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Abstract

Background: As more complete genome sequences become available, bioinformatics challenges arise in how to
exploit genome sequences to make phenotypic predictions. One type of phenotypic prediction is to determine sets
of compounds that will support the growth of a bacterium from the metabolic network inferred from the genome
sequence of that organism.

Results: We present a method for computationally determining alternative growth media for an organism based on
its metabolic network and transporter complement. Our method predicted 787 alternative anaerobic minimal
nutrient sets for Escherichia coli K–12 MG1655 from the EcoCyc database. The program automatically partitioned the
nutrients within these sets into 21 equivalence classes, most of which correspond to compounds serving as sources of
carbon, nitrogen, phosphorous, and sulfur, or combinations of these essential elements. The nutrient sets were
predicted with 72.5% accuracy as evaluated by comparison with 91 growth experiments. Novel aspects of our
approach include (a) exhaustive consideration of all combinations of nutrients rather than assuming that all element
sources can substitute for one another(an assumption that can be invalid in general) (b) leveraging the notion of a
machinery-duplicating constraint, namely, that all intermediate metabolites used in active reactions must be
produced in increasing concentrations to prevent successive dilution from cell division, (c) the use of Satisfiability
Modulo Theory solvers rather than Linear Programming solvers, because our approach cannot be formulated as linear
programming, (d) the use of Binary Decision Diagrams to produce an efficient implementation.

Conclusions: Our method for generating minimal nutrient sets from the metabolic network and transporters of an
organism combines linear constraint solving with binary decision diagrams to efficiently produce solution sets to
provided growth problems.

Keywords: Binary decision diagrams, Computational biology, Linear constraint solving, Minimal nutrient sets,
SMT solvers, Metabolic and regulatory networks, Cellular metabolism

Background
Approximately 75% of microbial organisms are uncul-
turable (cannot be grown in the laboratory) even as we
can fully sequence their genomes [1,2]. Determination
of proper laboratory growth conditions presents a sig-
nificant barrier to a comprehensive understanding of the
microbial world.
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Given the high cost of evaluating laboratory growth
conditions and the relative abundance of powerful
genome sequencing resources, it makes sense to ask
whether we can use the metabolic network inferred from
an organism’s genome sequence to predict the media that
will support the growth of the organism. We have previ-
ously shown that the biochemical reactions and metabolic
pathways of an organism can be inferred from its anno-
tated genome [3-5]. We have also shown that the com-
pleteness of a metabolic network can be evaluated using a
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“forward propagation” approach [6]. This purely qualita-
tive modeling approach treats each reaction as a rule that
will “fire” if all of its reactants are present.When a reaction
fires, its products are added to the metabolite pool. This
process is then repeated using the new, larger metabolite
pool, until no more reactions fire. For example, a model
of the Escherichia coli metabolic network could be “fed”
the constituent compounds of M9 minimal medium, and
the expectation would be that all the biomass compounds
should be present in the final, fixed set of compounds
generated via forward propagation.
This qualitative analysis method is a good starting point

for deriving minimal nutrient sets, but it has a major
limitation. It treats the organism as an empty factory lack-
ing everything except the provided nutrients. But cells do
not start as empty bags of metabolites — they contain
a wide variety of compounds that “prime the pump” for
their own syntheses — “Omnis cellula e cellula” (“Every
cell from another cell” — Francois-Vincent Raspail) [7].
Consequently, the forward propagation approach cannot
properly analyze cycles in which an organism begins with
some amount of a compound C and uses C in combi-
nation with other nutrients to generate more C. Such
cycles do occur in practice (e.g., glycolysis consumes ATP
before producing ATP). Modeling these cycles requires
the handling of stoichiometric reactions and the track-
ing of relative rates of production and consumption of
compounds, and is addressed herein.
Flux-Balance Analysis (FBA) methods can also be

used to predict whether a given nutrient set supports
growth. However, to permit computational tractability,
FBA approaches begin with a starting “seed” medium and
generate new media in which only one nutrient at a time
is changed, to vary the source of one element, e.g., nitro-
gen. Thus, the method does not evaluate all combinations
of nutrients — it assumes that if a given nitrogen source
supports (or does not support) growth with one carbon
source, it will exhibit the same behavior for all carbon
sources (or other element sources). We show that this
assumption of orthogonality of element sources is not
guaranteed to hold, and argue that metabolic network
algorithms should be designed to analyze networks with
unusual properties, or we take the risk of finding only
those nutrient sets that our algorithms expect to see.
We address the challenge of predicting growth media

from genome data by developing a novel constraint-
based algorithm that infers minimal nutrient sets for
an organism based on its metabolic network. The algo-
rithm requires (1) a set R of metabolic reactions for the
organism, (2) a set of transportables T that are poten-
tial nutrients (inferred from the transporter proteins of
the organism), and (3) a set of biomass compounds B that
must be produced for growth. A subset N ⊆ T of trans-
portables is a nutrient set if the set B is producible from N

where producible may have different definitions, depend-
ing on assumptions. A nutrient set N is minimal if no
proper subset of N is a nutrient set. In other words, a
nutrient set N is a minimal nutrient set if we cannot form
a new nutrient set by removing one or more compounds
from N.
Because our algorithm sometimes infers thousands of

minimal nutrient sets, which are difficult to comprehend
and to evaluate, we also developed an algorithm that com-
putes nutrient equivalence classes from minimal nutrient
sets. Two nutrients A and B belong to an equivalence class
if for every minimal nutrient set containing A there also
exists a minimal nutrient set in which B is substituted for
A, and vice versa. In E. coli we find that these equiva-
lence classes often correspond to compounds that supply
a given element (e.g., carbon sources). We can communi-
cate all computed minimal nutrient sets to the user more
effectively by presenting the nutrient equivalence classes,
plus a reduced set of minimal nutrient sets in which we
retain only those minimal nutrient sets that contain one
representative from each equivalence class.
We apply our algorithm to E. coli by using the manually

curated reaction network stored in EcoCyc [8] and vali-
date the algorithm by comparison with prior Phenotype
Microarray data.

Methods
The prediction pipeline
The pipeline from metabolic network to evaluated results
proceeds via four steps (Figure 1). First, we define a
constraint-basedmodel (Step 1). Thismodel is then solved
to identify minimal nutrient sets (Step 2). These minimal
nutrient sets are then distilled into a smaller and easier-
to-evaluate set of compound equivalence classes (Step3).
Finally, these equivalence classes are evaluated by com-
paring them to previous experimental growth data and
laboratory growth experiments (Step 4).

Building constraint-basedmodels
Our starting point is the organism’s metabolic net-
work. We analyze the properties of this network by
using a constraint-based approach. These constraints are
expressed over the flux of the reactions in the network.
We describe the method for generating constraints from
the metabolic network below in two parts. First, we build
a naı̈ve steady-state model that allows metabolites that are
in neither the nutrient set nor the biomass set to have
zero net production. Second, we show why this naı̈ve,
steady-state model is an unrealistic model of growing
and dividing cells and then propose a more sophisticated
model that can be shown to be more accurate by using
a purely molecule-counting argument. This more sophis-
ticated model (which we call the Machinery-Duplicating
Model) is what we then use for our predictions.
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Figure 1 Testable nutrient predictions are generated frommetabolic network data. Our prediction method operates via a four-step process.
(A) A metabolic reaction network can be obtained from manual curation, computational inference, or a combination thereof. (B) The reaction
network is converted into a constraint problem and solved for minimal nutrient sets. (C) These minimal nutrient sets are distilled into
easier-to-handle “equivalence classes”: compounds A and B are in the same equivalence classes if for every nutrient set including A, an equivalent
nutrient set exists with B substituted for A. (D) The equivalence classes are then evaluated by comparison with laboratory experiments.

The steady-statemodel
We start with the following hypothetical metabolic
network:

Example 1. Let R consist of the two unidirectional
reactions:

A + B → C + D (1)
C + F → B + E (2)

Let B = {E} (i.e. E is the sole biomass compound).

