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Abstract

Background: The random forest (RF) method is a commonly used tool for classification with high dimensional data
as well as for ranking candidate predictors based on the so-called random forest variable importance measures
(VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced
data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification
performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the
performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we
explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative
permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class
imbalance.

Results: We investigated the performance of the standard permutation VIM and of our novel AUC-based
permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the
new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while
both permutation VIMs have equal performance for balanced data settings.

Conclusions: The standard permutation VIM loses its ability to discriminate between associated predictors and
predictors not associated with the response for increasing class imbalance. It is outperformed by our new
AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the
case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF
variant based on conditional inference trees. The codes implementing our study are available from the companion
website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html.

Keywords: Random forest, Conditional inference trees, Variable importance measure, Feature selection, Unbalanced
data, Class imbalance, Area under the curve.
Background
In bioinformatics and related fields, such as statistical
genomics and genetic epidemiology, data are often
highly correlated, heterogeneous and high-dimensional,
with the number of predictors, also known as features or
descriptors, exceeding the number of observations. The
random forest (RF) approach developed by Leo Breiman
in 2001 [1] is particularly appropriate to handle such
complex data [2]. In bioinformatics, RF is a commonly
used tool for classification or regression purposes as well
as for ranking candidate predictors through its inbuilt
* Correspondence: janitza@ibe.med.uni-muenchen.de
1Department of Medical Informatics, Biometry and Epidemiology, University
of Munich, Marchioninistr. 15, D-81377, Munich, Germany
Full list of author information is available at the end of the article

© 2013 Janitza et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
variable importance measures (VIMs). It has been used in
many applications involving high-dimensional data. As a
nonparametric method RF can deal with nonlinearity,
interactions, correlated predictors and heterogeneity,
which makes it attractive in genetic epidemiology [3-7].
However in the context of classification, i.e. when the
response to be predicted is a class membership, classifica-
tion performance of RF has been shown to be suboptimal
in case of strongly unbalanced data [8-10], i. e. when class
sizes differ considerably.
In epidemiology, unbalanced data are observed, e.g., in

population-based studies where only a small number of
subjects develop a certain disease over time, while most
subjects remain healthy. Unbalanced data are also com-
mon in screening studies, where most of the screened
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persons are negative, as well as in subclass analyses, e.g.,
if one wants to differentiate between different subtypes
of cancer. Usually some subclasses are more common
than other subclasses leading to an imbalance in class
sizes. Studies on rare diseases are a further example of
unbalanced data settings in medicine. Data can be
obtained only from few persons having the specific rare
disease, while samples from healthy control persons are
much easier to obtain. Of course unbalanced data are
also relevant in various other areas of application beyond
the biomedical field, e.g., the prediction of creditworthi-
ness of a bank’s costumers [11], the detection of fraudulent
telephone calls [12] or the detection of oil spills in satellite
radar images [13], just to name a few examples. Unbal-
anced data may arise whenever the class memberships are
observed after data collection.
Like many other classification methods RF produces

classification rules that do not accurately predict the mi-
nority class if data are unbalanced. The RF classifier allo-
cates new observations more often to the majority class
unless the difference between the classes is large and
classes are well separable. For extreme class imbalances,
e.g. if the minority class includes only 5% of the observa-
tions, it might happen that the RF classifier allocates
every observation to the majority class independently of
the predictors, yielding a minimal error rate of 5%.
Although this error rate of 5% is very small, such a trivial
classification is of no practical use.
Some suggestions have been made to yield a useful

classification based either on sampling procedures
[14-17] or on cost sensitivity analyses [14]. Sampling
procedures create an artificial balance between two or
more classes by oversampling the minority class and/or
downsampling the majority class. Cost sensitivity ana-
lyses attribute a higher cost to the misclassification of an
observation from the minority class to impede the trivial
systematic classification to the larger class. Both aspects
have been widely discussed in the literature with respect
to RF’s classification performance [14,15,18-21]. Recent
simulation studies [9] have shown that the performance
of RF classification for unbalanced data depends on (i)
the imbalance ratio, (ii) the class overlap and (iii) the
sample size.
The impact of class imbalance on the RF VIM, how-

