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Abstract

Background: Quantile and rank normalizations are two widely used pre-processing techniques designed to remove
technological noise presented in genomic data. Subsequent statistical analysis such as gene differential expression
analysis is usually based on normalized expressions. In this study, we find that these normalization procedures can
have a profound impact on differential expression analysis, especially in terms of testing power.

Results: We conduct theoretical derivations to show that the testing power of differential expression analysis based
on quantile or rank normalized gene expressions can never reach 100% with fixed sample size no matter how strong
the gene differentiation effects are. We perform extensive simulation analyses and find the results corroborate
theoretical predictions.

Conclusions: Our finding may explain why genes with well documented strong differentiation are not always
detected in microarray analysis. It provides new insights in microarray experimental design and will help practitioners
in selecting proper normalization procedures.

Background
Microarray technology has been widely adopted in many
genomic related studies in the past decade. Despite its
popularity, it is well known that various technical noises
exist in microarray experiments [1,2] due to the limi-
tation of technology. As a remedy, many normalization
procedures have been proposed to remove these system-
atic noises, thus improving the detection of differentially
expressed genes. Some efforts have been made to evaluate
different normalization procedures [3-6]. Interested read-
ers are referred to [7,8] for background and more detailed
reviews of normalization procedures.
Quantile normalization is perhaps the most widely

adopted method for analyzing microarray data generated
by Affymetrix GeneChip platform.Motivated by quantile-
quantile plot, it makes the empirical distribution of gene
expressions pooled from each array to be the same [3].
It is the default option of BioConductor [9], which is a
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very popular open source software for analyzing microar-
ray data implemented in R [10], the de facto standard
statistical computing language in the statistical research
community. This algorithm is also used for normalizing
Affymetrix exon arrays [11,12], Illumina BeadChip arrays
[13-15], Illumina transcriptome sequencing (mRNA-Seq)
data [16], Illumina Infinium whole genome genotyping
(WGG) arrays [17], and Solexa/Illumina deep sequenc-
ing technology [18], etc. In addition, several other popular
normalization procedures are variants of quantile nor-
malization, such as the enhanced quantile normalization
[19] and subset quantile normalization [20] designed for
microarrays, and the conditional quantile normalization
[21] designed primarily for normalizing RNA-seq data.
Rank normalization is an alternative to quantile nor-

malization. It replaces each observation by its frac-
tional rank (the rank divided by the total number of
genes) within array [22,23]. This normalization pro-
cedure achieves robustness to non-additive noise at
the expense of losing some parametric information
of expressions.
After normalization, a pertinent statistical test such as

Student’s t-test [24] is applied to these normalized gene
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expression levels. The resulting p-values are adjusted by
a multiple testing procedure (MTP) in order to con-
trol certain quantity of per-family Type I error, such as
family-wise error rate (FWER) [25-28] and false discov-
ery rate (FDR) [29]. Differentially expressed genes are
identified based on a pre-specified threshold of adjusted
p-values. More detailed introduction of statistical meth-
ods for detecting differentially expressed genes can be
found in [30-33].
Without compromising the control of type I error,

better testing power can be achieved by either increas-
ing sample size or improving the strength of gene
differentiation effect (fold changes between different phe-
notypes). Sometimes large expected differential effects
based on biological considerations are invoked as a rea-
son to justify a microarray study with very small sample
sizes.
In this study, we find that one cannot “trade” dif-

ferentiation effects with sample size. When the sam-
ple size is small, the statistical power for a gene
differentiation analysis will not reach 100% even when
the effect size approaches to infinity. This counter-
intuitive phenomenon is due to the nature of the
normalization procedures, which alters both sample
mean difference and pooled sample standard devia-
tion of the normalized expressions. As a result, they
both grow at most linearly as functions of effect size
and their effects cancel out. Our findings provide new
insights into microarray experimental design which may
help practitioners in selecting appropriate normalization
procedures.