Suppose A and F are available as nutrients. Using for-
ward propagation, neither of the reactions can fire because
both B and C are unavailable. However, we can assume
more realistically that the cell is not an empty bag and that
n molecules of B are initially available. Then reaction (1)
could fire n number of times, creating C, which could be
used to fire reaction (2) n times recreating the nmolecules
for B. Within this framework, we are no longer reasoning
about a monotonically increasing set of compounds, but
instead about relative reaction rates and the rate of the net
production or consumption of compounds.
The reactions above can be written as a stoichiometric

matrix M in Table 1.
Here,Mi,j records the net production (negative for con-

sumption) of the ith compound by the jth reaction. We
represent the rates of the reactions or flux by the column

vector of variables r =[ r1, r2]T (using the transpose con-
vention for representing column vectors), where r1 is the
rate of reaction (1) and r2 is the rate of reaction (2). The
rate of production of compounds by the system is given by
the column vector p = Mr.
Given a putative nutrient set N and a set B of biomass

compounds, we place constraints on the compound pro-
duction rates (entries of p), as follows:

1. If the i th compound is in B and not in N then we
require pi > 0.

2. If the i th compound is not in B and not in N then we
require pi ≥ 0.

In our example B = {E} andN = {A, F}. The compound
B is consumed by reaction (1) with rate r1 and created by

Table 1 A stoichiometric matrix in which each row
represents onemetabolite and each column represents
one reaction

Reaction 1 Reaction 2

A −1 0

B −1 1

C 1 −1

D 1 0

E 0 1

F 0 −1
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reaction (2) with rate r2 so it has a net production of−r1+
r2 and thus B yields a constraint:

−r1 + r2 ≥ 0.

Similar analysis yields the constraints

r1 − r2 ≥ 0
r1 ≥ 0
r2 > 0

for compounds C, D, and E, respectively.
Because reactions are not allowed to run in reverse, we

must add the additional constraints that r1 ≥ 0 and r2 ≥ 0.
We say thatN is a steady-state nutrient set if there exists a
vector r that satisfies the above constraints. In our exam-
ple, r1 = r2 = k for any k > 0 satisfies all the constraints.
All the generated constraints are linear; thus, checking
whether N ⊆ T is a steady-state nutrient set reduces to
checking the feasibility of a linear program.
Based on a simple molecule-counting argument and

linear algebra, we make the following claim relating the
steady-state model to experimental observations.a

Claim 1. Assume the set R includes all reactions avail-
able to the organism. This set may also include extraneous
reactions that are not actually available to the organ-
ism, due to errors in the available data. Assume that set
B only contains compounds that the organism must pro-
duce to grow (this set need not, however, be complete).
Then the steady-state model over-approximates observ-
able behaviors in the following sense: If the steady-state
model predicates that some set N ⊂ T of transportables is
not a nutrient set then organism will be unable to grow on
nutrient set N in the laboratory.

Justification 1. For a contradiction, suppose we observe
our organism to grow on N in the laboratory. Because
everything in B must be produced by the organism and
it has only the reactions in R and the nutrients in N at
its disposal, it must have found a set of fluxes for R that
yield positive net production of each compound in B and
non-negative net production of each compound not in N.
However, because our system of linear constraints does
not have a solution with putative nutrient set N, such set
of fluxes does not exist.

Notice that althoughwe need the set T of transportables
in order to form putative nutrient sets, the critical param-
eters of our model are the set R of reactions and the set
B of biomass compounds. For a pair 〈R,B〉, we call the
assumption that R includes at least all reactions available
to the organism and B contains only compounds that the
organism must produce to grow the perfect data assump-
tion. Though possibly unrealistic in practice, unless we are

studying modeling methods that explicitly model errors
and omissions in the data, making formal comparisons
without an assumption of this kind is difficult on paper.
Informally, Claim 1 says that under the perfect data

assumption, the steady-state model can produce only one-
sided errors: false positives. If it predicts growth on a
putative nutrient set N then although there exists a flux
that produces B, growth may not be observed in the lab-
oratory for a number of reasons including negative inter-
actions such as toxicity, competitive reactions, or gene
regulation that we do not attempt to model. But under the
perfect data assumption, false negatives are impossible; if
the model predicts failure to grow on a putative nutrient
set N then it is arithmetically impossible for the organism
to grow onN. However if growth is indeed observed in the
laboratory, then barring experimental error, at least one
of our initial assumptions about the completeness ofR or
the necessity of producing all the compounds in B must
be incorrect.

Themachinery-duplicatingmodel
The steady-state model described above is somewhat
unsatisfactory. We have assumed a set B of compounds
as a proxy for growth. However, if a growing cell even-
tually divides into two daughter cells that are identicalb
to the original cell, then all of the intermediate metabo-
lites that were used along active pathways to produce
compounds of B from putative nutrients N must also be
duplicated (we do not say anything additional about inter-
mediate metabolites that arise only on inactive pathways);
in essence a dividing cell must at the very least be able
to duplicate the active part of its metabolic machinery in
addition to producing B.
Informally, we account for the need to duplicate the

active part of the metabolic machinery by adding addi-
tional constraints to the steady-state model to require that
if a compound C is used as a reactant in a reaction with
nonzero flux andC �∈ N∪B thenCmust have strictly pos-
itive net production, thus explicitly requiring that more of
C will be produced as the organism grows and divides.
How we frame this constraint mathematically is rather

subtle. Suppose for some compound Cj �∈ N ∪B, the set of
indices of reactions that use it as a reactant is Ij. Then for a
given flux r,C is clearly used if and only if there exists i ∈ Ij
such that ri > 0. Since we have constrained the rates to
be non-negative, that is equivalent to the test

∑
i∈Ij ri > 0.

This suggests formulating a constraint in terms of the sum
of reaction rates,

sj =
∑
i∈Ij

ri.

Suppose the net production of Cj is given by the linear
combination pj. We would like to require pj to be strictly



Eker et al. BMC Bioinformatics 2013, 14:114 Page 5 of 18
http://www.biomedcentral.com/1471-2105/14/114

positive whenever sj is strictly positive . The question is
how to frame this as a linear constraint.
One approach is to require that pj ≥ αsj for some fudge

factor α, thus constraining pj to be strictly positive when
sj is strictly positive. The problem is in determining what
fudge factor α to use, since too large a value might lead to
an unsatisfiable constraint even though there exists a flux
producing a positive amount of Cj.
Requiring pj ≥ sj/(sj+1)would work because sj/(sj+1)

is always less than one and thus any flux producing a
positive amount ofCj can be “scaled up” to satisfy this con-
straint. Unfortunately, however, when multiplied out, this
constraint turns out to be quadratic.
Our solution is to relax the requirement that our linear

system be a conjunction of linear constraints and instead
allow a monotone Boolean combination of linear con-
straints. Thus, we add the constraint

(
pj > 0

) ∨
∧
i∈Ij

(ri = 0) (3)

That is, either production of Cj is positive, or all the reac-
tions that use it as a reactant have zero rate. We call such
constraints “make it if you use it” constraints. A nutrient
set solution that satisfies these additional constraints will
be called amachinery-duplicating nutrient set.
Notice that the system of linear constraints produced

by this new model is not a simple conjunction of linear
inequalities but a more general Boolean combination of
linear inequalities. Checking the feasibility (or synony-
mously, the satisfiabilityc) of such systems falls beyond the
capabilities of a regular Linear Programming (LP) package
and instead requires the use of a more recent develop-
ment in computer science called a Satisfiability Modulo
Theories (SMT) solver [9]. This newer kind of solver
has the added advantage of working with exact (rational
number) arithmetic that sidesteps the issues of round-off
error and numerical stability. These issues can be a prob-
lem with Linear Programming packages that typically use
inexact floating-point arithmetic.
As with the steady-state model, we claim that our

more sophisticated machinery-duplicating model over-
approximates observable behavior and justify the claim
with a molecule-counting argument.

Claim 2. Given a pair 〈R,B〉 that satisfy the perfect
data assumption for some organism, if the machinery-
duplicating model predicates that some set N ⊂ T of
transportables is not a nutrient set then the organism will
be unable to grow on nutrient set N in the laboratory.

Justification 2. For a contradiction, suppose we observe
our organism to be growing on N in the laboratory. Thus,
the cells must be dividing, and the metabolic machinery

that is active to produce B from N must itself be dupli-
cated. The growing colony of cells must, considered as a
single system, have found a set of fluxes for R that yield
positive amounts of each compound in B and for the
reactants of every reaction with nonzero flux that are not
members of N. However, because our system of Boolean
combinations of linear constraints does not have a solu-
tion with putative nutrient set N, such set of fluxes does
not exist.

