,
where the expression change state of each gene is defined
by a latent variable zg , with zg = 0 corresponding to
no change and zg = 1 otherwise. We assume that zg
has a probability of π0 for equal expression, i.e., zg = 0,
and a probability of π1 = 1 − π0 for differential expres-
sion. Given a state, 0 or 1, the log-scaled fold change
is assumed to follow a normal distribution. Under equal
expression, the log-fold change is assumed to arise from a
normal distribution centered at zero and variance σ 2

0 . For
genes with differential expressions, if we assume their log-
fold changes follow a normal distribution centered around

zero, we implicitly assume that there is equal chance for
a gene to be either over or under expressed. However,
more genes were under-expressed after the viral infection
for the data set described earlier, with 3.2% of transcripts
showing increased expression by more than 4 fold after
the infection whereas 4.3% showing reduction by more
than 4 folds. To accommodate this asymmetry, we assume
the log-fold change for non-null genes arises from a nor-
mal distribution with mean μ1, which may be different
from 0, and variance σ 2

1 .

log(χg)|(zg = 0) ∼ Normal(0, σ 2
0 )

log(χg)|(zg = 1) ∼ Normal(μ1, σ 2
1 )

Collecting all the components discussed so far, the
model can be summarized in Figure 1. Under this set-up,
the goal is to estimate the posterior probability that a spe-
cific gene is differentially expressed after treatment, i.e.,
Pr(zg = 1|data). Genes can then be inferred to DE (Differ-
ential Expression) or EE (Equal Expression) according to
these probabilities.
To complete our model description, we need to spec-

ify prior assumptions for the unknownmodel parameters,
θ = ({αg}, {βg},π0,π1, σ 2

0 ,μ1, σ 2
1 ). In our implementation,

we assume non-informative priors for these unknown
parameters:

1. (π0,π1) ∼ Dirichlet(1,1), i.e., π0 ∼ Uniform(0, 1).
2. Each αg and βg has a non-informative prior.
3. p(σ 2

0 ) ∝ 1/σ 2
0 and p(σ 2

1 ) ∝ 1/σ 2
1 .

4. μ1 has an improper prior.
5. Joint independency among all the parameters.

Parameter estimation via Markov chain Monte-Carlo
(MCMC)
In this section, we describe the Gibbs sampling algorithm
[43] that we use to iteratively sample model parame-
ters from their conditional distributions given the other

Figure 1 Diagram illustrating the hierarchical model for paired
RNA-Seq data.
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parameters and the observed data. First, we evaluate the
conditional distribution of parameters (αg , βg) charac-
terizing the baseline expression distribution (λgi). These
parameters are separately updated using the Metropolis-
Hastings algorithm. For the latent state zg and expression
level change χg , the state zg is first proposed and then
χg is sampled given the state. Lewin et al. [38] discussed
this type of move with various choices of the mixture dis-
tribution. Details of our updates on the pair of (χg , zg)
are described in the Appendix. Mixing proportions (π0,
π1) and hyper-parameters for the mixture distribution
(σ 2

0 , σ
2
1 , μ1) are sampled from their conditional posterior

distributions which can be derived in closed forms.

DE classification and false discovery rate estimation
The MCMC algorithm generates random samples from
the joint posterior distribution of all model parameters.
These samples are then used to infer the status of differ-
ential expression. One way to select a set of interesting
genes is to rank genes using estimated posterior-mean fold
change

χ̂g ≈ exp
{
1
T

T∑
t=1

log
(
χ(t)
g

)}
, (3)

where T is the number of iterations used for inference
after the burn-in period and χ

(t)
g is the sampled value

for the fold change on iteration t of the Gibbs sampling
algorithm. Another way to select DE genes is to consider
the latent variable, zg . During the MCMC iteration, the
expression state is sampled along with the fold change
estimates. These MCMC samples can be used to approxi-
mate the posterior probability of differential expression by
counting the proportion of sampled states being differen-
tially expressed:

pg = P(zg = 1|data) ≈ 1
T

T∑
t=1

I
(
z(t)g = 1

)
.

