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Abstract

Background: Structure-based clustering is commonly used to identify correct protein folds among candidate folds
(also called decoys) generated by protein structure prediction programs. However, traditional clustering methods
exhibit a poor runtime performance on large decoy sets. We hypothesized that a more efficient “partial” clustering
approach in combination with an improved scoring scheme could significantly improve both the speed and
performance of existing candidate selection methods.

Results: We propose a new scheme that performs rapid but incomplete clustering on protein decoys. Our method
detects structurally similar decoys (measured using either C, RMSD or GDT-TS score) and extracts representatives
from them without assigning every decoy to a cluster. We integrated our new clustering strategy with several
different scoring functions to assess both the performance and speed in identifying correct or near-correct folds.
Experimental results on 35 Rosetta decoy sets and 40 I-TASSER decoy sets show that our method can improve the
correct fold detection rate as assessed by two different quality criteria. This improvement is significantly better than
two recently published clustering methods, Durandal and Calibur-lite. Speed and efficiency testing shows that our

improve their ab initio structure prediction performance.

method can handle much larger decoy sets and is up to 22 times faster than Durandal and Calibur-lite.

Conclusions: The new method, named HS-Forest, avoids the computationally expensive task of clustering every
decoy, vet still allows superior correct-fold selection. Its improved speed, efficiency and decoy-selection
performance should enable structure prediction researchers to work with larger decoy sets and significantly

Background

Predicting the 3D structure of a protein from its se-
quence continues to be one of the most challenging,
unsolved problems in biology. However, thanks to the
development of programs such as Rosetta [1] and
I-TASSER [2], along with the exponential growth in
computational power, it is now possible to predict the
structures of small proteins with a high degree of accur-
acy [2,3]. To be maximally effective, most modern ab
initio structure prediction programs must generate tens
of thousands of candidate structures (called decoys) and
then use specially developed heuristic “energy” functions
or structure clustering techniques to evaluate and select
the top scoring candidates. As a general rule, the per-
formance of an ab initio structure prediction program
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critically depends on: 1) the number of candidate struc-
tures generated; 2) the variety of candidate structures
generated; 3) the quality of candidate structures gene-
rated and 4) the performance of the scoring function
and candidate selection criteria. Our focus here is on im-
proving the performance of the latter.

Many studies [4-6] indicate that structural clustering
can improve the selection of correct or near-correct folds
over a simple heuristic energy function. Shortle et al. [4]
were probably the first to study the performance of candi-
date fold detection using structural clustering. They
hypothesized that when a reasonably good energy function
is used or when a reasonably good structure generation
tool is available, most candidate structures generated by a
protein structure prediction program will tend to cluster
near (but not necessarily on) the correct fold. As a result,
cluster centers tend to be closer to the correct fold than
other decoys within the cluster. Because of the significant
performance enhancements seen with structural clustering,
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some of the most successful ab initio structure prediction
programs, such as I-TASSER and Rosetta, now incorporate
structural clustering as part of their candidate selection
process (see [7] for a more complete survey on clustering
algorithms).

While clustering can be quite useful in both candidate
fold selection and correct fold detection, its speed deterio-
rates rapidly as the size of the decoy set increases [8].
Many decoy clustering algorithms, such as SPICKER (v1.0
and 2.0, [5]), which is used by I-TASSER, as well as the
clustering algorithm implemented in Rosetta, use a similar
clustering approach. In particular, they select the decoy
with the largest number of neighbors falling within a cer-
tain structural similarity threshold that is either given or
detected automatically. The top decoy and its neighbors
are selected to form the first cluster. Afterwards the struc-
tures in the first cluster are removed from the pool of
decoys and the process is repeated until a sufficient num-
ber of clusters are identified. Other clustering strategies
use hierarchical clustering [9,10] or a travelling salesman
approach [11] to aid in structure clustering and candidate
selection. All of the above-mentioned strategies require
repeated pairwise structure comparisons. Therefore, if the
size of a decoy set increases 10 fold, then the number of
required structure comparisons increases roughly 100
fold. Such a trend can lead to prohibitively poor runtime
performance — especially with large decoy sets.

To accelerate the clustering and selection steps on large
decoy sets, several methods have been developed in recent
years. These include SCUD [12], Calibur [8] and Durandal
[6]. SCUD [12] accelerates the clustering process by
speeding up the underlying structure comparisons. Rather
than performing a time-consuming superposition ope-
ration in every pair-wise structure comparison, as is done
in traditional decoy clustering algorithms, SCUD super-
poses every decoy to a reference structure. As a result,
SCUD uses the superposition to the reference structure
when comparing two structures. The difference between
structures, which is called the rRMSD, is essentially
an upper bound for the true RMSD (Root-Mean-Square
Distance after optimal superposition). Results showed that
while the quality of structures selected by SCUD did not
improve, the clustering speed improved by a factor of 9 on
a decoy set of 2,000 structures.

In contrast to SCUD, Calibur [8] accelerates clustering
without changing the structure comparison method.
Instead it uses a variety of filtering strategies to limit the
number of pairwise comparisons. In the first step, Calibur
removes structural outliers that are not similar to a set of
randomly sampled decoys by a certain distance threshold.
Then, lower and upper bounds derived from the alpha
carbon (C,) RMSD properties and the triangle inequa-
lities in metric distance are used to reduce the number of
structure comparisons. Extensive testing has shown that
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Calibur is faster than both the Rosetta clustering program
and SPICKER (used in I-TASSER). This is especially true
when the decoy set is larger than 4,000 structures. The
quality of the candidates selected by Calibur has been
found to be similar to that of SPICKER.