Notice that like the steady-state model, under the per-
fect data assumption, the machinery-duplicating model
can produce only false positives; if it predicts growth on a
putative nutrient set N then growth is arithmetically pos-
sible but, due to the considerations previously mentioned,
may not occur in the laboratory. As with the steady-state
model, under the perfect data assumption, false negatives
are impossible. If the model predicts failure to grow on a
putative nutrient setN, then it is arithmetically impossible
for the organism to grow; if growth is indeed observed in
the laboratory, then we must look for errors in our choice
ofR and B.
Also notice that the machinery-duplicating model is

more heavily constrained than the steady-state model:
while both models may predict false positives, and nei-
ther can predict false negatives, any nutrient set predicted
by the machinery-duplicating model must necessarily be
predicted by the steady-state model while in general, the
converse will not be true. We formalize this idea in the
following lemmas:

Lemma 1. For all reaction sets R, biomass compound
sets B, and subsets N ⊂ T of transportables, if N is a
machinery-duplicating nutrient set with respect to 〈R,B〉
then N is a steady-state nutrient set with respect to 〈R,B〉.

Proof. If N is a machinery-duplicating nutrient set with
respect to 〈R,B〉 then there must exist a flux r that
satisfies the constraints generated by the machinery-
duplicating model. Because the constraints generated by
the steady-state model are a subset of those generated
by a machinery-duplicating model, they must also be
satisfied by r.

Lemma 2. There exists a reaction set R, a biomass
compound set B, and a N ⊂ T such that N is a steady-
state nutrient set with respect to 〈R,B〉 but N is not a
machinery-duplicating nutrient set with respect to 〈R,B〉.

Proof. Let 〈R,B〉 be defined by the hypothetical
metabolic network in Example 1. We have already estab-
lished that N = {A, F} is a steady-state nutrient set with
respect to this 〈R,B〉. We now show that {A, F} cannot
be a machinery-duplicating nutrient set with respect to
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this 〈R,B〉. For a contradiction, suppose we could satisfy
the constraints of the machinery-duplicating model with
the flux r =[ r1, r2]T . First, because C �∈ N , the net pro-
duction of C is constrained to be non-negative, and thus
r1 − r2 ≥ 0. Likewise, because B �∈ N , the net pro-
duction of B is constrained to be non-negative, and thus
r2 − r1 ≥ 0. Combining these two inequalities we can
deduce that r1 = r2. Furthermore, because we must make
biomass compound E at a strictly positive rate, we have
r2 > 0. Now the “make it if you use it” constraints come
into play. Because r2 > 0 we are required to make C at
a strictly positive rate and thus r1 − r2 > 0. But this
contradicts our previous deduction that r1 = r2.

Under the perfect data assumption we claim that the
machinery-duplicating model is strictly more accurate
than the steady-state model, in the following sense:
Neither model can predict a false negative (Claims 1
and 2). However, the following relation exists between
false positives predicted by the two models:

Claim 3. Under the perfect data assumption:

1. There exists a dataset 〈R,B〉 and N ∈ T where the
steady-state model predicts a false positive and the
machinery-duplicating model predicts a true
negative; and

2. There does not exist a dataset 〈R,B〉 and N ∈ T
where the machinery-duplicating model predicts a
false positive and the steady-state model predicts a
true negative.

Justification 3. Part (1) follows from Lemma 2 because
any negative prediction by the machinery-duplicating
model must be a true negative by Claim 2 and thus the
positive prediction by the steady-state model must be
a false positive. Part (2) follows directly from Lemma 1
as the machinery-duplicating model can never predict a
positive when the steady-state model predicts a negative.

Because the machinery-duplicating model is a theoret-
ically more accurate model than the steady-state model,
we consider only the machinery-duplicating model for
the rest of this paper, except briefly in Discussion, where
we compare our constraint-based modeling techniques to
related work.

Bidirectional reactions
The constraint systems described above handle all reac-
tions as unidirectional. In practice, some metabolic reac-
tions are reversible and will flow in either direction
depending on the needs of the metabolic network as a
whole. One way to model this situation is to replace
a bidirectional reaction with a pair of complementary

unidirectional reactions. This approach has the advan-
tage of conceptual simplicity, but having a pair of reac-
tions requires two variables rather than one. Although
replacing a full range variable with a pair of non-negative
variables is a common approach in naı̈ve expositions of
linear programming, SMT solvers such as Yices [10] and,
indeed, modern LP solvers, handle a single full-range
variable much more efficiently than two non-negative
variables.
Suppose, instead that a bidirectional reaction is handled

by removing the non-negativity constraint on its variable.
This requires revising the growth constraint (3) to account
for reactions running backward.
For some compound Cj �∈ N ∪ B, let Uj be the set of

indices of reactions that have Cj as a reactant or a product.
We now enforce a “make it if you mention it” constraint:

(
pj > 0

) ∨
∧
i∈Uj

(ri = 0) (4)

This expression yields a constraint that is symmetric with
respect to reactants and products.

Theorem 1. For bidirectional reactions, the “make it if
you mention it” constraint (4) is equivalent to the “make it
if you use it” constraint (3).

Proof. Clearly constraint (4) is at least as strict as con-
straint (3). To see that it is not more strict, consider a
feasible solution to a system where bidirectional reactions
are represented by pairs of unidirectional reactions and
the original constraint (3) is enforced on reactants. For
some reaction R with a positive reaction rate in the origi-
nal system, the new constraint (4) enforces the additional
requirement that pk > 0 for each product compound Ck .
If there is some reaction R′ with positive reaction rate that
uses Ck , then the original constraint (3) for R′ subsumes
this new requirement. Otherwise, because R produces Ck
with a positive rate and it is not used by another reaction,
the system as a whole must produceCk with a positive rate
satisfying the new requirement.

Simplifying the constraint-basedmodels
The inputs for a constraint-based model can be simpli-
fied to remove compounds that will not be involved in any
potential solutions. The two major classes of compounds
that can be removed in this way are Impossible compounds
and Useless compounds.
For clarity we define the simplification rules on a unidi-

rectional system where any bidirectional reaction can be
split into a pair of unidirectional reactions. Complemen-
tary reactions in the simplified system can then be turned
back into bidirectional reactions before constructing the
system of linear constraints.
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A compound C is Impossible if it is not a potential nutri-
ent and there is no reaction to make it. Such compounds
can be deleted, together with any reactions that men-
tion them. Because no reaction has C as a product, any
reaction that mentions it must use it as a reactant. Any
reaction that uses C as a reactant could not have a posi-
tive rate without violating the non-negativity condition for
non-nutrient compounds. The deletion of reactions may
enable more compounds to be recognized as impossible,
so this search for impossible compounds must be iterated
to fixed-point (that is, until there is no change in the set of
remaining compounds).
A compound C is Useless if it has no downstream

biomass compounds. The search for useless compounds
proceeds by finding the complement set of Useful com-
pounds. The biomass compounds are considered useful by
definition. A non-biomass compound is considered use-
ful if it is a reactant for a reaction that produces a useful
compound. This test is iterated on the compounds not
currently classified as useful until a fixed point is reached,
such that all compounds not currently classified as useful
have been checked without adding one of them to the use-
ful set. At this point, all compounds not in the useful set
are considered useless. Such compounds are eliminated
from the reactions containing them, as are any reactions
whose products are all useless. This leaves the possibil-
ity that a reaction will become unbalanced by losing one
or more products without being deleted. However, from a
constraint-solving viewpoint, this is simply the removal of
a redundant non-negativity constraint.