The Bayes’ rule assigns a gene’s expression status
according to the largest posterior probability. An alter-
native is to classify a gene if the posterior probability of
being non-null is greater than a threshold (pthres) : pg >

pthres. For example, one choice would be pthres = 0.5. The
false discovery rate can be estimated from these posterior
probabilities [31]:

F̂DR = 1

(pg > pthres)

∑
g:pg>pthres

(1 − pg) (4)

The method was implemented in R and is available at
http://bioinformatics.med.yale.edu.

Results and discussion
Simulations
Simulations based on themodel assumptions
The first part of the simulation was conducted to examine
the performance of the proposed approach when the data
are generated under the model assumptions. For 10,000
genes and 10 individuals, we simulate expression counts
both before and after treatment according to Equation 1.
Library sizes are sampled uniformly from 7 to 18 millions
and relative expected baseline expression λgi are drawn
from a Gamma distribution with shape 0.1 and rate 1,000.
For simplicity, we consider a two-component log-normal
mixture model for effect size. For the null genes (90%),
the log-scaled effect is sampled from a normal distribu-
tion with a mean 0 and a standard deviation (σ0) 0.1,
whereas the log-effects are sampled from a normal dis-
tribution with mean (μ1) of 1.5 and standard deviation
(σ1) of 0.5 for the non-null genes. For the simulation
studies, the true library sizes are used for the parameter
estimation.
Results in Table 1 show that the proposed approach

estimates the model paramters well. With a posterior
probability cutoff of 0.5, the algorithm identified more
than 97% of true DE genes with an FDR of approximately
1%. Figure 2 illustrates the estimated fold changes showing
the good performance of our algorithm.

Simulations based on the empirical data
In the second part of the simulation, we assume that the
expression abundance is measured for 5,000 genes simul-
taneously before and after a given treatment. The number
of individuals is set to be 10 for the relatively larger sam-
ple case (cases 1 and 4), 5 for the medium (cases 2 and
5), and 3 for the relatively smaller sample case (cases 3
and 6). The size of each library is randomly sampled from
1.8 to 3 million to have simulated count distribution com-
patible with the real data distribution. The infected set of
the RNA-seq data (Data Section, Qian F. et al. for details)
was used as the expected baseline count data to mimic
the observed mean-specific dispersion. First, we sample
5,000 gene indices with replacement to get the expected
baseline expression. Expression counts from the selected
indices are summarized by a matrix where rows from
this data matrix correspond to the selected genes in the

Table 1 Posterior means of the parameters in themodel

Parameters True parameter Posterior mean

σ 2
0 0.01 0.013 (0.002)

μ1 1.5 1.501 (0.015)

σ 2
1 0.25 0.238 (0.015)

π1 0.1 0.099 (0.001)
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Figure 2 Estimated fold change. The left panel shows the distribution of the estimated fold changes under EE and DE by the Bayes’ rule. The red
lines are the true fold change distributions. The right panel displays the relationship between the estimated and true fold change.

original data matrix and columns correspond to individu-
als. Then, the relative expression (λgi,i=1,...,N , Equation 1)
is computed proportional to the total counts in each
sample.
Among 5,000 genes, the first 4,000 are assumed to have

no change (zg = 0) and their log-fold changes, log(χg),
are sampled from a normal distribution with a mean of 0
and a variance of 4 × 10−4. For the rest of non-null genes,
we considered the following two scenarios. An empirical
set-up (cases 1, 2, 3) utilizes nominal fold change from the
uninfected data set. Cases 4, 5, and 6 consider a theoretical
setup, where the log-scaled fold change is drawn from a
normal distribution with a mean of zero and a variance
of 1. We further filter out non-null genes whose true fold
changes are less than 1.4.
Each case was repeated 100 times. We compare the

performance of our approach with DESeq (version 1.8.3)
[22] and edgeR (version 2.6.10) [21], two widely used
methods for RNA-seq data for the purpose of identifying
differentially expressed genes. These twomethods assume
a negative binomial distribution to explain the variance
due to the replicate. DESeq utilizes a smoothing curve
to compute the overdispersion as a function of the aver-
age expression level. An option ‘pooled-CR’ is used to
estimate the overdispersion parameter [44]. In edgeR, a
common dispersion setting is used which assumes a con-
sistent overdispersion across all the features and estimates
the parameter using a common likelihood function. A
paired design can be incorporated by utilizing generalized
linear model. For each application, the true library sizes
are used as the library size inputs.
Table 2 summarizes the results of our approach. Overall,