Durandal [6] combines the lower and upper bounding
technique used in SCUD and Calibur with an information
entropy technique. For a decoy set of size n, Durandal
generates a pair-wise distance matrix of size n*(n-1)/2 and
measures the information entropy by counting the num-
ber of “undecided” distances in the matrix. A distance in
the matrix is “decided” if it is clearly below or above a
given threshold. Once the matrix is set up, Durandal ran-
domly chooses a set of decoys, computes distances bet-
ween the decoys, and uses the lower and upper bounds to
determine the “undecided” distances so that the entropy
in the distance matrix decreases. The algorithm keeps
using the lower and upper bounds to decide distances as
long as it reduces the entropy in the matrix more efficiently
than computing distances. Tests show that Durandal is
faster than both SCUD and Calibur, by a factor of up to 3.4
on a decoy set of 21,080 structures. Not only is Durandal
faster, it was also shown to improve upon the quality of
folds that could be selected. In particular, on 40 large
I-TASSER decoy sets, Durandal selected a more correct
fold than the I-TASSER energy function (alone) in 25 out
of 40 cases versus just 20 for SPICKER. However, as noted
by its authors, Durandal is not very efficient with memory
usage due to the quadratic size of the distance matrix
[6]. A recently updated version of Durandal applies a
Quaternion-based Characteristic Polynomial method [13]
to accelerate its RMSD calculations. This change has
improved Durandal’s overall runtime by up to 25%.

With continuous algorithmic improvements over the
last decade, many ab initio structure prediction methods
are now running significantly faster than earlier methods.
For example, I-TASSER was reported to take just 5 hours
to model the structures of certain smaller proteins on a
single CPU [2]. Presumably this involved the generation of
thousands of decoy structures. Running multiple copies of
[-TASSER on multiple CPUs (or a faster 2012 vintage
CPU) would no doubt reduce the sampling time signifi-
cantly (ie. minutes). However, clustering large decoy
sets with existing methods such as Durandal can still
take at least half an hour — as shown in later in this
paper. Furthermore, to the best of our knowledge, cur-
rently there is no parallelized version of Durandal (or any
other structure clustering program) available. This sug-
gests that structural clustering is becoming a significant
time bottleneck in ab initio structure prediction. Clearly
the improvement of clustering speed would benefit a
number of state-of-the-art structure prediction methods
such as I-TASSER.
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In this work we describe a faster, more efficient and
more accurate approach to detect correct protein folds
using a technique called partial clustering. Given that the
ultimate goal of clustering in decoy selection is to return
representatives of the decoy clusters, rather the clusters
themselves, then we would argue that partial clustering
should be sufficient to solve the problem at hand. In par-
ticular, we have designed a partial clustering algorithm
that does not need to define cluster membership for every
decoy but is able to extract key representatives quickly.
Our method also combines the speed of this fast cluster-
ing approach with a more intelligent approach to scoring
or ranking candidate folds. In contrast to other quality
assessment methods, our method uses the scoring energy
to rank a small set of cluster centers instead of the whole
decoy set. We have found that our clustering strategy can
be applied to any scoring function to enhance the rate of
correct fold detection. Tests conducted on decoy sets gen-
erated by Rosetta and I-TASSER show that our method is
able to select a higher proportion of correct folds than
using energy functions alone or using other fast (or tra-
ditional) structure clustering algorithms. Speed and effi-
ciency testing also shows that our method is up to 22
times faster than Durandal (the fastest clustering method
described to date), and that it is also significantly more
memory-efficient.

Methods

Our method, called HS-Forest, is based on the concept of
partial clustering and then “intelligently” combining this
partial clustering with energy function evaluation to detect
the most correct fold from a given decoy set. The first step
in the program involves using a novel structural clustering
scheme to detect structurally “dense” regions in the given
decoy set. These regions are thought to be local minima
in the protein folding energy landscape according to the
hypothesis that most candidate structures generated by a
protein structure prediction program will tend to cluster
near the correct fold if the structure generation program
is reasonably good [4]. In the clustering stage, we extract a
representative for each cluster without assigning every ob-
ject to a cluster. We then compute the distances between
the extracted representatives and a small number of low-
est energy decoys. Unless otherwise specified, in this paper
we measure the distance between two decoys using the C,
RMSD distance (the RMSD calculated using only C,
atoms). However, it is important to note that our method
is applicable to both metric and non-metric distance func-
tions. Once this extracted representative distance calcula-
tion is done, we then select a representative with the
smallest total distance to the lowest energy decoys as a
candidate for the best decoy. In the clustering stage we
introduce a random factor, described later, so that each
clustering process will typically generate a different optimal
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candidate. We run the clustering process multiple times
to generate a set of candidates. From this set of candi-
dates, we return a consensus decoy that has the smallest
total distance to all other candidates. The algorithm is out-
lined step-by-step below:

1. Select a given number of pivots randomly;

2. For each pivot create a hashing function;

3. Build the root node of a tree, which is the first leaf
of that tree;

4. Randomly select a hashing function to split the
leaves of the tree;

5. Go to Step 4 until the tree reaches a certain height
as described below;

6. Determine the cluster nodes;

7. For each of the largest cluster nodes, select a
representative;

8. Rank the representatives by their total distances to
the top energy decoys. The top one is the candidate

of the tree;

9. Go to Step 3 until a given number of trees are
constructed;

10. Return the consensus of the candidates as the best
decoy.

To efficiently detect locally “dense” regions in a given
decoy set we decided to use a recently developed database
searching technique called Local Sensitive Hashing [14], or
LSH. The idea of LSH is to design a set of hashing func-
tions so that similar objects have a probability (although
not necessarily a high probability) of being hashed to the
same bin by each hashing function. Even though every
individual hashing function is not perfect and can hash
dissimilar objects to the same bin, by combining multiple
hashing functions we can still manage to group similar
objects together.