Computing minimal nutrient sets
We have presented a scheme for inferring whether a given
set N of transportables is a nutrient set by checking the
satisfiability of a Boolean combination of linear inequali-
ties. For a transportable c ∈ T its existence in N can be
represented by a Boolean value, true or false; likewise, the
prediction of whether N is a nutrient set, determined by
checking the satisfiability of the linear system constructed
for N, can also be represented by a Boolean value, true or
false. We are now interested in systematically generating
all minimal nutrient sets with respect to our scheme and
it is perhaps not altogether surprising that we can exploit
well-understood technology for computing with Boolean
functions to assist us.
However, the technique that we present is quite gen-

eral and, mathematically, depends on just one property
of nutrient sets: adding a transportable to a nutrient set
produces another nutrient set. This property is called
monotonicity and arises in our scheme because adding
a transportable to a nutrient set removes one or more
constraints from the linear system. More generally,
monotonicity will arise whenever all negative effects
(e.g., toxicity, regulation) are ignored. Note that without

monotonicity, the notion of a minimal nutrient set is
much more subtle.
Our technique is based on translating the problem of

computing minimal nutrient sets into the language of
Boolean algebra. We then use a novel algorithm for com-
puting a representation of all minimal nutrient sets. This
new algorithm is built on top of standard tools for com-
puting with Boolean functions.
In the following subsections, we introduce all of the

concepts needed and sketch the basic technique. But,
the reader should be aware that obtaining reasonable
runtime performance on realistic data sets, such as Eco-
Cyc, requires a number of algorithmic refinements and
implementation details (including parallelization) that are
beyond the scope of this paper.

Boolean functions
In the following discussion, we denote the set {true, false}
of Boolean values by B and the set of vectors of Boolean
values of length n by Bn. We now give some elementary
definitions concerning functions on Booleans.

Definition 1. Given a Boolean function f : Bn → B, a
vector v ∈ Bn is an implicant of f if and only if f (v) = true.

Definition 2. A Boolean function of n variables, f :Bn→
B, is monotone if and only if for any v ∈ Bn such that
f (v) = true, making a new vector v′ from v by converting a
false component to true guarantees that f (v′) = true.

Definition 3. Given a monotone Boolean function f :
Bn → B, a vector v ∈ Bn is a prime implicant of f if and
only if

1. v is an implicant of f; and
2. for every vector v′′ constructed from v by converting

a true component to false, we have f(v′′) = false.

The method of constructing Boolean combinations of
linear constraints proposed above defines a function
nutset : P(T ) → B that maps each subset N of trans-
portables T into a true or false result, depending on
whether or not the system of constraints constructed for
N is satisfiable.
Suppose |T | = n. We represent the subsets of T by the

Boolean vectors Bn in the following way. We pick some
linear ordering on T and represent a subset N ⊂ T by a
vector vN ∈ Bn where the ith component of vN is true if N
contains the ith member of T (under our linear ordering)
and false otherwise.
Under this change of representation, nutset becomes a

monotone Boolean function nutset : Bn → B, and the
minimal nutrient sets that we seek correspond exactly to
the prime implicants of nutset.
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Computing prime implicants
We now consider the problem of computing all the prime
implicants of an arbitrary monotone Boolean function f :
Bn → B, solely by evaluating f on chosen inputs without
making assumptions about how f is defined.
Suppose we have some vector v such that f (v) = true.

The obvious approach to finding a single prime implicant
is to systematically go through the components of v, set-
ting true components to false whenever this can be done
without f becoming false. This procedure turns out to be
a key step in our algorithm which we callminimization of
v with respect to f.

Definition 4. Let f : Bn → B be a monotone function
and v ∈ Bn be a vector such that f (v) = true. We define the
following procedure for minimizing v with respect to f:

• We keep a vector variable u = (u1, . . . ,un) that we
initialize to v.

• For i from 1 up to n if ui = true, then

– If f (u1, . . . ,ui−1, false,ui+1, . . . ,un) = true
then set ui := false, and continue with the
updated vector.

– Otherwise we continue with the value of u
unchanged.

Return u as a minimization of v with respect to f.

Theorem 2. The result of the minimization procedure
on v returns a prime implicant of f.

Proof. Note that u = v initially and v is an implicant
of f by definition. At each step we update the value of u
only if the new value is also an implicant of f so the result
of the minimization procedure must be an implicant of f.
To see that it must be a prime implicant, suppose it were
not. Thus, some component ui currently set to true could
be changed to false and the new vector would also be an
implicant. But in this case we would have set ui to false
when it was its turn to be considered in the loop because f
is monotone.

Assuming that f is not false everywhere, we can find a
first prime implicant by starting with the all-true vector
and applying the minimization procedure. The tricky part
is finding subsequent prime implicants.
Given a set of prime implicants of a monotone Boolean

function f, the problem of deciding if the set is complete
is known to be coNP-complete even when f is explicitly
given in some quite natural representations [11], so an
efficient algorithm for finding a next prime implicant in
the general case, where f is only accessed by evaluation,
is unlikely.

Although the problem of finding the complete set of
prime implicants appears theoretically intractable, we can
solve it on the instance we care about, namely, where f
is the function nutset, defined by our linear constraint
system instantiated from the EcoCyc dataset.
Our method is to compute successive prime implicants

using minimization, where at each step we look for a new
starting point based on previously found prime implicants
that guarantees minimization will find a prime implicant
not previously seen.

Choice vectors
Given that we have found one or more prime implicants
of some monotone Boolean function f : Bn → B we want
to test if further prime implicants exist.

Definition 5. Given a collection of vectors v1, . . . , vk ∈
Bn, a vector u ∈ Bn is a choice vector for v1, . . . , vk iff for
all i ∈ {1, . . . , k}, u ∧ vi �= (false, false, . . . , false), where ∧
denotes point-wise conjunction.

Informally a choice vector is a vector that shares one
or more true components with each of the original vec-
tors. Let � be the partial order on Bn that corresponds to
the subset relation and let � be its reflexive closure. We
denote the vector obtained by the point-wise negation of
the components of u by ¬u.

Theorem 3. Given a monotone Boolean function f :
Bn → Bwith prime implicants v1, . . . , vk ∈ Bn, there exists
another prime implicant iff there exists a choice vector
u ∈ Bn for v1, . . . , vk such that f (¬u) = true.

Proof. Suppose there exists a choice vector u ∈ Bn

for v1, . . . , vk such that f (¬u) = true. We can get a
prime implicant v′ by minimizing ¬u. Furthermore, v′
cannot coincide with a known prime implicant vi because
u shares a true component with vi and thus ¬u has
false in some component where vi has true and thus v′
will have false because minimization never converts false
to true.
In the other direction, suppose f has a prime implicant

v′ that does not coincide with one of v1, . . . , vk ∈ Bn.
Now for each vi there must exist some component where
vi has true and v′ has false, because if v′ has true in each
component that vi has true, either v′ = vi (a contradic-
tion) or v′ � vi and thus v′ cannot be a prime implicant
(another contradiction). Thus, ¬v′ is a choice vector for
v1, . . . , vk .

The problem is that for a given collection of vec-
tors v1, . . . , vk ∈ Bn there are many choice vectors and
searching among them for a choice vector u such that
f (¬u) = true is prohibitively expensive.
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Definition 6. Given a collection of vectors v1, . . . , vk ∈
Bn, a vector u ∈ Bn is a minimal choice vector for v1, . . . , vk
iff

1. u is a choice vector for v1, . . . , vk ; and
2. there is no u′ � u such that u′ is a choice vector for

v1, . . . , vk .

Theorem 4. Given a monotone Boolean function f :
Bn → B with prime implicants v1, . . . , vk ∈ Bn, if there
exists a choice vector u for v1, . . . , vk ∈ Bn such that
f (¬u) = true then there exists a minimal choice vector
u′ � u such that f (¬u′) = true.

Proof. If u is not already a minimal choice vector then
there must exist a minimal choice vector u′ � u. Every
component that is false in u must also be false in u′. Thus
evey component that is true in ¬u must also be true in in
¬u′. Since f (¬u) = true and f monotone it follows that
f (¬u′) = true.