we see excellent performance of our method in inferring
the expression change status (reflected in a high corre-
lation with the true status) as well as the parameters
characterizing the distributions for the null and non-null
genes. Since true expression states are known in the sim-
ulation, we call a feature to be differentially expressed if
pg > pthres and compare the estimated false discovery
rate with the true value (Figure 3). The FDR is estimated

well for cases with large sample sizes as pthres increases,
while it is slightly under-estimated for small sample sizes.
Figure 4 illustrates the receiver operating characteristics
averaged across 100 simulations under four different sim-
ulation settings. For each setting, the true positive rate
is plotted against the false positive rate. The correspond-
ing rates are computed by ranking genes from the largest
posterior probability by the Bayesian approach (then, the
largest fold change, if tied) or from the smallest p-value by
each of the other methods. The Bayesian approach shows
higher sensitivity at the same level of false positive rates
than the edgeR and DESeq. Especially, the Bayesian model
achieves better performance for smaller sample size and
empirical fold change setting (case 2 or 3).
We further considered a simulation scenario simi-

lar with the real data. As shown in the data appli-
cation, the log-scaled fold change estimated from the
data has larger variance under null component. We set
the null component variance to be 0.35 and repeated
the simulation 50 times. For features in the non-null
group, log-fold change was sampled from a normal dis-
tribution with a mean of -0.45 and a variance of 4.
Simulation was performed with the sample size of 10
(case 7) and the size of 5 (case 8). Averages of the
parameter estimates (μ1, σ 2

0 , σ
2
1 ,π1) for cases 7 and 8

are (−0.42, 0.35, 3.92, 0.20) and (−0.42, 0.35, 3.85, 0.21),
respectively. Similarly with the cases 1 through 6, the esti-
mated false discovery rate is examined (Figure 3) and
performance of the proposed approach is compared with
two existing methods (Figure 4).

Applications
Differential expression analysis with the Bayesianmodeling
In this section, we apply our method to the motivating
data set described in the Data Section. Initial values of
the model parameters are calculated directly from the
data. The MCMC sampling is run 4,000 iterations after
discarding the first 8,000 iterations. On average, computa-
tional time was around 5 minutes per every 100 iterations.
The number of total iterations and burn-in period are
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Table 2 Estimated posterior means and results for
empirical simulation

Case 1 Case 2 Case 3

N 10 5 3

μ1 -0.170 (0.037) -0.169 (0.041) -0.157 (0.041)

σ 2
0 3.653 × 10−4 3.604 × 10−4 3.83 × 10−4

(3 × 10−5) (4.421 × 10−5) (6.090 × 10−5)

σ 2
1 0.984 (0.104) 0.968 (0.115) 0.955 (0.110)

π1 0.151 (0.004) 0.153 (0.005) 0.156 (0.006)

cor(χg , χ̂g)
∗ 0.972 (0.006) 0.993 (0.003) 0.953 (0.011)

FDR 0.030 (0.008) 0.046 (0.011) 0.068 (0.013)

F̂DR 0.024 (0.004) 0.037 (0.005) 0.049 (0.006)

Sensitivity 0.928 (0.014) 0.866 (0.020) 0.802 (0.025)

Specificity 0.995 (0.001) 0.994 (0.002) 0.991 (0.002)

Case 4 Case 5 Case 6

N 10 5 3

μ1 0.007 (0.035) 0.006 (0.038) -0.002 (0.037)

σ 2
0 3.634 × 10−4 3.532 × 10−4 3.450 × 10−4

(2.931 × 10−5) (4.155 × 10−5) (5.283 × 10−5)

σ 2
1 1.172 (0.048) 1.151 (0.059) 1.140 (0.050)

π1 0.179 (0.003) 0.183 (0.004) 0.188 (0.005)

cor(χg , χ̂g)
∗ 0.990 (0.002) 0.979 (0.004) 0.965 (0.007)

FDR 0.030 (0.008) 0.044 (0.009) 0.064 (0.012)

F̂DR 0.021 (0.004) 0.031 (0.005) 0.042 (0.006)

Sensitivity 0.953 (0.011) 0.906 (0.015) 0.862 (0.020)

Specificity 0.995 (0.001) 0.992 (0.002) 0.989 (0.002)

Operating characteristics are based on the Bayes rule. cor(χg , χ̂g)
∗ is the

correlation coefficient between the true difference and the estimated difference.