ever, has to our knowledge not yet been examined in the
literature. In this article we focus on the permutation
VIM which is known to be almost unbiased and more
reliable than the Gini VIM. The latter has been shown
to have a preference for certain types of predictors
[22-25] and therefore its rankings have to be treated
with caution. We concentrate on the class imbalance
problem for two response classes with respect to the
permutation VIM. We investigate the mechanisms of
changes in performance for unbalanced data settings
and motivate the use of a new permutation VIM which
is not based on the error rate but on the area under the
curve (AUC). The AUC can be seen as an accuracy
measure putting the same weight on both classes – in
contrast to the error rate which essentially gives more
weight to the majority class. As such, the AUC is a
particularly appropriate prediction accuracy measure in
unbalanced data settings [26]. A permutation VIM in
which the error rate is replaced by the AUC is therefore
a promising alternative to the standard permutation
VIM. We performed extensive simulation studies to ex-
plore and compare the behaviour of both permutation
VIMs for different class imbalance levels, effect sizes
and sample sizes.

Methods
The RF algorithm is a classification and regression
method often used for high-dimensional data settings
where the number of predictors exceeds the number of
observations. Note that throughout this article we use
the term predictors which is equivalent to features or
descriptors denoting variables that are used to discrimin-
ate the response classes. In the RF algorithm several
individual decision trees are combined to make a final
prediction. The final prediction is then the average (for
regression) or the majority vote (for classification) of the
predictions of all trees in the forest. Each tree is fitted to
a random sample of observations (with or without
replacement) from the original sample. Observations not
used to construct a tree are termed out-of-bag (OOB)
observations for that tree. For each split in each tree a
randomly drawn subset of predictors is assessed as can-
didates for splitting and the predictor yielding the best
split is finally chosen for the split. In the original version
of RF developed by Leo Breiman [1], the selected split is
the split with the largest decrease in Gini impurity. In a
later version of RF, conditional inference tests are used
for selecting the best split in an unbiased way [27]. For
each split in a tree, each candidate predictor from the
randomly drawn subset is globally tested for its associ-
ation with the response, yielding a global p-value. The
predictor with the smallest p-value is selected, and
within this globally selected predictor the best split is
finally chosen for the split.
Both forest versions implement so called variable

importance measures which can be used to get a ranking
of the predictors according to their association with the
response. In the following, we briefly introduce the
standard permutation VIM as well as our novel permuta-
tion VIM, which is based on the area under the curve.

Random forest variable importance measures
RF’s variable importance measures are often used for
feature selection for high-dimensional data settings
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which makes it especially attractive for bioinformatics
and related fields, where identifying a subset of relevant
predictors from a large set of candidate predictors is a
major challenge (known as the “small n large p” prob-
lem). The two standard VIMs for feature selection with
RF are the Gini VIM and the permutation VIM. Roughly
speaking the Gini VIM of a predictor of interest is the
sum over the forest of the decreases of Gini impurity
generated by this predictor whenever it was selected for
splitting, scaled by the number of trees. This measure
has been shown to prefer certain types of predictors
[22-25]. The resulting predictor ranking should therefore
be treated with caution. That is why in this paper we
focus on the permutation VIM that gives essentially
unbiased error rate rankings of the predictors.
Error-rate-based permutation VIM
From now on, we denote the standard permutation VIM
as “error-rate-based permutation VIM”, since it is based
on the OOB error rate, as outlined below. More precisely,
it measures the difference between the OOB error rate
after and before permuting the values of the predictor
of interest. The error-rate-based permutation variable
importance (VI) for predictor j is defined by:

VI ERð Þ
j ¼ 1

ntree

Xntree

t¼1
ERtj~� ERtj

� �
ð1Þ

Where

� ntree denotes the number of trees in the forest,
� ERtj denotes the mean error rate over all OOB

observations in tree t before permuting predictor j,
� ERtj~denotes the mean error rate over all OOB

observations in tree t after randomly permuting
predictor j.
The idea underlying this VIM is the following: If the
predictor is not associated with the response, the permu-
tation of its values has no influence on the classification,
and thus also no influence on the error rate. The error
rate of the forest is not substantially affected by the per-
mutation and the VI of the predictor takes a value close
to zero, indicating no association between the predictor
and the response. In contrast, if response and predictor
are associated, the permutation of the predictor values
destroys this association. “Knocking out” this predictor
by permuting its values results in a worse classification
leading to an increased error rate. The difference in
error rates before and after randomly permuting the
predictor thus takes a positive value reflecting the high
importance of this predictor.
A novel AUC-based permutation VIM
Our new AUC-based permutation VIM is closely related
to the error-rate-based permutation VIM. They only differ
with respect to the prediction accuracy measure: In a
nutshell, the error rate of a tree involved in (1) is replaced
by the area under the curve (AUC) [28]. We define the
AUC-based permutation VI for predictor j as:

VI AUCð Þ
j ¼ 1

ntree�
Xntree∗

t¼1
AUCtj � AUCtj~Þ

�
ð2Þ

� ntree∗ denotes the number of trees in the forest
whose OOB observations include observations from
both classes,

� AUCtj denotes the area under the curve computed
from the OOB observations in tree t before
permuting predictor j,

� AUCtj~denotes the area under the curve computed
from the OOB observations in tree t after randomly
permuting predictor j.

Instead of computing the error rate for each tree after
and before permuting a predictor, the AUC is computed.
The AUC for a tree is based on the so-called class prob-
abilities, i.e. the estimated probability of each observa-
tion to belong to the class Y = 0 or Y = 1, respectively.
The class probabilities of an observation are determined
by the relative amount of training observations belong-
ing to the corresponding class in the terminal node in
which an observation falls into. If one considers an
OOB observation with Y = 0 and an OOB observation
with Y = 1, a “good tree” is expected to assign a larger
class probability for class Y = 1 to the observation truly
belonging to class Y = 1 than to the observation belong-
ing to class Y = 0. The AUC for a tree corresponds to
the proportion of pairs for which this is the case. It can
be seen as an estimator of the probability that a ran-
domly chosen observation from class Y = 1 receives a
higher class probability for class Y = 1 than a randomly
chosen observation from class Y = 0. Note that with the
use of the AUC, the information contained in the class
probabilities returned by a tree are adequately exploited.
This is not the case for the error rate, that requires a
dichotomization of class probabilities. From a practical
point of view, the AUC is computed by making use of
its equivalence with the Mann–Whitney-U statistic. The
Mann–Whitney-U statistic is solely based on the rankings
of two independent samples. AUC values of 1 correspond
to a perfect tree classifier, since a perfect classifier would
attribute each observation from one class a higher prob-
ability to belong to this class than any observation from
the other class. AUC values of 0.5 correspond to a useless
tree classifier that randomly allocates class probabilities to



Table 1 Distribution of predictors in class 1 and class 2

Predictors Distribution in
class 1

Distribution in
class 2

Effect size

X1, . . ., X5 N (1.00, 1) N (0, 1) strong effect

X6, . . ., X10 N (0.75, 1) N (0, 1) moderate effect

X11, . . ., X15 N (0.50, 1) N (0, 1) weak effect

X16, . . ., X65 N (0, 1) N (0, 1) no effect
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the observations. In this case in about half the cases a ran-
domly drawn observation from one class receives a higher
probability of belonging to that class than a randomly
drawn observation from the other class.
The novel AUC-based permutation VIM is implemented