Thus we can limit our search to minimal choice vectors.
Recall that a choice vector for v1, . . . , vk has at least one

true component in common with each of v1, . . . , vk . Let Ti
be the set of indices of the true components of vi.
Given a vector x = (x1, . . . , xn) ∈ Bn we can determine

if it has at least one true component in common with vi by
forming the disjunction:

∨
j∈Ti

xj

and we can determine if it has at least one true compo-
nent in common with each of v1, . . . , vk by forming the
conjunction of disjunctions:

g(x) =
∧

i=1,...,k

∨
j∈Ti

xj

The function g : Bn → B thus defined is necessar-
ily monotone as no negations are involved. Thus the
choice vectors of for v1, . . . , vk correspond to the vec-
tors x that make g(x) = true (i.e., to the implicants of g
and the minimal choice vectors correspond to the prime
implicants of g).
In order to compute a new prime implicant of a mono-

tone function f we still need to examine the prime impli-
cants u of another monotone function g to find one on
which f (¬u) = true. At first sight it might appear that we
have come full circle and are back where we started, try-
ing the find the prime implicants of a monotone Boolean
function. However, recall that f is considered to be a black
box and can be accessed only by evaluating it on each

input vector whereas g is defined as a conjunction of dis-
junctions formed from previously computed prime impli-
cants of f. As we will see, this symbolic representation is
much more amenable to prime implicant extraction.

Binary decision diagrams
The Binary Decision Diagram (BDD) is a popular data
structure for representing and manipulating Boolean
functions [12,13]. Although any such scheme necessarily
requires exponential space on average, BDDs exploit the
regularity often present in Boolean functions of interest to
yield compact representations. Moreover, algorithms exist
for performing many common operations on functions
represented as BDDs whose running time is polynomial in
the size of the input BDDs. Free BDD libraries are read-
ily available [14,15]. The technical details of BDDs are
beyond the scope of this paper; however, one important
feature of a BDD is that the complete set of implicants can
be recovered by tracing the paths from its root node to its
true terminal.
Recall that the search space has been restricted to min-

imal choice vectors or, equivalently, the prime implicants
of g. We can construct the BDD for g by incremental
updates each time that we find a prime implicant of f.
However, to find the prime implicants of g at any given
point, we construct a new BDD for the function pig :
Bn → B defined by

pig (x1, . . . , xn) =
g (x1, . . . , xn) ∧

∧
i∈1,...,n

(¬xi ∨ ¬g (x1, . . . , xi−1,

false, xi+1, . . . , xn
))

Intuitively, pig(x) = true if g(x) = true and for all x′
formed by changing a true component in x to false, g(x′) =
false. The new BDD is constructed by applying standard
BDD operations to the BDD for g.
We can systematically enumerate the prime implicants

u of g by enumerating the implicants of pig which is done
by tracing the paths in the BDD for pig from the root
node to the true terminald. As soon as we find u such that
f (¬u) = true, we can stop, find a prime implicant of f by
minimizing ¬u, update g with the new prime implicant,
and start over. If we cannot find such a u in the implicants
of pig we are done.

Nutrient equivalence classes
How can we help a biologist user interpret a collection
of hundreds or thousands of computed minimal nutrient
sets? At least in the case of EcoCyc, we observe that the
complete collection of predictedminimal nutrient sets has
a very regular structure, and that elucidating this struc-
ture yields both a compact representation of the large
collection of predicted minimal nutrient sets and, in many
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cases in E. coli, a classification of nutrient compounds into
equivalence classes that correspond to biological intu-
itions. Specifically, computed nutrient equivalence classes
often contain all compounds that supply one element
(e.g., sulfur sources).

Definition 7. Given a collection N of nutrient sets, we
want to capture the notion of two transportables c1, c2 ∈ T
being equivalent if c1 can always substitute for c2 in any
nutrient set where c2 occurs and vice versa.
Formally, we say c1, c2 ∈ T are equivalent with respect

toN if and only if

1. For all N ∈ N such that c1 ∈ N :
((N \ {c1}) ∪ {c2}) ∈ N ; and

2. For all N ∈ N such that c2 ∈ N :
((N \ {c2}) ∪ {c1}) ∈ N .

This relation is trivially reflexive and symmetric, and can
easily be shown to be transitive. It is therefore an equiva-
lence relation on the compounds occurring in members of
N and can be used to factor this subset of transportables
into equivalence classes where each such compound ends
up in exactly one equivalence class.
For each equivalence class of compounds we can choose

a representative compound. Given some N ∈ N we can
form N ′ by replacing each compound c ∈ N by the repre-
sentative compound of the equivalence class of c. Because
of the mutual substitutability of compounds within an
equivalence class, N ′ must necessarily be a member ofN .
We call N ′ the canonical form of N (given our choice of
representative compounds).
If we convert each N ∈ N to its canonical form, we will

end up with many duplicates. After removing duplicates
we are left with a reduced collection N̂ of minimal nutri-
ent sets that will likely be much smaller andmore compre-
hensible to the biologist — especially if the representative
compound for each equivalence class was chosen to be
one of the more familiar compounds from those available
in the class.
Of course, the question naturally arises: What is the

connection between our original collection of minimal
nutrient sets N and this new reduced collection N̂ of
minimal nutrient sets?
The answer is that N̂ along with the equivalence classes

we used to compute it exactly encode N in the following
sense: If N ∈ N , then there must exist some N ′ ∈ N̂ such
that N can be obtained from N ′ by substituting for each
c ∈ N ′ some compound from the equivalence class of c.
Conversely if N ′ ∈ N̂ and we form a set N by substitut-
ing for each c ∈ N some arbitrary compound from the
equivalence class of c then N must be a member ofN .
Thus, we have a very elegant compression scheme that

reduces the size of our collection of predicted minimal

nutrient sets and at the same time increases the compre-
hensibility of our results with zero loss of information.

Instantiation of generic reactions
The metabolic reaction sets found in Pathway/Genome
Databases such as EcoCyc include many generic reactions
whose substrates include metabolite classes to capture the
broad substrate specificity of their catalyzing enzymes.
For example, EcoCyc contains four enzymes that are
described as “sugar phosphatase” (E.C. 3.1.3.23), for which
the official substrate is “sugar phosphate” and the product
is “sugar”.
For each generic reaction, our software generates the set

of corresponding instantiated reactions containing solely
metabolite instances. For each compound class in the left
and right sides of generic reactions, the software generates
new potential reactions by substituting for the compound
classes all combinations of instances of those classes. Rela-
tionships between a compound class and its instances are
stored explicitly in the EcoCyc compound ontology. New
reaction equations are added to R only when a given
substitution resulted in a mass balanced equation. New
reactions are not added in ambiguous cases where more
than one instance has the same chemical formula.

Results
The E. coli constraint-basedmodel
This section describes the inputs we provided to the
minimal nutrient prediction algorithm to compute the
minimal nutrients of E. coli under anaerobic conditions.
The E. coli constraint-based model used for this work
was obtained from the manually curated EcoCyc database
[8]. The set of E. coli biochemical reactions R was taken
from an EcoCyc development version, slightly beyond the
16.1 release from June 2012. We extracted all reactions
whose metabolites were all small molecules, plus all reac-
tions withinmetabolic pathways (a small number of which
contain macromolecule metabolites such as acyl carrier
protein).
Four hundred and forty one EcoCyc generic reactions

with classes yielded at least one instantiated reaction.
Furthermore, unbalanced reactions were removed pro-
grammatically from R. The final R used in this work
consisted of 2314 (unidirectional) reactions, of which 388
were transport reactions.
To refine and correct the reactions in the model, over

the course of this work, numerous changes were made
to EcoCyc as a result of our analysis of executions of
the minimal nutrient algorithm. They included fixing
erroneous compound structures and reaction equations,
adjusting the protonation state of the compounds and
reactions to pH 7.3, adding missing reactions, reversing
reaction directions, changing reactions from unidirec-
tional to reversible or from reversible to unidirectional,
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and adjusting cell compartment assignments of reactions.
In addition, we added compound instances or reclassified
existing instances under appropriate classes in our com-
pound ontology, to allow more instantiations of generic
reactions to be inferred.
One interesting example was the reaction PYRUV