Our design of the hashing function is based on a well-
known metric property [15-17] that two similar decoys
usually have similar distances (as measured by RMSD)
to a third decoy. First, our algorithm randomly selects a
small set of decoys from the given decoy set as pivots
and computes the distances between these pivots and all
decoys in the decoy set. Then, for each pivot our algo-
rithm divides all the decoys into two bins, depending on
whether the distance between the pivot and the decoy is
less than the median of all distances to the pivot. Similar
decoys are likely to have similar distances to the pivot
and thus have a higher probability to be placed in the
same bin as opposed to different bins. From each pivot,
our algorithm constructs a hashing function. We use the
median distance to divide the decoys because it makes
the bin size of the hashing function more balanced.

To organize the hashing functions, our algorithm con-
structs a tree, denoted as an HS-Tree. “HS” in HS-Tree
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and HS-Forest stands for “Height and Size”. These two
letters come from the two factors behind our clustering
algorithm, both of which are used to define the clusters.
Starting from the whole decoy set, our algorithm splits the
decoys into two nodes by applying a randomly chosen
hashing function, with each bin of the hashing function
corresponding to a node. Each of the two nodes is further
split by another randomly chosen hashing function, ie.,
each layer of the tree is split by a randomly chosen hash-
ing function. This process is repeated until a certain
height to the tree is reached. At the beginning of the
process, the nodes in the tree can contain very dissimilar
decoys, but as the nodes are split further down the tree,
dissimilar decoys are more likely to be separated into dif-
ferent nodes while similar decoys are more likely to re-
main together thereby representing a “denser” region.

The next step is to decide which nodes contain a dense
region, otherwise known as a cluster. Ideally, a cluster is a
region balanced with density and size (i.e., number of
decoys). Since the density of a node is indicated by its
height in an HS-Tree, the ideal clusters are in nodes
balanced by both height and size. We define such a node
as a cluster node as given below.

DEFINITION 1 (Cluster node). In an HS-Tree ¢ of
height H (> 1) and size Z (> 2), let p be a path in ¢ from
the root to a leaf node, a cluster node in p is a node v of
height /(v) and size z(v) so that

H logZ (1)

Intuitively, as shown in Figure 1, a cluster node is a node
near the line y=x in a 2D plot with y= log(z(v))/log(Z), and
x=h(v)/H. We apply a log scaling function to normalize
the node size since the node size in an HS-Tree usually
decreases in an exponential manner when traveling from
the root to the leaves. Each path in an HS-Tree from the
root to a leaf can contain at most one cluster node. Note
that in our algorithm, not every decoy is necessarily
assigned to a cluster node. On the other hand, each HS-
Tree must contain at least one cluster node, as guaranteed
by the lemma below.

LEMMA 1. In an HS-Tree ¢ of height H (> 1) and size Z
(= 2), let ¢ be the number of cluster nodes in £, then ¢ > 1.

Proof synopsis: Since the first hashing function splits
the decoy set in half by the median distance with each
half close to Z/2 and no larger than Z*2/3 (equal only
when Z = 3), for any node of height 4(v)=H and size z,
log(z)/log(Z) < log(Z*2/3)/1og(Z). Since log(Z*2/3)/log(Z)
= 1-log(3/2)/log(Z), log(z)/log(Z) < 1-0.40546/log(S) < 1.
Given that h(v)/H = H/H = 1, log(z)/log(Z) < h(v)/H, and
equation (1) is satisfied. Therefore, ¢ = 0.
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Figure 1 An example of an HS-Tree. Cluster nodes are nodes
balanced with density (height) and size. Sub-trees under each cluster

nodes are omitted.

Having extracted the clusters from the non-redundant
set of cluster nodes, the next step is to extract a represen-
tative from each cluster. At this stage, the challenge is
two-fold: (1) even though each cluster is likely to consist
of decoys structurally similar to each other, it is possible
that some dissimilar decoys are mixed into the cluster;
and (2) the size of clusters can vary significantly so that
the traditional approach of computing a medoid with the
minimal total distance to the decoys within a cluster can
involve a quadratic number of distance computations. In
our algorithm, we select a representative of a cluster by
choosing the decoy with the smallest total distance to the
set of pivots we picked when constructing the hashing
functions. No additional distance computation is needed.

To select the best decoy from the pool of cluster repre-
sentatives, we borrow an idea used by [18], which ranks
every decoy in a decoy set by its total distance to the low-
est energy decoys. In our algorithm, for given numbers S
(the number of clusters to consider) and E (the number of
lowest energy decoys), we select the S largest clusters and
rank their representatives by the total distance to the E
lowest energy decoys (the values of S and E are further
elaborated upon in the Discussion section). The additional
distance computation is minimal when S and E are small.
The highest ranked representative is a candidate for the
best decoy in the decoy set.