in the package party for the unbiased RF variant based on
conditional inference trees. Note that the discrepancy in
performance between the standard permutation VIM
and the AUC-based permutation VIM is transferable to
the original version of RF since the VI ranking mechan-
ism is completely independent from the construction of
the trees.
Comparison studies
The behavior of the two introduced permutation VIMs is
expected to be different in the presence of unbalanced
data. The AUC is a prediction accuracy measure which
puts the same weight on both classes independently of
their sizes [26]. The error rate, in contrast, gives essentially
more weight to the majority class because it does not take
class affiliations into account and regards all misclassifica-
tions equally important. In the results section we try to
explain the consequences for the performance of the per-
mutation VIMs for unbalanced data settings and provide
evidence for our supposition. We performed studies on
simulated and on real data to explore and contrast the
performance of both permutation VIMs. Using simulated
data we aim to see whether total sample size and effect
size play a role for the class imbalance problem. We
explored this by varying the total number of observations
and by simulating predictors with different effect sizes.
Furthermore we conducted analyses based on real data to
provide additional evidence based on realistic data struc-
tures which usually incorporate complex interdependen-
cies. Our comparison studies on simulated and on real
data were conducted using the unbiased RF variant based
on conditional inference trees. The implementation of this
unbiased RF variant is available in the R system for statis-
tical computing via the package party [29].
Simulated data
The considered simulation design represents a scenario
where the predictors associated with the response vari-
able Y (binary) are to be identified from a set of continu-
ous predictors. We performed simulations for varying
imbalance levels: 50% corresponding to a completely
balanced sample, 40%, 30%, 20%, 10%, 5% and 1% corre-
sponding to different imbalance levels from slight to
very extreme class imbalances. The simulation setting
comprises both predictors not associated with the re-
sponse and associated predictors with three different
levels of effect sizes. Table 1 presents the data setting
used throughout this simulation.
The first five predictors X1, . . ., X5 differ strongly be-
tween classes with mean μ1 = 1 in one class and mean
μ2 = 0 in the other class. The predictors X6, . . ., X10 have
a moderate mean difference between the two classes with
μ1 = 0.75 and μ2 = 0. For X11, . . ., X15 there is only a small
difference between the classes with μ1 = 0.5 and μ2 = 0.
We simulated 50 additional predictors following a
standard normal distribution with no association to the
response variable (termed noise predictors).
We performed analyses with varying sample sizes and

report the results for total sample sizes of n = 100, n = 500
and n = 1000. For each parameter combination, i.e. imbal-
ance level and sample size, we simulated 100 datasets and
computed AUC-based and error-rate-based permutation
VIs for each dataset. Note that for a sample size of n = 100
an imbalance of 1% is not meaningful since there is only
one observation in the minority class.
Forest and tree parameters were held fixed. The par-

ameter ntree denoting the number of trees in a forest
was set to 1000, the parameter for the number of candi-
date splits mtry was set to the default value of 5. We
used subsampling instead of bootstrap sampling for
constructing the trees, i.e. setting the parameter replace
to FALSE [22]. Conditional inference trees were grown
to maximal possible depth, i.e. setting the parameters
minsplit, minbucket and mincriterion in the cforest
function to zero.

Real data
We also investigated the performance of the error-rate-
based and the AUC-based permutation VIM on real
data including complex dependencies (e.g. correlations)
and predictors of different scales. The dataset is about
RNA editing in land plants [30]. RNA editing is the
modification of the RNA sequence from the corre-
sponding DNA template. It occurs e.g. in plant mito-
chondria where some cytidines are converted to
uridines before translation (abbreviated with C-to-U
conversion in the following). The dataset comprises a
total of 43 predictors: 41 categorical predictors (40 nu-
cleotides at positions −20 to 20 relative to the edited site
and one predictor describing the codon position) and
two continuous predictors (one for the estimated fold-
ing energy and one predictor describing the difference
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in estimated folding energy between pre-edited and
edited sequences). It includes 2694 observations, where
exactly one half has an edited site and the other half has
a non-edited site. The data are publicly available from
the journal’s homepage. After excluding observations
with missing values, a total of 2613 observations were
left, where 1307 had a non-edited site and 1306 obser-
vations had an edited site. We used this balanced
dataset to explore the performance of ER- and AUC-
based permutation VIM for varying class imbalances –
but now with realistic dependencies and predictors of
different scales. For this purpose, we artificially created
different imbalance levels by drawing random subsets
from the class with edited sites.
Application of the standard permutation VIM to the

data using the 2613 observations without missing values
gave VIs greater than zero for all 43 predictors for
different random seeds (i.e. different starting values for
the random permutation), indicating that all predictors
seem to have at least a small predictive power (data not
shown). We generated and added additional predictors
without any effect (termed noise predictors in the fol-
lowing) in order to evaluate the performance of error-
rate-based and AUC-based permutation VIMs. Provided
that there is a higher association between the response
and any of the original predictors than between the re-
sponse and any of the simulated noise predictors, a well
performing VIM would attribute a higher VI to original
predictors than to simulated noise predictors. The noise
predictors were generated by randomly permuting the
values of the original predictors. Each original predictor
was permuted once, resulting in a total of 43 noise
predictors. The whole process consisting of (1) creating
X
.2