determined by monitoring trace plots of MCMC sam-
ples (Figure 5 (a)). We estimate the mixing proportion to
be 0.88 and 0.12 for EE and DE group, respectively. The
posterior means for the parameters μ1 and σ 2

1 are -0.45
and 4.04, respectively. The null group has a variance of

0.35. Under the Bayes rule (pthres = 0.5), 2,352 transcripts
are classified into DE after the West Nile virus infection.
The estimated FDR is 16.2% from Equation 4. Figure 5
(b) illustrates the fold change distributions under DE and
EE based on the Bayes rule classification. The estimated
fold changes are plotted in Figure 6 (a) against their DE
posterior probabilities.

Comparisons with existingmethods
In this section, we compare DE analysis results between
our approach and existing methods. The DESeq or edgeR
is applied to the same data set and top 2,352 DE tran-
scripts are selected by their p-values. The edgeR shows
higher consistency with our Bayesian model with 63.5%
of overlap than the DESeq having 34.3% of overlapping
transcripts. Specifically, 832, 632, and 1,364 transcripts
are detected uniquely by the Bayes, edgeR, and DESeq,
respectively (Figure 6). Our approach detects those having
low average expression and high fold change. In contrast,
other approaches tend to identify more transcripts with
high expression level and low fold change (Figure 7). Tran-
scripts which have evidence of differential expression only
by the proposed model often have large inter-individual
variation. Their fold changes are high after the treatment
except a few low expressed individuals. Figure 8 illustrates
an example of uniquely identified transcript by our pro-
posed approach. This transcript is a product of SLAMF7,
which is known to play a role in natural killer cell acti-
vation [45]. Another interesting feature of the proposed
method is that the proportion of DE genes is consis-
tent across transcript length. Among the bottom 10% of
the short transcripts, 4.6% are detected by the proposed
approach while 2.4% are found by other methods. Among
the top 10% of the long transcripts, 6.5% are detected by
the proposed method whereas 7.4 and 8.9% are detected
by DESeq and edgeR, respectively. To investigate more
details, Figure 9 illustrates the DE proportion when the
transcripts partitioned into 10 equal-sized bins based on
their length.
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Figure 3 False discovery rate from the simulation. True and estimated false discovery rates are compared across different threshold for posterior
probability. Solid lines are true values and dashed lines are estimated values averaged over all simulations. Left panel shows the result from
simulation cases 1, 2, and 3, where non-null fold change is empirically generated. Results for cases 4, 5, 6 and 7,8 are illustrated on the middle panel
and right panel, respectively.
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Figure 4 Simulation results. Operating characteristics for 8 simulation settings are plotted with red, green, and blue lines for the Bayes, DESeq, and
edgeR methods, respectively.
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Figure 5 Trace of parameters regarding the mixture distrubution. Trace of parameters regarding the mixture distrubution (a) and distributions
of fold change estimates for genes classified into EE and DE groups, respectively, by the Bayes’ rule (b).

Bioinformatics annotations of the results
Pathway-level analysis is one effective way to summarize
biological relevance of differentially expressed genes. We
perform gene enrichment analysis using DAVID (http://
david.abcc.ncifcrf.gov/). 2,352 DE transcripts inferred

from our approach are mapped to 1,518 DAVID IDs
for functional annotation clustering. Cluster 1 (DAVID
enrichment score: 11.39) represents cellular response
to the WNV infection. Specifically, pathways in clus-
ter 10 (score: 2.72) are related to the activation of the

Figure 6 Result of the Bayesian approach and comparison with other existing methods. Posterior probabilities against estimated fold change
(a) and consistency between the Bayesian approach and existing approaches when the same number of top-ranked transcripts are chosen (b).

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
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Figure 7 Comparison of DE transcripts. Commonly detected transcripts by all three methods are labeled in purple: log-scaled Bayesian estimated
fold change against log-scaled average expression. Other three panels show DE transcripts detected by each of three methods. They are labeled in
red, green, and blue for the Bayes, DESeq, and edgeR methods, respectively.
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proposed method only.