Due to the random factor we introduced when con-
structing our HS-Tree, different HS-Trees can return
different candidates for the best decoy. To compute a
consensus, our algorithm generates multiple HS-Trees.
First a set of P pivots are randomly selected and P corre-
sponding hashing functions are created. Then, H,,,,
hashing functions are randomly chosen to build an
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HS-Tree, so that the maximal height of the tree is H,,,,,.
This process is repeated until a given number (typically
between 5 and 50) of HS-Trees are constructed. Finally,
our algorithm ranks the candidates from all the trees by
the total distance to all the candidates, and returns the
highest ranked candidate.

In our implementation, when constructing HS-Trees
and extracting cluster nodes, we use H,,,, to replace the
actual tree height H. In large decoy sets, these two values
are usually the same. The advantage of using this approxi-
mation is that we can construct only a portion of the
whole tree and stop splitting whenever the inequality (1)
in Definition 1 is satisfied. This significantly reduces the
runtime. The disadvantage is that, theoretically, we can no
longer guarantee that the returned result is not empty.
However, this appears to be a rare event as an empty
result was never returned in our experiments with 75 dif-
ferent decoy sets consisting of between 1,135 to 64,307
structures. In the worst case, if an empty result is returned,
the user can simply reduce H,,,,, and re-run the program.

Results

We tested our method, HS-Forest, on a large collection of
Rosetta and I-TASSER decoys. The Rosetta decoys consist
of 35 decoy sets for different protein targets with a diverse
size range from 1,135 to 64,307 structures. The I-TASSER
decoys consist of 40 large decoy sets [2] with varied size
between 12,499 and 32,000 structures, and were used to
test Durandal [6]. Both the Rosetta and I-TASSER decoys
were generated by a combination of ab initio and frag-
ment assembly methods, and each decoy set contained at
least one decoy having a C, RMSD below 4 Angstroms
relative to the native (i.e. correct) structure. The exact
sizes of the Rosetta and I-TASSER decoy sets are shown
in Additional files 1 and 2, respectively.

Speed and efficiency

To evaluate the speed and efficiency of HS-Forest, we
tested it on both the Rosetta and I-TASSER decoy sets.
Given that the results presented by [6] clearly showed that
Durandal was faster than SCUD and Calibur, in our ex-
periments we only compared HS-Forest with Durandal
(without Quaternion-based Characteristic Polynomial
methods to accelerate RMSD calculations [13]) and
Calibur-lite [8]. Calibur-lite is a simpler, faster program
than Calibur that only outputs the best decoy. For our
tests, Durandal was also set to output the best cluster only,
using a value of 0.05 for the semiautomatic threshold de-
tection as suggested by its authors [6]. All reported run-
time values are measured by the Linux program “time” and
averaged over 10 runs on a dual Quad-Core AMD
Opteron 2378 Linux sever with 16 GB of RAM using only
a single core.
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The first test set we investigated was the 1shfA set from
the I-TASSER decoys. We varied the decoy set size from
1,000 to 20,000 by randomly sampling a portion of the
entire decoy set. The runtimes for the three methods are
shown in Figure 2. As seen in this figure, HS-Forest when
using the I-TASSER energy function significantly outper-
forms both Durandal and Calibur-lite. Furthermore the
speed gap increases as the size of the testing set increases.
Using the full set of 20,000 decoys, HS-Forest achieves a
speedup of 20 over both Durandal and Calibur-lite.

The second test set we studied was the 1bm8 set from
the Rosetta decoys. This decoy set contains 64,307 decoys
and poses a significant challenge to most clustering algo-
rithms. Similar to the first experiment, we varied the
decoy set size from 1,000 to 60,000. The runtime for all
three methods are shown in Figure 3. Durandal runs out
of memory once the number of decoys exceeds 35,000,
while Calibur-lite takes more than 2 hours to finish a run
as soon as the size exceeds 45,000 decoys. HS-Forest using
the Rosetta energy function finishes all calculations and
outperforms Durandal and Calibur-lite consistently, re-
quiring just 228 seconds to analyze 60,000 decoys. The
speed-up factors for HS-Forest over Durandal and
Calibur-lite are 22 and 49 respectively.

Figures 2 and 3 also show that the performance of a
given clustering method can be quite different for different
decoy sets. For instance, we can see that Calibur-lite has a
much slower runtime than Durandal in Figure 3 but its
runtime is about the same as Durandal in Figure 2. To
compare the performance on diverse decoy sets of varying
size, we compared the runtime for all three methods
on an independent collection of 34 Rosetta decoy sets
(excluding 1bm8). These decoy sets are smaller than
the 1shfA and 1bm8 sets, but have a size range from
1,135 to 17,934 decoys. HS-Forest had the shortest run-
time among the three methods for all 34 sets, achieving
a speedup factor of 1.4 to 14.0 over Durandal, and 2.1
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Figure 2 Runtime on the 1shfA decoy set. The size varies from
1,000 to 20,000 structures.
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Figure 3 Runtime on the 1bm8 Rosetta decoy set. The size
varies from 1,000 to 60,000 structures. Durandal runs out of memory
when the size exceeds 40,000 proteins. Calibur-lite takes more than
2 hours to finish a run when the number of proteins was more than
45,000.

to 10.2 over Calibur-lite. The detailed results can be found
in Additional file 1.

HS-Forest is also very memory efficient. While Durandal
ran out of memory when testing the 1bm8 set from the
Rosetta decoy set on our testing machine with 16 GB
RAM, HS-Forest was able to finish analyzing all the
decoys in this set with the maximal memory usage of
around 3 GB.

The computational time complexity for HS-Forest can
be calculated as follows: let the number of decoys be N,
then the computational time complexity to compute the P
hashing tables is O(PNlogN). The complexity to construct
an HS-Tree is O(NlogN). Therefore the total time com-
plexity of HS-Forest is O((P+T)NlogN) where T is the
number of trees.