FORMLY-RXN, which was labelled as reversible in
EcoCyc, due to a literature reference describing the in vitro
characterization of an enzyme catalyzing the reaction. We
found that some false positive predictions were appar-
ently utilizing this reaction in the physiologically implau-
sible reverse direction. Changing PYRUVFORMLY-RXN
to unidirectional, in accordance to usage of the reaction
in two in vivo pathways, suppressed several false positive
predictions and increased the overall accuracy from 67.0%
to 72.5%.
A set of 111 transportable metabolites T were supplied

to the algorithm. T consisted of all carbon sources from
the carbon-source Biolog Phenotype Microarray plate,
plus the other element sources provided on this plate
[16]. T also included 16 additional metabolites: instances
of those carbon sources that were classes, plus some
metabolites resulting from conversions by reactions in the
periplasm of supplied metabolites into metabolites that
can be transported. Oxygen (O2) was not supplied as a
nutrient.
We have tried running the algorithm with all metabo-

lites transportable by known E. coli transporters. Some
such executions have terminated, predicting approxi-
mately 8,500 minimal nutrient sets. An execution based
on the current metabolic network in EcoCyc has not ter-
minated after two months of run time. Runs larger than
the 111 transportable metabolites cannot be validated
because of a lack of experimental data.
The set of biomass metabolites used in our model was

similar to that used in [6]. It contains 36 compounds,
including the amino acids and nucleotides, and several
cell-wall building blocks that lead to lipid A disaccharide.
However, the lipids leading to cardiolipin have been omit-
ted, because at this time, the generic reactions involved in
those pathways could not be instantiated properly, due to
a lack of appropriate compound instances.
R and T are available in Additional files 1 and 2, respec-

tively. Additional file 3 contains the set B of biomass
metabolites. Additional file 4 contains “auxiliary com-
pounds” that must be present for the model to run, but
that are not synthesized by reactions in the model, either
because the reactions are unknown, or because the reac-
tions that synthesize these compounds are beyond the
scope of the model (e.g., acyl-carrier protein).

Predicting E. coliminimal nutrient sets
We ran the BDD-based minimal-nutrient-set-generation
algorithm using the machinery-duplication constraint

model on EcoCyc data to predict at each evaluation of
a nutset whether or not E. coli would grow on a given
N ⊂ T . A total of 787 minimal nutrient sets were found
(see Additional file 5) after three days of execution on
a 24-core (with Hyper threading) 2.67 GHz Intel X5650
Xeon CPU-model processor.
Given the combinatorial process by which nutrient sets

are constructed from individual nutrients, this abundance
of minimal nutrient sets was not surprising. However,
this large solution set does not lend itself to evalua-
tion and validation of the results, especially via labora-
tory experiment. To facilitate human comprehension and
testing of our predictions, we used the notion of equiv-
alence between compounds with respect to a collection
of nutrient sets (Definition 7, Methods) to factor the set
of compounds occurring in predicted minimal nutrient
sets into equivalence classes. By picking a representative
compound within each such equivalence class and dis-
carding minimal nutrient sets that contain equivalence-
class members other than those chosen representatives,
we obtained a reduced group of representative minimal
nutrient sets from which each original minimal nutrient
set could be generated by the appropriate substitution of
equivalent compounds (Table 2). The reduced set of solu-
tions is much smaller and easier to inspect than the full
solution set.
We determined 21 nutrient equivalence classes (a full

listing is provided in Additional file 6), which are used in
85 reduced minimal nutrient sets (see Additional file 7).
This reduction provided an approximately 9-fold decrease
in the number of solution nutrient sets to facilitate review
by the user.

Evaluating predicted nutrients
We compared our predictions against published data on
anaerobic E. colimetabolism, which were generated using
Biolog Phenotype Microarray (PM) technology [16].
PMs evaluate the metabolic activity of an organism on

multiple distinct sets of nutrients in parallel, allowing
high-throughput analysis. Although PM technology mea-
sures respiration rather than growth, it usually represents
a reasonable proxy for growth.
One important limitation of PM data is that it typi-

cally tests a single element axis at a time. For example,
one PM 96-well plate tests a wide array of carbon sources
while providing fixed sources of all other elements. In con-
trast, some of our computedminimal nutrient sets include
single metabolites that are predicted to source multiple
elements.
The anaerobic PM data we had access to [16] tested

solely for carbon sources. We compared our computa-
tional results to these PM results as follows. Each PM well
is considered to be a nutrient set NPM consisting of four
metabolites, each of which sources one of the elements
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Table 2 Grouping compounds into equivalence classes
clarifies their nutrient roles

Class Element(s) Compounds

1 C alpha-D-glucose, glycerol, D-mannose,
D-glucarate, and 27 others

2 C, P beta-D-glucose-6-phosphate,
alpha-D-glucose-1-phosphate, 2 others

3 C, N N-acetyl-beta-D-glucosamine, L-serine,
adenosine, and 7 others

4 C, N L-alanine, D-alanine, and 2 others

5 C, N glycylproline

6 C (R)-malate

7 C acetoacetate

8 C fumarate

9 C 2-oxoglutarate

10 C acetate

11 C formate

12 C (S)-lactate

13 C succinate

14 C, N ethanolamine

15 C, N L-proline

16 C, N L-glutamine

17 C, N L-glutamate

18 N ammonium

19 C, P sn-glycerol-3-phosphate

20 P phosphate

21 S sulfate

The equivalence classes of compounds generated from our original minimal
nutrient sets are shown here. All the compounds in an equivalence class are
interchangeable in their roles in predicted minimal nutrient sets. For example,
alpha-D-glucose (class 1) can substitute for glycerol, D-mannose, and so forth.
Column one shows the class’ number, column two shows the elements that we
believe it provides as part of predicted minimal nutrient sets, and column three
lists all or a representative part of the compounds contained within the class.

C, N, P, or S. If an exact match of NPM can be found
with one of the predicted minimal nutrient sets, Npred,
then we count this predicted nutrient as a correct predic-
tion (true positive). Because our method predicts some
nutrients that provide more than one element, we also
count subset matches as true positives, i.e.,Npred ⊂ NPM.
As an example, alpha-D-glucose-1-phosphate occurs in a
predicted nutrient set together with ammonium and sul-
fate. However, this nutrient set does not exactly match
any PM nutrient set, because every PM well in the
carbon-source plate also includes phosphate as a sepa-
rate metabolite. But our method predicted that alpha-
D-glucose-1-phosphate can also serve as a phosphorous
source, and that it is thus redundant to add phosphate
explicitly to the nutrient set. By allowing subset matches,

we can correctly score the Npred consisting of alpha-D-
glucose-1-phosphate, ammonium, and sulfate as a true
positive.
If an NPM demonstrated growth experimentally and

matches an Npred, we score a true positive prediction; if
no matching Npred was found, we score a false negative.
If NPM demonstrated no growth, and did not match any
predicted nutrient set, a true negative is scored; if it does
match anNpred, then a false positive is scored. A table with
all results is provided in Additional file 8.
When evaluated in this way, the overall prediction accu-

racy of our method was 72.5% based on 91 experimental
data points (Table 3). The inconclusive 5 data points
showing low growth were ignored.
Six of the eight false-negative predictions are due to

missing knowledge regarding the fate of the nutrients
in E. coli. For some nutrient in these nutrient sets, no
known transport reactions or consuming metabolic reac-
tions could be found in the literature. If these six false
negative predictions are removed from the comparison,
the prediction accuracy of our method was 77.6%.

Discussion
The increasing ease with which complete genomes can
be sequenced should be accompanied by the ability to
make predictions about the growth requirements of the
corresponding organisms. We have previously shown that
the metabolic network and transporter suite for a given
organism can be inferred from its annotated sequence.We
have shown here that using such databases to predict a
large number of nutrient sets that should support growth
of the organism is both possible and practical. These pre-
dictions can be distilled into a testable set of compound
equivalence classes.