Chung et al. BMC Bioinformatics 2013, 14:110 Page 10 of 14
http://www.biomedcentral.com/1471-2105/14/110

2 4 6 8 10

0
2

4
6

8
10

transcript length bins

D
E

 p
ro

po
rt

io
n 

(%
)

Figure 9 DE proportion and transcript length. Proportion of DE
transcripts over their average expression level. Transcripts are
partitioned into 10 equal-sized bins by their expression levels. The
proportion of transcripts inferred to be DE is plotted on the y-axis.
Red, green, and blue lines are from Bayes, DESeq, and edgeR
methods, respectively.

macrophage after the virus infection. Molecular functions
of these transcripts are characterized by their cytokine
production (GO:0001817) in cluster 3. Cluster 8 (score:
2.89) consists of transcripts that are involved in apop-
tosis (GO:0042981) and the regulation of programmed
cell death (GO:0043067). The induction of apoptosis by
WNV is essential in the regulation of pro-inflammatory
responses, and has been previously reported in cell lines
and neuronal cell types [46,47]. These clusters and related
top pathways are reported on Table 3 with enrichment
scores and p-values.

Conclusions
In this paper, we have presented a hierarchical mixture
model for the identification of differential gene expres-
sion from RNA-Seq data motivated by a West Nile Virus
study, which collected samples as multiple pairs, i.e.
pre- vs. post-treatment for each individual. While such
design is common in biological investigations, few existing
methods analyze such data appropriately. With a hier-
archical Bayesian mixture model coupled with inference
through MCMC, our approach incorporates variability
across genes, individuals, and treatment effects in the con-
text of a paired experiment. Application to both simulated
and real data demonstrates that our model and imple-
mentation is suitable for paired design, having distinct
advantages compared to the existing methods.
Simulation study suggests that our Bayesian setting can

have better power to detect differential gene expression. In
the real data application, our proposed is able to identify

transcripts with large treatment effects but low expres-
sion levels, whereas these transcripts were not inferred
to be differentially expressed by other approaches. This
is likely due to the more flexible and adaptable model-
ing of variance across individuals in our approach. Further
examination of the characteristics of these top-ranked
transcripts shows that the proportion of top-ranked tran-
scripts in the short transcript group is consistent with
the proportion in the long transcript group. On the other
hand, the gene sets detected by the existing approaches
show a bias towards longer transcripts, as has been noted
in the literature before [48,49]. Our model reduces this
bias and as a result facilitates detection of some short-
length differentially expressed transcripts that the other
approaches miss.
We have assumed that the log-fold change arises from a

mixture of two normal distributions. Under DE, themodel
allows the mean of log-fold change distribution not to be
restricted at zero. By doing so, our proposed model can be
applied to the data showing asymmetry between over and
under expression. A normal distributional assumption is

Table 3 Selected pathways from the functional analysis

Term Count p-value

Cluster 1 score: 11.39

Defense response GO:0006952 106 5.3E-14

Response to wonding GO:0006954 90 1.3E-11

Inflammatory response GO:0009611 63 1.0E-10

Cluster 2 score: 5.43

Response to molecule of
lipopolysaccharide

GO:0002237 23 9.4E-8

Response to cytokine stimulus GO:0034097 18 8.0E-5

Response to bacterium GO:0009617 31 3.5E-4

Cluster 3 score: 5.19

Regulation of cytokine
production

GO:0001817 41 2.9E-9

Positive regulation of cytokine
production

GO:0001819 20 8.0E-5

positive regulation of multicel-
lular organismal process

GO:0051240 35 1.1E-3

Cluster 8 score: 2.89

Regulation of apoptosis GO:0042981 100 1.0E-5

Regulation of programmed cell
death

GO:0043067 100 1.5E-5

Regulation of cell death GO:0010941 100 1.8E-5

Cluster 10 score: 2.72

Leukocyte activation GO:0045321 41 9.2E-6

Cell activation GO:0001775 46 1.1E-5

T cell activation GO:0046649 26 2.0E-5

Count column indicates the number of DAVID IDs associated with each pathway.
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shown to be robust from simulation study under empiri-
cal fold change scenarios. Other possible choices for the
null genes include a point mass at 0 [50], uniform distribu-
tion around 0, and a log-Gamma distribution with a mean
0. Similar distributional assumptions can be made for the
non-null genes under the two-component mixture set-up.
Alternatively, one can consider a mixture of three com-
ponents consisting of equal, over, and under expression
states. Further extension can be considered by allowing
variation in the magnitude of expression change across
individuals.