Methods
Notations and biological data
Notations
We assume that all expression levels are log-transformed.
For convenience, the words “gene” and “gene expression”
are used interchangeably to refer to these log-transformed
random variables. These genes are indexed by i =
1, 2, . . . ,m, wherem is the total number of genes.
Let c = A,B be two different phenotypic groups. For

simplicity we assume that the number of arrays in both
groups are the same and denoted by n. Without loss of
generality, phenotypic group A is set to represent the phe-
notype of interest (usually the disease or the treatment
group) and group B the normal phenotype. So up (down)
regulation of a gene refers to its over (under) expression
in group A. We denote by ycij the observed expression level
of the ith gene recorded on the jth array sampled from the
cth phenotypic group. The normalized counterpart of ycij
is written as y∗c

ij .
The mean and standard deviation of ycij are denoted

by E
(
ycij

)
= μc

i and var(ycij) = σ 2
ic, respectively. Their

normalized sample counterparts are denoted by ȳ∗c
i· =

1
n

∑n
k=1 y∗c

ik and
(
σ̂ ∗c
i

)2 = 1
n−1

∑n
j=1(y∗c

ij − ȳ∗c
i· )2, respec-

tively.
In practice, the true level of gene differentiation is not

a constant. It depends on the biological settings. The
variance of gene expressions is nor constant either — it
depends on the accuracy of measuring instruments and
the homogeneity of biological subjects, just to name a
few factors. In terms of statistical power, the decrease of
gene expression variance is equivalent to the increase of
mean difference. For simplicity, we consider gene expres-
sion variance to be fixed and define the effect size, our
analysis tuning parameter, to be the expected mean differ-
ence of the ith gene expression between two phenotypes
ei := μA

i − μB
i .

We divide genes into three sets:

• G0, the set of non-differentially expressed genes
(abbreviated as NDEGs). For all i ∈ G0,
ei := μA

i − μB
i = 0.

• G+
1 , the set of up-regulated genes. For all i ∈ G+

1 ,
ei > 0.

• G−
1 , the set of down-regulated genes. For all i ∈ G−

1 ,
ei < 0.

The set of differentially expressed genes (abbreviated
as DEGs) is the union of both up-regulated and down-
regulated genes, which is denoted by G1 = G+

1 ∪ G−
1 . We

write the size of these gene sets bym0 = |G0|,m+
1 = |G+

1 |,
m−

1 = |G−
1 |, and m1 = |G1|. Apparently m1 = m+

1 + m−
1

andm0 + m1 = m.

Biological data
The biological dataset used in this study is the childhood
leukemia dataset from the St. Jude Children’s Research
Hospital database [34]. We select three groups of data:
88 patients (arrays) with hyperdiploid acute lymphoblastic
leukemia (HYPERDIP), 79 patients (arrays) with a spe-
cial translocation type of acute lymphoblastic leukemia
(TEL) and 45 patients (arrays) with a T lineage leukemia
(TALL). Each patient is represented by an array report-
ing the logarithm (base 2) of expression level on the set of
9005 genes.

Analytic analysis of the impact of normalization
procedures on differential expression analysis
In this section, we evaluate the impact of quantile and
rank normalization on t-test. We are especially interested
in studying the asymptotic property of the t-statistic as
the effect size of differentiation approaches infinity while
other parameters such as n and σ 2

i are fixed. Empirical
evidences in Section “Results and discussion” show that
our findings are also valid for other statistical tests such as
Wilcoxon rank-sum test and permutation based test.
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To simplify theoretical derivation, we assume that the
mean expression levels in the normal phenotype (group
B) are zeros (μB

i = 0). This assumption implies that μA
i =

μB
i + ei = ei. This simplification is reasonable because

many hypothesis testing procedures such as t-test and
Wilcoxon rank-sum test are invariant under shift trans-
formation, so the mean difference between two groups,
ei, is much more important than the normal level of gene
expressions. For simplicity, we also assume that the effect
size is a constant e+ > 0 for all up-regulated and e− < 0
for all down-regulated genes. In summary,

E
(
ycij

)
=

⎧⎪⎪⎨
⎪⎪⎩
e+ c = A, i ∈ G+

1 ,
e− c = A, i ∈ G−

1 ,
0 c = A, i ∈ G0,
0 c = B,

(1)

Therefore, the expected group differences of non-
normalized gene expression data are

E
(
yAi· − yBi·

)
=

⎧⎨
⎩
e+ i ∈ G+

1 ,
e− i ∈ G−

1 ,
0 i ∈ G0.