Strengths and limitations of our method
As explained earlier (Claim 2, Methods), given a complete
set of reactions, and a set of biomass compounds without
extraneous members, our model for predicting whether
an organism can grow on a putative nutrient set can pro-
duce only false positives; false negatives are impossible.
Thus, when used to compute minimal nutrient sets, our
method can find sets of compounds that allow the possi-
bility of growth (based on molecule counting) but offers
no guarantee that such growth can actually occur in real-
ity. This occurs because of a number of potential negative
effects on growth that our model does not attempt to
account for.
Our method cannot predict the relative concentrations

of nutrients, because our method does not account for
enzyme reaction rates or regulation at the level of enzyme
abundance and activity. Thus, some of the predicted min-
imal nutrient sets that work on a “parts” level by pro-
viding increasing amounts of all the correct metabolites
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Table 3 Ourmethod predicted nutrients with an accuracy of 72.5% comparing to 91 experimental data points

Source Input Experimental TP TN % Total accuracy FP FN

nutrients evidence available

Carbon 111 91 30 36 72.5% 17 8

For each element, the table lists howmany compounds were predicted to provide that element (Input nutrients), howmany of those had experimental evidence
against which they could be evaluated (Experimental evidence available, EV), and the results of that evaluation. A compound is a True Positive (TP) if it was predicted to
provide that element and did so. A compound is a True Negative (TN) if it was predicted to not provide that element and actually did not. False Positives (FP) and False
Negatives (FN) are also reported. The accuracy is obtained by dividing TP + TN by EV and multiplying by 100.

would possibly not lead to viable growth. For example,
it is known that growth of E. coli with glucose as the
carbon source suppresses expression of several nitrogen-
assimilation enzymes. As a consequence, even though the
metabolic network may suggest that glucose and certain
nitrogen sources should be able to work together to pro-
vide the organism’s carbon and nitrogen needs, genetic
regulatory interactions mean that these combinations will
prove inviable in the laboratory.
In the future, extending our method to incorporate

many of these factors may be possible, but we can also
learn a great deal from the differences that we see between
our current minimal nutrient predictions and experimen-
tal reality.
A special and fascinating case of this difference between

prediction and reality is toxicity. It is possible for a nutri-
ent to simultaneously be a correct growth solution and
a toxin. “The dose makes the poison,” and even typical
nutrients such as glucose are naturally toxic at high con-
centrations. Other nutrients, however, have a surprisingly
narrow gap between viability and toxicity. Thus, predict-
ing a growth solution that is both correct and potentially
difficult to apply in the laboratory is possible. The upshot
of this effect is that in many cases a laboratory researcher
operating without the guidance of a predictionmight acci-
dentally discard interesting, experimentally useful growth
conditions based on a test that was performed using
nutrient concentrations outside this “viable band”.
One key caveat about predicting “growth” for an organ-

ism based on its metabolic network arises from an
increasing pool of experimental evidence that many
microbes will grow only in the presence of signaling
molecules. In nature, many microbes can thrive only in
the presence of appropriate quorum-sensing signals from
their community. When these signals are absent, they will
fail to grow despite the presence of all required nutri-
ents [17]. Although our present approach does not cap-
ture this phenomenon, a failure to grow on any of the
predicted nutrients may be a sign that a signal should
be sought.

Related work in nutrient set prediction
The main axes of differentiation between various nutrient
set prediction methods are the

1. Mathematical model used to define growth
2. Algorithmic solving technique used to find solutions

that fit that definition
3. Procedure for enumerating all possible sets of

minimal growth media

Defining growth
There are different notions in the literature for how a
nutrient set is defined to support growth.
The simplest definition is based on reachability — a

nutrient set supports growth if there is a path from
available nutrients to every biomass metabolite [18]. In
this definition, special care is taken sometimes to deal
with “bootstrapping” or “self-regenerating” compounds
[6,18,19]. This simplified definition sets aside stoichiomet-
ric information, which significantly limits the accuracy
of its predictions. However, reachability is a necessary
condition for model correctness. If an experimentally vali-
dated minimal nutrient set cannot generate every biomass
metabolite, then there is a gap in the metabolic model that
must be fixed.
The more commonly used definition of growth is

based on flux-balance analysis (FBA), which is a classical
approach for performing structural (topological) anal-
ysis of metabolic networks [20]. If M is the stoichio-
metric matrix and r is a vector of reaction fluxes, then
FBA defines r to be a steady state of the network if
Mr = 0. The set of reactions includes uptake reactions
that encode the availability of given nutrients. Further-
more, a special reaction that uses all metabolites required
for biomass production is also added to the set of reac-
tions. In FBA, the given nutrient set is said to sup-
port growth if there is a solution r for reaction fluxes
such that Mr = 0 and the growth reaction has nonzero
flux.
In our approach, we also use a different definition

where we require a net positive production (rather than
zero) for every metabolite that is involved in a reac-
tion with nonzero flux. There are two reasons for con-
sidering this alternate formulation. First, FBA is highly
sensitive to missing reactions in the metabolic network.
For example, if no reactions that use a metabolite, say
D, exist, then Mr = 0 forces the flux on all reactions
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that produce D to be zero. We now illustrate this sce-
nario. Recall Example 1 from Methods; here we have two
reactions:

A + B → C + D, C + F → B + E

and E is the sole biomass compound. We now add the
following exchange reactions,

→ A, → F , E →
that capture the information that A, F are available as
nutrients and E is a biomass compound that we need to
synthesize. Because D is not consumed by any reaction, it
follows that the flux on the first reaction must be zero and
that all steady-state fluxes must be zero. (In other words,
r = 0 is the only solution of the constraint Mr = 0,
whereM is the 5×5 compounds). Thus, FBAwill conclude
that no steady-state solutions exist because the model
is missing some reactions. If we add dummy reactions
that consume compounds such as D (that are consumed
by no other reactions in the model), then FBA is more
likely to generate steady-state solutions. This shortcom-
ing of standard FBA is overcome by having a manual
curation step that adds (dummy) import, export, or spon-
taneous, reactions [21]. The generalization from Mr = 0
to Mr ≥ 0 in our approach partly solves the problem
of missing reactions. Specifically, we do not need dummy
export reactions (for compound D, for example) because
D can have a net positive production in a solution of our
constraints.
The second reason for proposing an alternate definition

of growth concerns the case when the metabolic network
has cycles, a common scenario. As we claimed earlier
(Claim 2, Methods), a growing and dividing cell must be
able to duplicate the metabolic machinery it uses to grow
on a given nutrient set, and this is not accounted for in
FBA. In our approach, cycles are handled by introduc-
ing disjunctive constraints. A side effect of our solution is

Table 4 Comparing constraints generated by FBA and by
our approach

cpd FBA constraint Our constraint

A −r1 + r3 = 0

B −r1 + r2 = 0 −r1 + r2 > 0 ∨ r1 = r2 = 0

C r1 − r2 = 0 r1 − r2 > 0 ∨ r1 = r2 = 0

D r1 = 0 r1 > 0 ∨ r1 = 0

E r2 − r5 = 0 r2 > 0

F −r2 + r4 = 0

For a reaction network consisting of two reactions, r1 : A + B → C + D and
r2 : C + F → B + E, nutrients {A, F} and essential compound E, FBA generates the
constraints in the second Column (FBA) and determines growth by maximizing
r5 subject to these constraints and subject to bounds on influx of nutrients,
0 ≤ r3 ≤ r3max and 0 ≤ r4 ≤ r4max . We generate four constraints, shown in the
third column, out of which three are disjunctive. Note that we do not use the
dummy reactions r3 :→ A, r4 :→ F and r5 : E →.

that each individual constraint in our approach is a dis-
junction of linear inequalities. In contrast, in flux-balance
analysis, each individual constraint is a linear equation
or linear inequality. Table 4 shows the constraints arising
from reactions of the running example for FBA and our
approach.
Although the FBA approach does not account for pos-

sible problems induced by cycles, it seems to give good
results. An interesting problem for future work is to
understand what features of a metabolic network suppress
the effects of cycles on the space of solutions.

Solving technique
When plain reachability is used to define growth, a sim-
ple forward propagation procedure — based purely on
qualitative reasoning — suffices for deciding if a given
medium supports growth [18]. Such a procedure is effi-
cient, but makes an unrealistic assumption that reactants
of a reaction are not used up when that reaction is used.
Flux-balance analysis uses standard Linear Program-

ming (LP) solvers for finding the maximum flux for the
biomass generation reaction subject to the constraint
Mr = 0. In our approach, we generate disjunctions of
linear constraints, and hence we cannot use LP solvers.
We instead use modern and highly efficient solvers, called
Satisfiability Modulo Theory (SMT) solvers [22-25]. Not
only do SMT solvers handle more general constraints,
they also support a rich interface that enables incremen-
tal addition and retraction of constraints. This feature
allows the exhaustive search for minimal nutrient sets to
be made more efficient, by sharing computation between
the individual evaluations of nutset.