Performance for correct fold detection
In this section, we will show that HS-Forest is able to
improve the performance of energy functions in correct
fold detection. We will also compare HS-Forest with
two state-of-the-art decoy clustering programs: Durandal
and Calibur-lite. Since both Rosetta and I-TASSER have
their own clustering programs and since these clustering
programs might have an advantage when tested on their
own decoy sets, we also included these two clustering
programs in our comparison. The results show that HS-
Forest exhibits better performance than all the above-
mentioned methods.

Measuring the performance for correct fold detection is
a challenging task because the same method usually per-
forms differently on different decoy sets. For example, a
method can outperform a standard energy function sig-
nificantly in one decoy set but consistently fail to outper-
form the same energy function in other decoy sets. To
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measure performance we adopted two different criteria.
For the first criterion, denoted as Criterion-1, the percent-
age of decoys that the top-scoring decoy outperformed is
averaged over all decoy sets is used as the metric. Criter-
ion-1 measures, on average, how close the selected decoy
is to the native (i.e. correct) structure compared with the
other decoys in the decoy set. The second criterion,
denoted as Criterion-2, was adopted from [6]. It essentially
measures how frequently a given method can outperform
the energy function in different decoy sets. Specifically it
measures the frequency with which the top decoy selected
by a given method has a lower C, RMSD than the top
decoy selected by the energy function alone. Since both
HS-Forest and Durandal contain random seeding func-
tions, unless otherwise specified, we averaged their results
over 50 runs.

For our experiments on the Rosetta decoys, we applied
HS-Forest to enhance the decoy selection using different
energy functions, including the Rosetta energy values (that
came with the decoys), the GaFolder pseudo-energy values
[19], and a consensus score (denoted as Consensus) that
ranks decoys by the total C, RMSD distance to a number
of reference structures. To calculate the Consensus score,
we chose the same number of reference structures as the
number of pivots used in HS-Forest. When HS-Forest
was combined with an energy function, we use that func-
tion to select the 10 lowest energy decoys in HS-Forest.
The results are shown in Table 1. Under the Criterion-1
column, we can see that HS-Forest is able to enhance the
decoy selection performance for all three energy functions
with a percentage difference of 5.2% (or a percentage ratio
improvement of 6.5%) for the Rosetta energy, and a per-
centage difference of 8.6% (or a percentage ratio improve-
ment of 12.0%) for the GaFolder energy. Since HS-Forest
already used the Consensus method to select a representa-
tive for each cluster, we would expect the HS-Forest
results would be similar to that of the Consensus method
alone. Nonetheless, HS-Forest still outperformed the Con-
sensus result by a percentage difference of 2.1% (or a per-
centage ratio of 2.6%). Under the Criterion-2 column, we
compare how frequently different methods can perform
against the baseline Rosetta energy function. On average,
when the Rosetta energy is used in HS-Forest it outper-
forms the Rosetta energy, alone, in 24.7 out of the 35
decoy sets (71%). The GaFolder and Consensus energy
functions outperformed the Rosetta energy in just 15 and
17 out of 35 cases respectively. However, after applying the
HS-Forest algorithm to the same energy functions, the
results improved to 20 and 18 out of 35 cases, respectively.

On the Rosetta decoys, we also compared HS-Forest
with Durandal, Calibur-lite, and the clustering program
used in the recently released Rosetta 3.4. When testing
on the largest decoy set, 1bm8, Durandal ran out of
memory and Calibur-lite took more than 2 hours to
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Table 1 Performance on Rosetta decoys
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Energy/Program Method Criterion-1 (%) Criterion-2 (/35) + Std Dev.
Rosetta Energy only 80.0 NA (baseline)
with HS-Forest 852 247 £ 18
GaFolder Energy only 718 150
with HS-Forest 804 200+12
Consensus Energy only 81.2 17.0
with HS-Forest 833 180+ 0.7
Durandal 825 160+ 1.8
Calibur-lite 789 136 £07
Rosetta Clustering 80.0 20

Criterion-1 and Criterion-2 are defined in the manuscript. Criterion-1 measures the percentage of decoys that the top-scoring decoy outperformed; Criterion-2
measures the frequency with which the top decoy, selected by a given method, has a lower C, RMSD than the one selected by the energy alone. The values

behind + are the standard deviations among different runs.

finish. Consequently, we used the largest sample that
Durandal and Calibur-lite could generate on the 1bm8
set to calculate its performance for this particular decoy
set (since Calibur-lite was much slower than other meth-
ods on large decoy sets, we only repeated its run for a
total of 10 times). The average result for Durandal using
Criterion-1 is 82.5%, which is better than all of the energy-
only methods but is still 2.7% less than what Rosetta
energy function combined with HS-Forest achieved. For
Criterion-2, the average result for Durandal was 16.0 out of
35 decoy sets (46%) versus 24.7 (71%) for Rosetta with HS-
Forest. This result for Durandal is somewhat worse than
what HS-Forest achieved even when it used the GaFolder
and Consensus energy functions. Similar to Durandal, the
performance of Calibur-lite and the Rosetta clustering pro-
gram in Table 1 are worse than what was achieved when
the Rosetta energy function was combined with HS-Forest.