Appendix
Variability across individuals
The Poisson-Gamma setting (Equation 1 and 2) allows
extra variance among count expression values [28]. The
variance of the count is given as

Var(Ygi1) = E(Var(Ygi1|λgi)) + Var(E(Ygi1|λgi))
= E(Ni1λgi) + Var(Ni1λgi)

= Ni1αg

βg

(
1 + Ni1

βg

)
.

Modeling details
The joint density of zg and χg is

p(χg , zg) ∼ π0LogNormal(0, σ 2
0 )I(zg = 0)

+ π1LogNormal(μ1, σ 2
1 )I(zg = 1).

Let θ be a vector of all model parameters, θ =
({αg}, {βg},π0,π1, σ 2

0 ,μ1, σ 2
1 ). The complete likelihood of

the model is
p(Y ,χ , z|θ) =

∏
g
p(Yg ,χg , zg |θ)

=
∏
g
p(Yg |χg , zg , θ)p(χg |zg , θ)p(zg |θ)

=
∏
g

{∏
i
p(Ygi|χg , zg , θ)

}
p(χg |zg , θ)p(zg |θ)

=
∏
g

{∏
i

∫
p(Ygi|λgi,χg , zg , θ)p(λgi|θ)dλgi

}
× p(χg |zg , θ)p(zg |θ)

Here, some details on the integral over λgi follow.∫
p(Ygi|λgi,χg , zg , θ)p(λgi|θ)dλgi

=
∫

(Ni1λgi)
ygi1(Ni2λgiχg)

ygi2

ygi1! ygi2!
e−Ni1λgi−Ni2λgiχg

× fλ(λgi)dλgi

=�(ygi1 + ygi2 + αg)

ygi1! ygi2!�(αg)

(
βg

βg + Ni1 + Ni2χg

)αg

×
(

Ni1
βg + Ni1 + Ni2χg

)ygi1 ( Ni2χg

βg + Ni1 + Ni2χg

)ygi2

Therefore,

p(Y ,χ , z|θ) =
∏
g

[∏
i

{
�(ygi1 + ygi2 + αg)

ygi1! ygi2!�(αg)

×
(

βg

βg + Ni1 + Ni2χg

)αg

×
(

Ni1
βg + Ni1 + Ni2χg

)ygi1

×
( Ni2χg

βg + Ni1 + Ni2χg

)ygi2}
×p(χg |zg , θ)p(zg |θ)

]
.

(5)

After integrating over the expected gene- and
individual-specific relative baseline expression (λgi’s), the
posterior density of unknown parameters is proportional
to the product of likelihood and prior density.

p(χ , z, θ |Y ) ∝ p(Y ,χ , z|θ)p(θ)

We use the non-informative prior distributions for
the unknown model parameters specified in the
Methods Section.

Parameter estimates by the Metropolis-Hastings algorithm
(MCMC)
We infer the posterior distributions using the Gibbs sam-
pling [43], which iteratively samples model paramters
from the conditional distribution of each patermter given
the other parameters. In this section, we describe the
procedure for the posterior inference.

Step1
Update αg . The conditional distribution for αg does not
have a closed form expression. We use the Metropolis-
Hastings algorithm to sample this parameter. More
specifically, we update the parameter by proposing
αnew
g ∼ N(αold

g , σ 2
α ) at each iteration, where σα is set to

be 0.1. The proposal is accepted with probabilitymin{1, r},
where r is the acceptance ratio.

r =
p(z,χ ,αnew

g , θold−αg |Y )

p(z,χ ,αold
g , θold−αg |Y )

where θold−αg is the current values of the parameters except
αg and

p(z,χ ,αg , θ−αg |Y ) ∝
∏
i

�(ygi1 + ygi2 + αg)

�(αg)

×
(

βg

βg + Ni1 + Ni2χg

)αg

.

If the proposal is accepted, we replace the old αg with
the new one. Otherwise, αg stays at the current value.
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Step2
Update βg . Similar to sample αg , we propose
βnew ∼ N(βold, σ 2

β ), where σβ is set to be 1. The accep-
tance ratio is calculated as

p(z,χ ,βg , θ−βg |Y ) ∝
∏
i

β
αg
g

(βg + Ni1 + Ni2χg)
ygi1+ygi2+αg

.