0
X

.1
9

X
.1

8
X

.1
7

X
.1

6
X

.1
5

X
.1

4
X

.1
3

X
.1

2
X

.1
1

X
.1

0
X

.9
X

.8
X

.7
X

.6
X

.5
X

.4
X

.3
X

.2
X

.1 X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

X
13

X
14

X
15

X
16

X
17

X
18

X
19

X
20

Mean VIs for Extended 

0.00

0.01

0.02

0.03

0.04
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VIs were obtained by averaging the VIs (by commonly used error-rate-base
conversion dataset.
43 noise predictors, (2) merging them to the original
dataset, (3) randomly subsampling to create an unbal-
anced dataset and (4) computing the error-rate-based
and AUC-based permutation VIs, was repeated 100
times for each imbalance level to get stable results for
the VIM performance. To check the assumption that
there is a higher association between the response and
any of the original predictors than between the response
and any of the simulated predictors, we computed the
mean VI over 100 completely balanced datasets that had
been extended by noise predictors. Figure 1 shows that
all mean VIs of the original predictors are higher than
any mean VI of a simulated noise predictor and hence
confirms our first impression.

Performance evaluation criteria
VIMs give a ranking of the predictors according to their
association with the response. To evaluate the quality of
the rankings by the permutation VIMs the AUC was
used as performance measure. The AUC was computed
to assess the ability of a VIM to differentiate between
associated predictors and predictors not associated with
the response. AUC values of 1 mean that each associated
predictor receives a higher VI than any noise predictor,
thus indicating a perfect discrimination. AUC values of
0.5 mean that a randomly drawn associated predictor
receives a higher VI than a randomly drawn noise pre-
dictor in only half of the cases, indicating no discrimina-
tive ability.
For our comparison studies we defined the two classes
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formed one class and noise predictors built the other class.
In more detailed subsequent analyses we then explored
the ability of the VIMs to discriminate between predictors
with the same effect size and predictors without an effect.
For this analysis one class comprised the noise predictors
while the other class comprised only predictors with the
same effect. For the studies on real data it was not possible
to conduct such detailed analyses because the true order-
ing of the predictors according to their association with
the response is not known. Hence in the analysis on real
data we restricted our analysis to the discrimination be-
tween original predictors forming one class and simulated
noise predictors forming the other class.

Results and discussion
Why may the error-rate-based permutation VIM fail in
case of class imbalance?
The prioritisation of the majority class in unbalanced data
settings is well known in the context of RF classification
and can easily be seen from trees constructed on unbal-
anced data. Trees trained on unbalanced data more often
predict the majority class, which leads to the minimization
of the overall error rate. But how does this affect the
performance of the permutation VIMs? And why is the
AUC-based permutation VIM expected to be more robust
towards class imbalance than the commonly used error-
rate-based permutation VIM?
To answer these questions we consider an extremely un-

balanced data setting and illustrate what happens in a tree
when permuting the values of an associated predictor. We
will first have a look at observations from the majority
class. For this class nearly all observations are correctly
classified by a tree which has been trained on extremely
unbalanced data. If we now permute the values of an asso-
ciated predictor, this does generally not result in a classifi-
cation into the minority class since a classification into the
minority class is an unlikely event – even for an observa-
tion from this class. A very specific data pattern is required
for an observation to be classified into the minority class.
It is unlikely that a random permutation of an associated
predictor results in such a specific data pattern just by
chance. Thus, for the majority class we expect hardly any
observation to be incorrectly classified to the minority
class after the permutation of an associated predictor.
Thus the error rate does not considerably increase after
the permutation of an associated predictor, finally leading
to a rather low contribution to the VI.
Now let us consider the classifications by a tree for ob-

servations from the minority class. For an extreme class
imbalance most of the observations from the minority
class are falsely classified to the majority class due to the
above described focus on the majority class. It might be
the case that some observations from the minority class
are correctly classified by the tree because these
observations have that specific pattern of predictor
values which is required for an observation to be classi-
fied into the minority class. It is likely that a permuta-
tion of the values of an associated predictor might then
destroy that specific pattern so that after the permuta-
tion, these observations are not identified anymore to
be in the minority class. Thus a misclassification due to
the elimination of an associated predictor is much more
likely to appear in observations from the minority class
than in observations from the majority class. Note that
only a small number of observations from the minority
class are affected since most of the observations from
the minority class are classified into the majority class
anyway (before as well as after the permutation). The
change in error rates is thus expected to be rather small –
albeit it is more pronounced than the change in error rates
in the majority class.
Note that the error-rate-based permutation VIM does