The results on the I-TASSER decoy sets are shown in
Table 2. The energy functions we tested include the I-TAS-
SER values that come with the decoys, the GaFolder en-
ergy and the Consensus score. Using Criterion-1, similar
to the results on the Rosetta decoys, HS-Forest improves

Table 2 Performance on I-TASSER decoys

the decoy selection for all three energy functions. Under
Criterion-2, we used the I-TASSER energy alone as the
baseline method. As seen in Table 2, HS-Forest methods
consistently outperform the energy-only methods, with an
improvement of 8.3 cases for GaFolder and 4.5 cases for
the Consensus method. On this data set we also compared
HS-Forest with Durandal, Calibur-lite, and SPICKER 2.0
(the clustering program in I-TASSER). The performance
of Durandal for Criterion-1 and Criterion-2 is 72.9% and
25.7/40 respectively, which is worse than what was
obtained using GaFolder with HS-Forest (75.3% and
27.3/40). The performance of Calibur-lite for Criterion-1
and Criterion-2 is 74.1% and 26.6/40 respectively, which
is slightly worse than those of GaFolder with HS-Forest.
For SPICKER 2.0, we used the clustering results down-
loaded from its website to calculate the scores. More spe-
cifically, we used the so-called “Closc” decoys that come
with the decoy sets to calculate the Criterion-1 and Criter-
ion-2 scores. A “Closc” decoy is the decoy closest to the
first SPICKER cluster centroid. It has been shown that
these “Closc” decoys have a lower RMSD to the native
structure than the SPICKER average structure after

Energy/Program Method Criterion-1 (%) Criterion-2 (/40) = Std Dev.
[-TASSER Energy only 59.7 NA (baseline)
with HS-Forest 684 272+19
GaFolder Energy only 57.1 19
with HS-Forest 753 273+18
Consensus Energy only 674 22
with HS-Forest 72.1 265+ 12
Durandal 720 257 +12
Calibur-lite 74.1 265+ 05
SPICKER 2.0 726 250

Criterion-1 measures the percentage of decoys that the top scoring decoy outperformed; Criterion-2 measures the frequency with which the top decoy selected
by a given method has a lower C, RMSD than the one selected based on energy alone. The values behind + are the standard deviations among different runs.
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removing most steric clashes [20]. The results shown in
Table 2 also indicate that SPICKER 2.0 exhibits a poorer
performance than GaFolder with HS-Forest using both
Criteria.

Because the performance of HS-Forest on the [-TASSER
data appears to be modestly better than the performance
of Durandal and Calibur-lite, we performed an unpaired
Student’s t-test to assess the statistical significance [21]
of this performance difference. The choice of a Student’s
t-test was based on the fact that the Criterion-1 and
Criterion-2 scores exhibited a normal (i.e. Gaussian) distri-
bution over the 50 sample runs performed with each pro-
gram (due to its longer runtime, Calibur-lite was run 10
times and compared with 10 random HS-Forest runs) and
the fact we were interested in determining whether the
average Criterion scores were statistically different. For
Durandal the t-test p-values are 6.1x10™ and 6.1x107 for
Criterion-1 and Criterion-2 respectively; for Calibur-lite
the p-values are 3.4x10™ and 6.3x10™ for Criterion-1 and
Criterion-2 respectively. So using the standard p<0.05 cri-
terion for statistical significance these differences are statis-
tically significant. We also calculated the standard
deviation on the C, RMSD values, relative to the native
structure, among different runs for each decoy set. These
are found in Additional files 1 and 2. The average standard
deviation is 0.28 and 0.13 Angstroms for the Rosetta and
I-TASSER data sets, respectively.

We also tested HS-Forest using another distance metric
known as the GDT-TS distance [22,23] as implemented in
TMscore [24]. Since there is no trivial way to run Durandal
and Calibur-lite using a distance metric other than C,
RMSD, we calculated the GDT-TS scores using TMscore
for the top decoys selected by Durandal and Calibur-lite.
The following results were averaged over 10 runs. On the
Rosetta decoys, the average performance of Rosetta energy
with HS-Forest for Criterion-1 and Criterion-2 was 81.9%
and 22.0/35 respectively. These values are better than the
performance achieved with Durandal (77.0% and 18.8/35)
and Calibur-lite (71.2% and 14.3/35). On the I-TASSER
decoys, the average performance using the GaFolder en-
ergy with HSForest for Criterion-1 and Criterion-2 were
75.2% and 27.5/40 respectively, which is also better than
that found for Durandal (72.9% and 25.7/40) and Calibur-
lite (73.9% and 25.9/40).

Discussion

Parameter settings

HS-Forest contains several parameters that can be
adjusted, including the number of pivots P, the maximal
tree height H,,,,, the number of trees 7, the number of
largest clusters to consider S, and the number of lowest
energy decoys E. In our experiments, to reduce the num-
ber of parameters while at the same time maintaining ran-
domness among the trees, we always set H,,,, = P/2. This
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is done so that different trees have partially different sets of
hashing functions to generate different candidates for the
final consensus stage. While increasing B, 7, S or E generally
increases the runtime, how each affects the program’s per-
formance is not particularly obvious. To study the impact
of these parameters, we tried different values for the 4 para-
meters on the I'TASSER decoys using the I-TASSER energy
function with HS-Forest. Unless otherwise specified, for all
the experiments we set P = 40, T = 30, S = 30, and E = 10.
Overall, the results show that the performance of HS-Forest
is not particularly sensitive to these parameters.