(2)

We must point out that all these assumptions are
made only for the simplification of the theoretical deriva-
tions. Our findings essentially do not depend on these
assumptions. This has been confirmed in our biologi-
cal simulation study in Section “Results and discussion”
(SIMU-BIO).
For the ith normalized gene expression, its t-statistic is

defined as

t∗i =
√
n
2

· ȳ
∗A
i· − ȳ∗B

i·
σ̂ ∗
i

, (3)

where σ̂ ∗
i =

√(
σ̂ ∗A
i

)2+(
σ̂ ∗B
i

)2
2 is called the pooled sample

standard deviation.
The testing power of a two-sided t-test is determined

by the absolute value of t-statistic. Based on Equation (3),
it is clear that the testing power converges to 100% when
n approaches infinity. For a fixed n (which also implies a
fixed number of degrees of freedom), the testing power
is determined by the absolute sample mean difference,
|ȳ∗A
i· − ȳ∗B

i· |, and the pooled sample variance,
(
σ̂ ∗
i
)2. Below

we study the asymptotic properties of these two quantities
for quantile and rank normalized expressions separately.

Quantile normalization
With quantile normalization (QUANT), a reference array
of empirical quantiles, denoted as q = (q1, q2, . . . , qm),
is first computed by taking the average across all ordered
arrays. Let yc(1),j � yc(2),j � · · · � yc(m),j denote the
ordered gene expression observations in the jth array (j =

1, 2, . . . , n) of the cth (c = A,B) group, the rth (r =
1, 2, . . . ,m) element of this reference array is

qr = 1
2n

( n∑
k=1

yA(r),k +
n∑

l=1
yB(r),l

)
. (4)

The original expressions are replaced by the entries of
the reference array with the same rank. Denote rcij as the
rank of ycij in the array to which it belongs. The normalized
gene expressions are

y∗c
ij = qrcij = 1

2n

( n∑
k=1

yA
(rcij),k

+
n∑

l=1
yB
(rcij),l

)
. (5)

We refer the reader to [3] for more details.
In group A, over(under)-expressed genes tend to have

high (low) ranks in each array. When the effect size is
small, the ranks of DEGs in group A are mixed with those
of NDEGs and the downstream testing power will be low.
When the effect size is large, the DEGs in group A effec-
tively take up all the top and bottom ranks, so the NDEGs
in group A can only compete for ranks between m−

1 + 1
and m − m+

1 . We assume that the m+
1 up-regulated genes

almost always take the top m+
1 ranks with equal chances

and the m−
1 down-regulated genes almost always take

the bottom m−
1 ranks with equal chances. We will show

that the Student’s t-statistic of quantile normalized gene
expressions follows a mixture distribution in which the
doubly noncentral part converges to a distribution with
finite all order moments instead of infinity when the true
effect size becomes large.
We first investigate the asymptotic properties of sample

mean difference ȳ∗A
i· −ȳ∗B

i· . Roughly speaking, quantile nor-
malization ranks gene expressions first and then replace
them by a reference quantile computed from all arrays.
For an up-regulated DEG (i ∈ G+

1 ), its rank can be
among the topm+

1 genes for all arrays in the normal group
(rBij > m − m+

1 , j = 1, 2, . . . , n) with probability
(m+

1
m

)n.
In this case, the expectation of sample mean difference is
zero; otherwise it grows linearly as a function of e+. More
specifically, by using conditional expectation, we obtain
that for i ∈ G+

1 ,

E(ȳ∗A
i· − ȳ∗B

i· |rBi1, · · · , rBin)

∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O(1), with probability

(
m+

1
m

)n
,

O(e+, e−), with probability 1 −
(

m+
1
m

)n
.

(6)

Similarly for down-regulated DEGs (i ∈ G−
1 ),
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E(ȳ∗A
i· − ȳ∗B

i· |rBi1, · · · , rBin)

∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O(1), with probability

(
m−

1
m

)n
,

O(e+, e−), with probability1 −
(

m−
1
m

)n
.

(7)

Detailed derivations can be found in Section 3 in the
Additional file 1.
Similarly, σ̂ ∗·

i , the pooled sample standard deviation,
can either grow linearly as a function of e+ and e− or
(with positive probability) stay as a constant. Heuristically
speaking, σ̂ ∗·

i does not depend on e+ or e− if the ranks of
expressions are all in the top group (r·ij > m−m+

1 ), middle
group (m−

1 < r·ij � m − m+
1 ), or the bottom group (r·ij �

m−
1 ) because all expression levels have the same effect

sizes so they are canceled out. If the ranks are from dif-
ferent groups, some will have high expressions and some
are low, the standard deviation will be “stretched out”.
Since we assume up-regulated (down-regulated) genes in
group A almost always take up the top (bottom) ranks,
(σ̂ ∗A

i )2 ∝ ∑n
j=1(y∗A

ij − ȳ∗A
i· )2 does not depend on e+ or e−.