Similarly, θ−βg is the vector of parameters except βg .
For the evaluation of the acceptance probability, updated
value of αg in the Step 1 will be used.

Step3
Update (χg , zg) by utilizing generalized Metropolis-
Hastings. Lewin et al. [38] pointed out that χg and zg
have to be jointly estimated since the supporting space
of χg depends on the choice of zg . For example, χg is a
point mass at one if zg = 0. To estimate a pair of (χg , zg),
they proposed the state zg first and then updated χg |zg .
By utilizing this approach, we adopt the following steps to
sample (χg , zg).
(Step 3-1) Generate znewg from the Bernoulli distribution,

with P(znewg = 0) = πold
0 .

(Step 3-2) Then, χnew
g is proposed from

LogNormal(0,Vg) if znewg = 0. Otherwise, it is sampled
from LogNormal(Mg ,Vg). The mean and variance of the
log-normal proposal distribution are computed from
the observed counts. First, we collect individuals whose
pre- and post-treatment counts are non-zero for each
gene, separately. Then, Mg is computed as a median of
log( ygi1Ni1

/
ygi2
Ni2

) for such individuals. The variance of these
values can be used as Vg , however, this estimate often
gives an extreme value. In data analysis, we trim the esti-
mates at 25th and 75th percentiles when the sample size
is 10. For small sample case, the median of Vg ’s is used as
the proposal variance.

Alternative description

Define Q(χnew
g , znewg |χold

g , zoldg ) to be a proposal density
from the current values (χold

g , zoldg ) to the proposed values.
In our approach, the proposal density does not depend
on the current values, i.e., we use the independence chain
Metropolis-Hastings. The proposal distribution is given
by

Q
(
χnew
g , znewg |χold

g , zoldg

)
∼πold

0 LN(0,Vg)I
(
znewg = 0

)
+ πold

1 LN(Mg ,Vg)I
(
znewg =1

)

The acceptance probabilty is min{1, r} where r is one of
followings:

zoldg = 1, znewg = 1 : r = LN1(χnew
g )t(χnew

g )

LN1(χ
old
g )t(χold

g )

× LN(χold
g ;Mg ,Vg)

LN(χnew
g ;Mg ,Vg)

zoldg = 1, znewg = 0 : r = LN0(χnew
g )t(χnew

g )

LN1(χ
old
g )t(χold

g )

× LN(χold
g ;Mg ,Vg)

LN(χnew
g ; 0,Vg)

zoldg = 0, znewg = 1 : r = LN1(χnew
g )t(χnew

g )

LN0(χ
old
g )t(χold

g )

× LN(χold
g ; 0,Vg)

LN(χnew
g ;Mg ,Vg)

zoldg = 0, znewg = 0 : r = LN0(χnew
g )t(χnew

g )

LN0(χ
old
g )t(χold

g )

× LN(χold
g ; 0,Vg)

LN(χnew
g ; 0,Vg)

where t(χg) = ∏
i

χ
ygi2
g

(βg+Ni1+χgNi2)
ygi1+ygi2+αg , LN0 is a prob-

ability density function for log-normal distribution with
mean zero and variance σ

2,old
0 . Similarly, LN1 is a log-

normal density centered at μnew
1 and variance σ

2,old
1 .

Step4
Update σ 2

0 , μ1, σ 2
1 , which are hyper-paramaters from the

distribution of χg . Since it has a closed form for the pos-
terior density conditional on all other parameters, we can
directly sample those parameters.

σ
2,new
0 ∼ InvGamma

⎛⎝
(zg = 0)
2

,
1
2

∑
zg=0

log(χg)
2

⎞⎠
μnew
1 ∼ Normal

(∑
zg=1 log(χg)2


(zg = 1)
,

σ 2
1


(zg = 1)

)

σ
2,new
1 ∼ InvGamma

⎛⎝
(zg = 1)
2

,
1
2

∑
zg=1

(logχg − μ1)
2

⎞⎠
where 
(zg = 0) = ∑

g I(zg = 0) and 
(zg = 1) =∑
g I(zg = 1).

Step5
Update the mixing proportions (π0, π1). We assume a
Dirichilet prior for the mixture probabilities. Using Gibbs
sampling scheme, these weight parameters are updated
from Dir(1 + 
(zg = 0), 1 + 
(zg = 1)).
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