The value of P is probably the most important para-
meter in HS-Forest. Figure 4 shows the Criterion-2 per-
formance (in %) when P is varied from 10 to 120. At the
lowest P of 10, HS-Forest is least accurate. As P increases,
the performance also increases and reaches a maximal
value when P = 30. Afterwards, the performance declines
slowly. We conjecture that the reason for the slow decline
is that when P (and H,,,,) values are too large, it makes
the inequality (1) in Definition 1 less optimal to extract
clusters. Based on these data we recommend a P value
between 20 and 60.

Figure 5 shows the Criterion-2 performance (in %) with
the number of trees (7) varied from 1 to 50. This graph
shows that when T is smaller than 5, the performance is
suboptimal, but for T > 15, the result is stable. This result
also indicates that the final step of HS-Forest, which
involves computing the consensus of the results from
multiple trees, does improve the performance. In other
words, the consensus of multiple trees (>5) gives a better
performance than a single tree. Figures 6 and 7 show how
the Criterion-2 performance (in %) varies with respect to
the numbers of largest clusters S and lowest energy decoys
E. For S > 10, the performance levels off; and E does not
have a significant impact on the performance.

For all the experiments presented in the Results section,
we set P = 40, T = 30, S = 30, and E = 10 on both the
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8 50 -
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Number of Pivots
Figure 4 Criterion-2 performance (in %) of I-TASSER with HS-
Forest, for the number of pivots P varies from 10 to 120.
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Rosetta and I-TASSER data. The parameters were selected
based on “training” with the I-TASSER data using the C,
RMSD distance, and then tested on the leave-out Rosetta
data set. As seen in the last section the performance of
HS-Forest remained superior even on the leave-out data.
To further validate this result we also tested the same
parameters on I-TASSER and Rosetta data using the
GDT-TS distance, which served as another leave-out test-
ing set. Again, our results show that HS-Forest’s perfor-
mance was not compromised. The superior performance
of HS-Forest on all leave-out sets, as well as the data
shown in Figures 4, 5, 6, 7 shows that these parameter
settings are quite robust and certainly general enough to
be applied on other decoy sets using different similarity
metrics.

The role of clustering

Our method combines the power of partial clustering with
the use of energy functions to help detect correct folds. It
is interesting to see how clustering contributes to the
improved performance of HS-Forest. To explore this fur-
ther, we tested the Rosetta decoys by simply ranking the
decoys by the total C, RMSD distance to the 10 lowest
energy decoys. When using the 10 lowest Rosetta energy
decoys, the performance is 81.8% for Criterion-1.
Compared with the results in Table 1, this Criterion-1 per-
formance is only 1.8% better than what is obtained when
using the Rosetta energy only, while it is 3.4% lower than
that of Rosetta with HS-Forest. A similar result is obtained
when using the 10 lowest GaFolder energy decoys, with
a Criterion-1 performance just 1.8% better than that
obtained using the GaFolder energy alone and 6.8% lower
than that of GaFolder with HS-Forest. These results show
that without partial clustering, the idea of using the 10
lowest energy decoys as reference structures to rank
decoys is only slightly better than using the energy func-
tions alone.
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Figure 6 Criterion-2 performance (in %) of I-TASSER with HS-
Forest, for the number of largest clusters S varies from 1 to 50.

Essentially, the clustering step in HS-Forest narrows the
collection of decoy candidates to smaller set that are close
to the cluster centers. As hypothesized by [4], these struc-
tures are more likely to be closer to the correct fold. While
the energy/consensus ranking in HS-Forest is not perfect,
we conjecture that the initial focus on selecting good can-
didates helps improve the Criterion-1 performance men-
tioned above. Another factor that may contribute to the
performance improvement seen in HS-Forest is the use
of a consensus of multiple random trees, as shown in
Figure 5.

On the other hand, clustering on its own may also have
problems discerning the correct fold in certain situations,
particularly when there are multiple clusters of nearly
equal size. In these cases, choosing the wrong cluster
could lead to a very poor result. This is where other in-
formation, such as the energy score ranking, can help. It
is for these reasons that HS-Forest combines both struc-
ture clustering and energy score information to detect
correct folds.
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Figure 5 Criterion-2 performance (in %) of I-TASSER with HS-
Forest, for the number of trees T varies from 1 to 50.
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Improvements to energy functions

Our results on the Rosetta and I-TASSER decoys show
that HS-Forest is more effective at detecting correct folds
for certain energy functions than for others. As seen in
Table 1, GaFolder with HS-Forest has the largest perform-
ance enhancement over its energy-only method. A similar
trend is observed in the I-TASSER results presented in
Table 2. When using energy-only methods, the Criterion-1
performance of GaFolder is somewhat worse than those
of the I-TASSER energy and Consensus score on the
I-TASSER decoys. However, after applying HS-Forest, the
Criterion-1 performance of GaFolder is improved by
18.2% and it actually performs the best among all me-
thods. This improvement can be explained by inspecting
Figure 8. As seen here, the energy-only method of
GaFolder chooses particularly poor quality decoys for two
decoy sets: 1hbkA and 2cr7A. These mistakes were cor-
rected after applying HS-Forest so that the C, RMSD to
the native structure drops from 12.6 to 3.9 A and from 7.7
to 4.0 A respectively.

The significant improvements seen with GaFolder indi-
cates that our HS-Forest concept may open the door for
computational biologists to reconsider using some previ-
ously discarded heuristic energy functions in structure pre-
diction and refinement. In some cases the inferior overall
performance for some energy functions may be due to a
very poor performance on a small subset of proteins. Such
weaknesses could be corrected by using HS-Forest as part
of the energy function or as part of the evaluation criteria.