For group B we have

E
((

σ̂ ∗B
i

)2 |rBi1, · · · , rBin
)

∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(1), all rBi· ∈ top m+
1 , or middlem0, or bottomm−

1

with probability
(m0
m

)n +
(

m+
1
m

)n
+

(
m−

1
m

)n

O((e+)2, (e−)2), otherwise with probability

1 − (m0
m

)n −
(

m+
1
m

)n
−

(
m−

1
m

)n
.

(8)

More detailed derivations can be found in Section 3 in the
Additional file 1.
According to Equations (6), (7) and (8), the sample

mean difference and pooled sample standard deviation
both grow at most linearly as functions of e+ (e−). As a
result, the (absolute values of ) t-statistics t∗i in (3) (given
rBi1, · · · , rBin) for up-regulated DEGs (i ∈ G+

1 ) approxi-
mately have the following mixture of central, noncentral
and doubly noncentral forms:

t∗i |rBi1, · · · , rBin

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(1)
O(1) , all r

B
i· ∈ topm+

1 with probability
(

m+
1
m

)n
,

O(e+,e−)
O(1) , all rBi· ∈middlem0 or bottomm−

1

with probability
(m0
m

)n +
(

m−
1
m

)n
,

O(e+,e−)
O(e+,e−)

, otherwise with probability

1 − (m0
m

)n −
(

m+
1
m

)n
−

(
m−

1
m

)n
.

(9)

Similarly, the t-statistics t∗i for down-regulated DEGs (i ∈
G−
1 ) approximately have the following mixture forms:

t∗i |rBi1, · · · , rBin

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(1)
O(1) , all r

B
i· ∈ bottomm−

1 with probability
(

m−
1
m

)n
,

O(e+,e−)
O(1) , all rBi· ∈middlem0 or topm+

1

with probability
(m0
m

)n +
(

m+
1
m

)n
,

O(e+,e−)
O(e+,e−)

, otherwise with probability

1 − (m0
m

)n −
(

m+
1
m

)n
−

(
m−

1
m

)n
.

(10)

To see this mixture under the normality assumption,
we assume that all observed gene expressions ycij fol-
low a normal distribution. Then, the normalized gene
expressions y∗c

ij approximately follow a normal distribu-
tion (See Section 2 in the Additional file 1). According to
Equation (9), the t-statistics t∗i for up-regulated DEGs (i ∈
G+
1 ) approximately follow a mixture of central, noncen-

tral and doubly noncentral t-distributions with a density
function

ft∗i ≈
(
m+

1
m

)n

ft +
((m0

m

)n +
(
m−

1
m

)n)
fT(γ)

+
(
1 −

(m0
m

)n −
(
m+

1
m

)n

−
(
m−

1
m

)n)
fT(γ,λ).

Here ft , fT(γ) and fT(γ,λ) are the density functions of
central, noncentral and doubly noncentral t-distributions,
respectively, with ν = 2n − 2 degrees of freedom. γ ∝
O(e+, e−) is the numerator noncentrality parameter and
λ ∝ O((e+)2, (e−)2) is the denominator noncentrality
parameter (from noncentral χ2) [35]. Similarly, accord-
ing to Equation (10), the t-statistics t∗i for down-regulated
DEGs (i ∈ G−

1 ) approximately follow a distribution with a
density function

ft∗i ≈
(
m−

1
m

)n

ft +
((m0

m

)n +
(
m+

1
m

)n)
fT(γ)

+
(
1 −

(m0
m

)n −
(
m+

1
m

)n

−
(
m−

1
m

)n)
fT(γ,λ).