Enumerating all nutrient sets
The problem of enumerating all minimal nutrient sets has
not been widely studied. Handorf et al. [18] and Cottret
et al. [19] are the only works that attempt to analyze all
minimal nutrient sets. Handorf et al. [18] state that enu-
merating all minimal sets is “impossible” and hence, a
random (biased) sampling process is used to enumerate
some (at most 1000) of the minimal nutrient sets. The
sampled minimal nutrient sets are used to perform addi-
tional analysis, such as identifying exchangeable resource
metabolites and essential clusters. The authors have to
manually pick threshold values for classification and to
also manually merge equivalence clusters [18].
Cottret et al. [19] perform a straightforward exhaus-

tive enumeration of possible nutrient sets by building
an (exponentially large) tree representing the backward
reachable sets starting from the target biomass com-
pounds. Stoichiometry information is not used in this
process and reactants are not “used up” when they are
fired; for example, given the two reactions 2A → B, B →
A, they will conclude that the network can synthesize B
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starting from an empty bag of nutrients. The scalability
of the approach on large reaction networks, such as from
EcoCyc, is a concern: Cottret et al. [19] show that the for-
ward reachability can be performed on large networks, but
the enumeration of all nutrient sets is done on only small
networks.
Feist et al. [21] and Maranas et al. [26] use FBA-

based techniques to determine all carbon, nitrogen,
phosphorous, and sulfur sources that could support
simulated growth. But rather than considering all mini-
mal nutrient sets, their method selects a “seed” minimal
medium and then varies one of its nutrient sources (car-
bon/nitrogen/phosphorous/sulfur) at a time, and predicts
if growth is possible. This approach, which we call single-
element variation, assumes that the choice of nutrient
source for a given element (C, N, P, or S) is independent of
the other choices (i.e., that nutrient sources for a given ele-
ment can always substitute for one another). Seeing that
this assumption might be false is easy, for example, con-
sider a trivial metabolic system involving only carbon and
nitrogen. Suppose we have two carbon sources C1 and C2
and two nitrogen sources N1 and N2, with compound M
representing biomass. Consider the reactions:

C1 + N1 → M
C2 + N2 → M

Clearly, C1 and C2 cannot substitute for one another.
The single-element variation method might choose nutri-
ent set {C1,N1} as its seed nutrient, and vary the N source
to produce nutrient set {C1,N2}. If this nutrient set failed
to support growth, the method would erroneously con-
clude that N2 could never function as a nitrogen source.
Another problem with the single-element variation

method is that it assumes exactly one nutrient is needed
for each element, which might be false. Consider a
metabolic system that is configured such that one set
of nutrients can supply nitrogen to amino acids only,
and an orthogonal set of nutrients can supply nitrogen
to nucleotides only, with no possible flow of nitrogen
between the amino acids and the nucleotides.
One might argue that such metabolic systems have

never been observed in the natural world, so why should
we build algorithms to detect them? We argue the con-
verse: that if we do not build algorithms to detect them,
we will never discover them from sequenced genomes,
and given the incredible diversity of nature, such systems
may well exist. For example, many genome sequences
are in hand for parasitic microbes that have lost major
components of their metabolic machinery. By using a
novel algorithm built on top of a classical data represen-
tation (Binary Decision Diagrams), we can systematically
search an otherwise intractably large space without mak-
ing any assumptions about the independence of elemental

sources. The full pool of 236 known E. coli transportable
instance metabolites would expand to on the order of 107
potential four-compound combinations (corresponding to
sources of C, N, P, and S). If we consider that two distinct
compounds might source C together, on the order of 109
five-compound combinations would be obtained. Since in
general an organism might require more than one source
of a given element, we cannot decide a priori the upper
bound on the number of nutrients to consider.
Other efforts to use genome-scale metabolic models to

determine minimal nutrient sets include [27-30]. Each of
these efforts uses an FBA approach to check viability of
nutrient sets, only selectively varying single nutrients once
a starting minimal nutrient set has been found. The range
of variation is mainly constrained to compounds available
in Biolog phenotype microarrays, so the predictions can
be readily checked against experimental results.
In contrast to all work described above, we present a

technique for computing all minimal nutrient sets. We
demonstrate that the computation is feasible for large
genome-scale models.
Moreover, our approach for enumerating all nutrient

sets is generic — it is independent of the underlying
definition of growth and the solver used.
Unlike FBA, our approach does not need an objective

function because it is not based on solving an optimiza-
tion problem.
The various methods described above, including our

approach, predict growth on minimal nutrient sets based
on structural analysis of the metabolic network. All these
methods are limited by the accuracy of the compounds
and reactions modeled in the metabolic network, by their
list of transportable nutrients, and by the specification of
biomass compounds.

Conclusions
We have described a method for computing alterna-
tive minimal growth media for an organism based on
its metabolic network and transporter complement. The
method combines linear constraint solving with binary
decision diagrams. Whereas previous approaches to this
problem did not consider all possible combinations of
nutrients, our method does consider all such possibilities.
Previous approaches assumed that all element sources are
independent from one another, and that one source of
each element only is required, whereas we show that in
general these assumptions are invalid. Science is unlikely
to detect organisms whose metabolic networks violate
those assumptions unless we have computationalmethods
that do not depend on those assumptions. A key aspect
of our approach is the machinery-duplicating constraint,
namely that all metabolites used in active reactions must
be produced in increasing concentrations to prevent cell
divisions from diluting these metabolites to the point that
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they are not available to the cell’s metabolic network. We
validated our method by predicting alternative minimal
nutrient sets of E. coli K–12 MG1655 under anaerobic
conditions. These minimal nutrient sets were predicted
with 72.5% accuracy as evaluated by comparison with data
from 91 growth experiments.

Future goals andmethods
The method that we present in this paper must next be
applied beyond E. coli to aid researchers who are trying
to study uncultivatable pathogens and environmentally
sampled organisms, and to develop effective synthetic
biology platforms. The ability to rapidly sequence and
annotate such research targets must necessarily be com-
plemented by the ability to quickly address potentially
enormous research challenges such as “How do we grow
this organism?” into tractable questions.
Clear areas for future enhancements to our method

exist, beginning with developing a better understanding
of the source(s) of the differences between our predic-
tions and biological reality. The goal will be to develop
tools to identify when discrepancies represent a prob-
lem with the method or a potential area of new study.
These improvements will be built on the back of enhance-
ments that make the method itself more computationally
efficient, opening up the opportunity to include knowl-
edge of regulation, metabolite concentrations, and other
factors that will become more readily available as new
high-throughput methods are developed.

Endnotes
aNote that this cannot be formulated as a theorem since
a theorem can only state properties about models of the
real world rather than about the real world itself. Justi-
fication of claims in this section tacitly rely on a model
of the world that is often implicitly assumed in biology
and where the notion of discrete biochemical reactions
makes sense. In particular organisms are assumed to be
composed of molecules and a molecule is considered to
be a discrete assemblage of atoms. Molecules are only
transformed by biochemical reactions and those reactions
must be balanced with respect to counts of each kind of
atom. Atoms themselves are assumed to be indivisible,
immutable, and conserved. We will maintain this fiction
for the rest of this paper.
bWe make the simplifying assumption that a given cell
divides into two daughter cells that are identical at the
molecular level. Of course in practice this is extremely
unlikely; however, we really only require that the daughter
cells are sufficiently similar in terms of their molecu-
lar composition. This vague notion of sufficiently similar
could be made precise by the development of a formal
mathematical measure of fission similarity based on the
exact molecular composition of the cells in question and

then we could formally prove the validity of our model
for organisms that have fission similarity above a certain
threshold. However, since determining the exact molec-
ular composition of a given cell is well in advance of
current experimental technique, the development of such
a mathematical theory at the present time seems to us to
be superfluous, and is certainly beyond the scope of this
paper.
cThe word feasibility is the standard terminology in the
field of Linear Programming, while the word satisfiability
is the standard terminology in the field of Computational
Logic, where SMT solvers were developed.
dBecause pig encodes the prime implicants of a mono-
tone function it can never happen that we have two prime
implicants that differ only on the value of a single compo-
nent. Consequently, every variable must occur as the label
for some node on every path from the root node to the
true terminal, which slightly simplifies the extraction of
the implicants of pig .
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