not take class affiliations into account. Thus the change
in error rates is actually not computed separately for
each class. Yet, in order to better understand the behav-
ior of the VIM, it may help to point out that if the class
proportions were the same in all OOB samples, the VI
of a predictor could be directly derived as the weighted
average of the class specific differences in the error rates.
The weights would correspond to the proportion of obser-
vations from the respective class. In practice the class
frequencies will not be equal in all OOB samples, but the
concept of a weighted average of the class specific error
rates illustrates the fact that for unbalanced data settings
the VI is mainly driven by the change in error rates
derived from observations from the majority class. Since
the change in error rates in the majority class is expected
to be much smaller compared to the change in error rates
in the minority class, the computed VIs are rather low.
This results in low VIs even for associated predictors and
in a poor differentiation of associated predictors and
predictors not associated with the response.

Class specific VIs
This theory is supported by computing class specific VIs
(corresponding to mean changes in error rates computed
only from observations belonging to the same class).
Computing class specific VIs was done using the R
package randomForest implementing the standard RF
algorithm. The importance function of this package
provides permutation VIs computed separately for each
class (besides the VIs by the standard permutation VIM
and by the Gini VIM). The class specific VIs for a total
sample size of n = 500 and an imbalance level of 5% are
shown in Figure 2, where predictors X1 to X15 have an
effect while the remaining 50 predictors do not have an
effect, corresponding to the simulation setting previously
described in Table 1 in the context of the comparison
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Figure 2 VIs computed only from OOB observations of the minority class (top), from OOB observations of the majority class (middle)
and from all OOB observations (bottom). The first 15 predictors are associated with the response while the remaining predictors are noise
predictors. VIs are shown for a total sample size of n = 500 and an imbalance level of 5%.
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study (for simplicity, we use the same setting as in the
comparison study, although the addressed problem is here
a different one). Different sample sizes and imbalance
levels give similar results (thus not shown). They confirm
our argumentation that the change in the error rates com-
puted from OOB observations from the majority class is
smaller than the change in error rates computed from
OOB observations from the minority class. This results in
an underestimation of the actual permutation VI due to a
much higher weighting of the majority class in the compu-
tation of the VI (see concordance of VIs in middle and
lower panel of Figure 2). The discrepancy between the VIs
computed from observations of the minority class and VIs
computed from observations of the majority class depends
on the class imbalance and is more pronounced for more
extreme class imbalances.
This motivates the use of an alternative accuracy

measure which better incorporates the minority class.
While the error rate gives the same weight to all obser-
vations, therefore focusing more on the majority class,
the AUC is a measure which does not prefer one class
over the other but instead puts exactly the same weight
on both classes. Therefore the AUC-based permutation
VIM is expected to detect changes in tree predictions
for observations from the minority class, which might
not be grasped by the error-rate-based permutation VIM
due to a much higher weighting of the majority class.
The VIs for associated predictors obtained by the AUC-
based permutation VIM are thus expected to be compara-
tively higher than the VIs obtained by the error-rate-based
permutation VIM. This would result in a better differenti-
ation of associated and noise predictors by the AUC-based
permutation VIM. These conjectures are assessed in the
comparison study presented in the next section. (An add-
itional performance comparison between the AUC-based
permutation VIM and the error-rate-based permutation
VIM based only on observations from the minority class
is documented in Additional file 1.)