In microarray analysis it is reasonable to assume m1 �
m, i.e., the proportion of DEGs is small (m−

1 � m and
m+

1 � m). So the central t-distribution part in themixture
is negligible. Empirical density functions of t∗i for quantile
normalized DEG expressions with different effect sizes are
shown in Figures 1 (b) and (d). For effect sizes 2 and 4,
the two peaks in the center represent the doubly noncen-
tral t-distribution part T(γ, λ) and the two peaks to the far
left and right sides represent the noncentral t-distribution



Qiu et al. BMC Bioinformatics 2013, 14:124 Page 5 of 10
http://www.biomedcentral.com/1471-2105/14/124

D
en

si
ty

0
0.

05
0.

1
0.

4
0

0.
05

0.
1

0.
4

0
0.

05
0.

1
0.

4
0

0.
05

0.
1

0.
4e=0

e=2

(a) Without normalization

D
en

si
ty

e=0
e=2

(b) With quantile normalization

D
en

si
ty

e=0
e=4

(c) Without normalization

D
en

si
ty

−60 −40 −20 0 20 40 60 −60 −40 −20 0 20 40 60

−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60

e=0
e=4

(d) With quantile normalization

Figure 1 Empirical density estimates of the t-statistics before and after quantile normalization. Empirical density estimates of the t-statistics
before and after quantile normalization. Gene expression are simulated by using normal random numbers with standard deviation 0.35 and
gene-gene correlation 0.9. Total number of genes ism = 1000. Total numbers of truly differentially expressed genes arem+

1 = 60 for up-regulated
genes andm−

1 = 40 for down-regulated genes. The sample size is n = 10 and the true effect size is e+ = −e− = e = {0, 2, 4}. Estimates are based
on 200 repetitions.

partT(γ). The doubly noncentral t-distribution converges
to a distribution with finite all order moments when e+
(e−) approaches infinity. Figure 1 shows the convergence
of t∗i . Furthermore, we let e+ and −e− vary from 0 to 3.6
and the medians of the t statistic absolute values for DEGs
with and without quantile normalization are plotted in
Figure 2. Clearly, the median for data without normaliza-
tion grows linearly while themedian for data with quantile
normalization is upper-bounded by a fixed constant when
effect size becomes large. Therefore, the testing power
associated with a two-sided t-test cannot reach 100%. The
derivation of this convergence can be found in Section
4 in the Additional file 1. This result suggests that even
if certain genes are known to have dramatically different
expression levels for different phenotypes, a typical differ-
ential expression analysis based on quantile normalized
expressions may not be able to detect them. In this case,
combining the results obtained from differential expres-
sion analysis without normalization may provide new
insight to the underlying biology.

Empirical evidences in Section “Results and discussion”
also show that the statistical power converges to a fixed
number strictly less than 1.0; and this convergence is inde-
pendent of the hypothesis testing methods and MTPs
being applied. Heuristically speaking,QUANT “borrows”
information from both NDEGs and DEGs to reduce data
variation, and as a result the normalized expressions
are complex mixture of both NDEGs and DEGs with
possibly very high true group differences. Consequently,
the variances of normalized DEGs are asymptotically
dominated by the differences between the NDEGs and
DEGs and become increasing functions of effect sizes.
Asymptotically, the increased variances cancel out the
contributions of the increased effect sizes to the testing
power.

Rank normalization
With rank normalization (RANK), we replace each entry
in one array by its position (rank) in the ordered array
counted from the smallest value divided by the total
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Figure 2Medians of the t-statistic absolute values.Medians of the
absolute values of the t-statistics for data with and without quantile
normalization. Gene expression are simulated by using normal
random numbers with standard deviation 0.35 and gene-gene
correlation 0.9. Total number of genes ism = 1000. Total numbers of
truly differentially expressed genes arem+

1 = 60 for up-regulated
genes andm−

1 = 40 for down-regulated genes. The sample size is
n = 10 and the true effect size is e+ = −e− = e = {0, 0.2, 0.4,
. . . , 3.6}. Estimates are based on 200 repetitions.

number of genes. Denote rcij as the rank of ycij in the array
to which it belongs, the normalized gene expressions are

y∗c
ij = rcij

m
. (11)

This method was proposed by [22] and discussed further
in [23].
Compared with QUANT, RANK goes even further in

the nonparametric direction. It removes the noise by only
preserving the ordering of observations. We know m is
usually very large in a typical microarray study. If the effect
size is large such that the over-expressed genes always
take up the top m+

1 ranks and the under-expressed genes
always take up the bottom m−

1 ranks in group A, y∗c
ij

approximately has the following uniform distribution:

y∗c
ij ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(1 − m+
1
m , 1), c = A, i ∈ G+

1 ,
U(0, m

−
1
m ), c = A, i ∈ G−

1 ,
U(

m−
1
m , 1 − m+

1
m ), c = A, i ∈ G0,

U(0, 1), c = B.