This result also illustrates the advantage of HS-Forest
over traditional clustering algorithms in that it is able to
combine different energy functions and adapt to different
types of decoy sets. Decoys generated by different struc-
ture prediction programs can often have very different
properties. Therefore it is important to be able to use dif-
ferent energy functions to detect the most correct folds.
While traditional clustering algorithms only rely on struc-
ture comparisons within a given decoy set to select correct
folds, HS-Forest combines efficient structure clustering
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with different energy functions to generate better decoy
selections.

Performance on small decoy sets

To test the performance of HS-Forest on small decoy sets,
we downloaded just such a set located on the [-TASSER
website [25]. This is a non-redundant subset of the ori-
ginal I-TASSER decoys that were structurally refined via
GROMACS 4.0. These very small decoy sets vary in size
from just 270 to 574 structures. We ran HS-Forest on this
set and compared the results with the SPICKER results
that come with the data set. In order to be able to com-
pare the scores on the whole I-TASSER data set as well,
we used the values of the whole set as a reference when
calculating the Criterion-1 and Criterion-2 scores. It turns
out that the SPICKER results on this new data set are ac-
tually worse than the SPICKER results obtained on the
whole set in Table 2, with a Criterion-1 score of 71.9% and
a Criterion-2 score of 20/40. This indicates that clustering
over a reduced and/or refined subset might not necessarily
have an advantage over clustering on the whole decoy set.
As might be expected, HS-Forest shows no advantage over
SPICKER on these very small decoy sets. This is because
HS-Forest is designed to run on much larger decoy sets.
Nonetheless, HS-Forest still enhances the performance of
the GaFolder energy on this new data set. The Criterion-1
and Criterion-2 scores for HS-Forest using the GaFolder
energy are 60.4% and 21.1/40 respectively, which are better
than those of using the GaFolder energy only (45.4% and
15/40 respectively). Similar to the case with SPICKER, the
scores of HS-Forest and GaFolder energy (alone) are also
worse than those of the whole data set.

Drawbacks of HS-Forest and decoy clustering programs

HS-Forest is not without some limitations. First of all,
HS-Forest may not work particularly well with poor qua-
lity decoy sets. Following the previous work of Durandal,
we limited our testing data to those decoy sets with at
least one decoy being less than 4 A C, RMSD away from

RMSD to native (Angstrom)
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Figure 8 Comparison of C, RMSD to the native structure for the selected decoys on the I-TASSER decoy sets before and after applying
HS-Forest to GaFolder energy, sorted by the C, RMSD difference. HS-Forest results are averaged over 50 runs.
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the native structure. To see how well HS-Forest would
perform on decoy sets that do not satisfy this condition,
we tested HS-Forest on 16 [-TASSER decoy sets from [2].
These decoy sets were left out from our experiments in
the Results section because they do not satisfy the above-
mentioned RMSD condition. The Criterion-1 score of
HS-Forest with the GaFolder energy on this data set is
56.3%, which is somewhat higher than those of GaFolder
energy alone (47.9%) and I-TASSER energy alone (51.8%).
For all the three methods, their scores were found to be
much worse than the results in Table 2 for the 40 I-TAS-
SER decoy sets. The significantly lower Criterion-1 per-
formance for all three methods on the 16 poor quality
decoy sets indicates that not just the poor quality sets will
have overall poorer quality decoys, but the decoy selec-
tion methods are also less effective on such decoy sets
(the Criterion-1 score indicates how high the return struc-
ture is ranked within the decoy set), making it harder to
return useful models from these decoy sets than from
good quality decoy sets.

A second shortcoming with HS-Forest is that the use
of a random factor leads to a non-deterministic output.
The speed gains with HS-Forest rely primarily on rando-
mized hashing and the fact that it does not perform a full
clustering. These changes make its clustering results a lit-
tle less stable than other clustering methods. To reduce
this effect, HS-Forest creates multiple trees and com-
putes the consensus. As we can see in Tables 1 and 2, its
standard deviations on Criterion-2 score are close to
those of Durandal.

Conclusion

In this work, we have proposed a novel partial clustering
scheme for decoy selection in protein structure prediction.
This method, called HS-Forest, avoids the computation-
ally expensive task of clustering every decoy, yet still
allows superior correct-fold selection. The basic idea be-
hind HS-Forest is to take advantage of Local Sensitive
Hashing and the generation of multiple, independent trees
to create a consensus result. Our method is able to adapt
to different decoy sets by utilizing decoy-specific energy
functions to detect correct protein folds. Extensive tests
on both Rosetta and I-TASSER decoy sets show that our
method is up to 22 times faster than two recently pub-
lished clustering/decoy selection methods Durandal and
Calibur-lite. Our method also achieves better accuracy
using both C, RMSD and GDT-TS distance metrics for
two different decoy sets.

While no clustering method or scoring function has yet
been developed that can consistently identify the most
correct structure among large decoy sets, we believe HS-
Forest is a step in the right direction. We hope this idea
can inspire the development of even better methods for
correct fold detection, and that this concept of partial
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clustering may be seen to have applications to other scien-
tific fields facing similar clustering challenges.

Availability and requirements

Project name: HS-Forest

Project homepage: http://webdocs.cs.ualberta.ca/~jianjun/
hsforest/

Operating System: Tested on Linux.

Programming Language: C++.

Other requirements: None.

License: GNU General Public License
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Additional file 1: Details of the Rosetta decoy sets. The size of each
decoy set is larger than 1000, and each decoy has the same length as
the native structure in PDB.

Additional file 2: Details of the I-TASSER decoy sets.
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