Comparison study with simulated data
The performance of the error-rate-based and AUC-
based VIMs as measured by the AUC is shown in
Figure 3 for the three different total sample sizes with
n = 100 (left panel), n = 500 (middle panel) and n =
1000 observations (right panel) and different class imbal-
ance levels. Filled boxes correspond to the AUC-based
permutation VIM and unfilled boxes correspond to the
error-rate-based permutation VIM. Figure 3 shows that
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the performance of both VIMs decreases with an in-
creasing class imbalance for all sample sizes. Note that
the decrease in performance for both VIMs is not solely
attributable to the imbalance ratio per se but also to the
reduced number of observations in the minority class
with an increasing class imbalance. This is induced by
the simulation setting since we held the total number of
observations fixed and varied the number of observa-
tions in both classes to create different class imbalances.
If there are only few observations in one class then the
tree predictions are less accurate. However the perform-
ance of the AUC-based permutation VIM decreases less
dramatically than the performance of the error-rate
-based permutation VIM. The discrepancy in perfor-
mances between the VIMs increases with increasing im-
balance level and is maximal for the most extreme class
imbalance. While for a sample size of n = 500 the error-
rate-based permutation VIM is no longer able to dis-
criminate between associated and noise predictors (AUC
values randomly vary around 0.5) for the most extreme
class imbalance of 1%, the AUC-based permutation VIM
still is, showing that it can be used to identify associated
predictors even if the minority class comprises only few
observations. It can be ruled out that the better per-
formance of the AUC-based permutation VIM is due
to chance since the distributions of AUC values sig-
nificantly differ. Furthermore this difference in perfor-
mances between both VIMs becomes even larger for
larger sample sizes.
In a nutshell, in this first simulation the AUC-based

permutation VIM performed better in case of class im-
balance. The following subsections focus on the influ-
ence of sample size and effect size on the respective
performance of both permutation VIMs in unbalanced
data settings.
Influence of sample size
In Figure 3, the performance of both VIMs improves
with an increased total sample size for a fixed imbalance
level since an increase in the sample size results in more
accurate tree predictions. The right panel of Figure 3
shows that both permutation VIMs are hardly affected
by class imbalances up to 10% when the sample size is
rather large (n = 1000). If the sample size is smaller
(n = 100), however, the performance of the VIMs is con-
siderably decreased for a 10% imbalance level. A de-
crease in performance for a 10% imbalance level is also
observed for a sample size of n = 500, especially for
error-rate-based permutation VIM. In a nutshell, class
imbalance seems to be more problematic for the permu-
tation VIMs if the total sample size is small.
Influence of effect size
We now explore the ability of the permutation VIMs to
identify predictors with different effect sizes in presence
of unbalanced data. The AUC was again used as an
evaluation criterion to compare the ability of the AUC-
based and error-rate-based permutation VIMs to discrim-
inate between associated and non-associated predictors.
Here the evaluation was done for each effect size separately
meaning that one class comprised all the noise predictors
while the other class comprised only predictors with the
considered effect size (either strong, moderate or weak).
Figure 4 shows the results for the setting with n = 100. The
results for other sample sizes are shown in Additional file 2.
The left panel of Figure 4 shows the performance of both
permutation VIMs according to their ability to discriminate
between predictors with weak effects and predictors
without an effect. The middle panel corresponds to the
AUC values for predictors with a moderate effect versus
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noise predictors and the right panel corresponds to the
AUC values for predictors with a strong effect versus
noise predictors.
Unsurprisingly, for both permutation VIMs predictors

having only a weak effect are less discriminable from
noise predictors than predictors with stronger effects.
For imbalances up to 20% both VIMs identify nearly all
predictors with a strong effect. Obviously there are un-
balanced data settings where the standard permutation
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VIM still perfectly separates between noise predictors
and predictors with pronounced effects. We conclude
that class imbalance is more problematic if predictors
with weak effects are to be identified while it plays a
minor role if the classes are well separable.

Comparison study with real data
Figure 5 shows the distribution of AUC values for 100
modified C-to-U conversion datasets for varying
alance Level
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on data. The AUC is used to assess the ability of a VIM to discriminate
onse.



Janitza et al. BMC Bioinformatics 2013, 14:119 Page 10 of 11
http://www.biomedcentral.com/1471-2105/14/119
imbalance levels. For the balanced dataset and for slight
class imbalances up to 40% both VIMs have a perfect
discriminative ability since all associated predictors re-
ceive a higher VI than any noise predictor. Overall the
performance of both VIMs decreases with an increas-
ing class imbalance. Note that the decreasing perform-
ance for increasing class imbalances might be partly
attributable to the reduced total sample size as the
class imbalance was created by randomly subsampling
observations from the class with the edited sites. When
comparing both VIMs the AUC-based permutation
VIM significantly outperformed the standard permuta-
tion VIM. For an imbalance of 30% the AUC-based
permutation VIM clearly identified more associated
predictors than the error-rate-based permutation VIM.
The superiority of the AUC-based permutation VIM
over the standard permutation VIM increased with an
increasing class imbalance. For imbalances between
15% and 5% the discrepancy between the perform-
ance of AUC-based and standard permutation VIM
was maximal.
Overall, this study on real data impressively shows that

the AUC-based permutation VIM also works for complex
real data and outperforms the standard permutation VIM
in almost all class imbalance settings.