(12)

Here for simplicity, again we assume that the genes take
the specified ranks with equal chances within each group.
Therefore, the normalized gene expressions no longer

depend on the effect size. The expected group differences
for rank normalized genes are

E
(
y∗A
i· − y∗B

i·
)

≈
⎧⎨
⎩

1
2 − m+

1
2m i ∈ G+

1 ,
m−

1
2m − 1

2 i ∈ G−
1 .

(13)

It is easy to check that the pooled standard deviation is
also independent of the effect size. As a result, the testing
power with rank normalization converges to a constant
strictly less than 1.0 as the effect size increases. More
details can be found in Section 5 in the Additional file 1.

Simulation studies
Extensive simulations are conducted to verify above theo-
retical predictions.We document these simulation studies
in this section.

Simulation data
Two sets of simulated data are used in this study. Each
set of data has two groups of n arrays representing gene
expressions under two phenotypic groups (group A and
group B). The numbers of up and down regulated genes
are denoted by m+

1 and m−
1 , respectively. Without loss of

generality, group B is set to represent the normal pheno-
type, so up (down) regulation of a gene refers to its over
(under) expression in group A.

• SIMU: Each array hasm = 1000 genes. The number
of differentially expressed genes (DEGs) is set to be
100, which implies that the number of
non-differentially expressed genes (NDEGs) is
m0 = 900. For both groups, all genes are normally
distributed with standard deviation σ = 0.35 which is
estimated from the biological data. Every two distinct
genes have correlation coefficient 0.9 which is
estimated from the biological data. As a reference, the
sample Pearson correlation coefficient averaged over
all pairs of genes for biological data used in this study
are: 0.91 forHYPERDIP, 0.93 for TEL, and 0.91 for
TALL. The algorithm used to generate these
correlated observations is stated in [36] and is similar
to the method used in [37]. This high correlation
between non-normalized gene expressions can
introduce high correlation between the test statistics
[38] and result in high instability of the list of DEGs.
This phenomenon was documented and discussed in
[39]. We also conduct simulations with
non-homogeneous gene correlation structure and the
results are similar to that of SIMU. Details can be
found in Section 6 of the Additional file 1.
The expectations of DEGs in group A (yAij , i = 1,
2, . . . ,m+

1 + m−
1 , j = 1, 2, . . . , n) are set to be a

constant e for over-expressed genes (i = 1, . . . ,m+
1 )

and −e for under-expressed genes (i = m−
1 + 1, . . . ,
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100). Here the effect size e takes value in {0.2, 0.4, · · · ,
3.4, 3.6}. (m+

1 ,m
−
1 ) is set to be either (60, 40)

(balanced differential expression structure) or (90, 10)
(unbalanced differential expression structure). For all
genes in group B and NDEGs in group A, their
expectations are set to be 0. The sample size in each
group is set to be n, taking values in {5, 10}.

• SIMU-BIO: To match the statistical properties of
real gene expression more closely and mimic other
noise sources such as non-additive noise, we apply
resampling method to the biological data to construct
an additional set of data.
We apply t-test toHYPERDIP and TEL (79 arrays
chosen from each set) without any normalization
procedure or multiple testing adjustment. At
significance level 0.05, 734 genes are detected as

DEGs with an unbalanced differential expression
structure (677 up-regulated and 57 down-regulated).
We record the mean difference acrossHYPERDIP
and TEL for each DEG as its effect size (ei). Then we
combineHYPERDIP and TEL data and randomly
permute the arrays. After that we randomly choose
2n arrays and divide them into two groups A and B
of n arrays each, mimicking two biological conditions
without differentially expressed genes. Here the
sample size n takes value in {5, 10}. We add the
recorded effect sizes to 734 genes (identified earlier)
in group A. We also add addition effect size e to 677
up-regulated genes and −e to 57 down-regulated
genes in group A where e takes value in {0, 0.2, 0.4,· · ·,
3.4, 3.6}. These 734 genes are defined as our DEGs in
this simulation. Similarly, we apply this resampling
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Figure 3 Simulation results (SIMU). Average number of true positives as functions of effect size for SIMU. The error bar represents one standard
deviation above and below average. Total number of truly differentially expressed genes is 100 withm+

1 up-regulated andm−
1 down-regulated

genes, respectively. Data replicates: 20.
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procedure to TALL and TEL (45 arrays chosen from
each set) and 546 genes are defined to be DEGs with
a balanced differential expression structure (259
up-regulated and 287 down-regulated). The sample
size n takes value in {5, 10} and the additional effect
size e takes value in {0, 0.2, 0.4, · · · , 3.4, 3.6}.