Conclusions
The problem of unbalanced data has been widely discussed
in the literature for diverse classifiers including random
forests. Many approaches have been developed to improve
the predictive ability of RF classifiers for unbalanced data
settings. However less attention has been paid to the be-
haviour of random forests’ variable importance measures
for unbalanced data. In this paper we explored the
performance of the permutation VIM for different class
imbalances and proposed an alternative permutation VIM
which is based on the AUC.
Our studies on simulated as well as on real data show

that the commonly used error-rate-based permutation
VIM loses its ability to discriminate between associated
predictors and predictors not associated with the re-
sponse for increasing class imbalances. This is particu-
larly crucial for small sample sizes and if predictors with
weak effects are to be detected. The decreasing perform-
ance of the standard permutation VIM results from two
sources: the class imbalance on the training data level
leading to trees more often predicting the majority class
and the class imbalance at the OOB data level leading to
blurred VIs due to a much higher weighting of error rate
differences in the majority class. A higher weighting of
the majority class in the VI calculation is problematic
because the difference in error rates is shown to be less
pronounced in the majority class than in the minority
class. Note that in some cases it might be interesting to
assess the increase in error rate obtained when a certain
predictor is removed. In this case the error-rate-based
permutation VIM can be considered. If the goal is to
rank the predictors according to their discrimination
power, however, the AUC-based permutation VIM should
be preferred.
The problem of imbalance at the OOB data level is

directly addressed with the use of a novel AUC-based
permutation VIM. This VIM puts the same weight on
both classes by measuring the difference in AUCs in-
stead of the difference in error rates. It is thus able to
detect changes in tree predictions when permuting asso-
ciated predictors which might not be grasped by the
standard permutation VIM. In contrast, the imbalance
on training data level is not addressed by the AUC-
based permutation VIM, meaning that the structure of a
tree remains untouched. On the one hand this is a draw-
back since class predictions before and after permuting a
predictor are similar even if the respective predictor is
associated with the response, resulting in a reduced
change in the AUCs. On the other hand preserving the
tree structure can be regarded as an advantage since a
change in tree structure might open space for new unex-
pected behaviours. It is a major advantage of our novel
AUC-based permutation VIM that it is based on exactly
the same principle and differs from the standard permu-
tation VIM only with respect to the accuracy measure-
ment. It is thus expected to share the advantages of the
standard permutation VIM and its properties and behav-
iours discovered in recent years (e.g. its behaviour in
presence of correlated predictors [31] and in presence
of predictors with different scales [22] and category
sizes in the predictors [24,25]).
Our studies on simulated as well as on real data show

that the AUC-based permutation VIM outperforms the
commonly used error-rate-based permutation VIM as well
as the error-rate-based permutation VIM computed only
using observations from the minority class in case of unbal-
anced data settings (see Additional file 1 for the comparison
to the class specific VIM). The difference in performance
between our novel AUC-based permutation VIM and the
standard permutation VIM can be substantial, especially for
extremely unbalanced data settings. But even for slight class
imbalances the AUC-based permutation VIM has shown to
be superior to the standard permutation VIM. We con-
clude from our studies that the AUC-based permutation
VIM should be preferred to the standard permutation VIM
whenever two response classes have different class sizes
and the aim is to identify relevant predictors.

Availability and requirements
The AUC-based permutation VIM is implemented in
the new version of the party package for the freely-
available statistical software R (http://www.r-project.org

http://www.r-project.org
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and http://cran.r-project.org/web/packages/party/index.
html). It can be applied via the function varimpAUC.
All codes implementing our studies on simulated and on

real data are available under http://www.ibe.med.uni-
muenchen.de/organisation/mitarbeiter/070_drittmittel/
janitza/index.html for reproducibility purposes.

Additional files

Additional file 1: This file shows the results of the performance
comparison between the AUC-based permutation VIM and the
error-rate-based permutation VIM computed using only
observations from the minority class.

Additional file 2: This file shows the distribution of AUC-values
(analog to Figure 4) for sample sizes n = 500 and n = 1000.
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