Hypothesis testing methods
We use Student’s t-test to compute unadjusted p-values
and then apply the Bonferroni multiple testing adjustment
to compute the adjusted p-values and control the family-
wise error rate (FWER) at 0.05 level.
Two alternative tests, namely the Wilcoxon rank-sum

test and permutation N-test are also used in this study.
The results are largely consistent with those obtained
from the t-test and can be found in Section 6 in the Addi-
tional file 1. The N-test is a multivariate nonparametric

test which has been used to successfully select dif-
ferentially expressed genes and gene combinations in
microarray data analysis [23,40-42]. A brief introduction
of this test can be found in Section 1 in the Additional
file 1.

Results and discussion
We randomly generate 20 sets of data per tuning param-
eter for SIMU and SIMU-BIO. We apply normalization
procedures first and then conduct hypothesis tests to
obtain raw p-values. After that, we apply the Bonfer-
roni multiple testing adjustment to get adjusted p-values.
We declare a gene to be differentially expressed if its
adjusted p-value is less than a prespecified significance
level 0.05. The estimated mean and standard deviation of
the true positives are reported in Figures 3 and 4. Various
results with additional tests (Wilcoxon rank-sum test and
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permutation N-test), sample sizes (n = 15, 20) and non-
homogeneous gene correlation structure including false
positive plots can be found in Section 6 in the Additional
file 1.
By removing the noise from the observed gene

expressions, quantile and rank normalization procedures
improve the statistical power of the subsequent differen-
tial expression analyses when effect size is small. How-
ever, when e becomes large, the testing powers based on
the normalized expressions converge to fixed numbers
strictly less than 1.0. This confirms our previous theo-
retical derivations.

Conclusions
Microarray technology has been used in many areas of
biomedical research. Biomedical researchers rely on this
technology to identify differentially expressed genes. Due
to the “large p, small n” nature of themicroarray data, mul-
tiple testing correction must be applied in differentially
expression analysis. As we all know, stringent control of
Type I error invariably comes with the price of reduced
testing power. However, the success of most microar-
ray studies depends critically on the ability of differen-
tial expression analysis to identify the “right genes” and
researchers cannot afford to miss many these targets.
High statistical power can be achieved in a study with

the following properties.

1. An adequate sample size. Clearly, this is a reliable
way to increase statistical power. Everyone seems to
agree on it but not everyone practices it. Many years
ago this was due to the high cost of conducting
microarray experiments. Currently it only costs a
fraction to obtain the same number of arrays. In a
sense, the myth that “five arrays per group should be
good enough” only reflects the fact that it takes a long
time to change old, perhaps even anachronic habits.

2. Small variance. It is well known that a large
proportion of the variance of gene expression is
induced by undesirable systematic variations and
various technical noise. Microarray technology has
been evolving very fast in the past years and we think
it is not unreasonable to assume that the technical
noise level is getting lower. However, variance
induced by biological heterogeneity will not be
affected by the advances of technology. For certain
data, using a normalization procedure, such as
QUANT or RANK, can reduce this variance and
help detect DEGs. We must point out that these
elegant variance reduction procedures can also alter
the mean expression and increase sample variance
when the true effect size is large. This bias-variance
trade-off is common in different branches of
statistics and should not be conveniently ignored.

3. Strong true effect size. Based on our experience, this
is often invoked as a reason to justify the use of small
sample size in a study a priori. In our study, we
demonstrate that one cannot simply “trade” sample
size by effect size. Both our theoretical derivations
and simulation studies indicate that as long as the
sample size is small, the testing power of a typical
gene differential expression analysis based on
quantile or rank normalized data never reaches 100%
no matter how large the effect size is. A large n is still
critical for finding informative genes in this situation.

One main motivation of our study is to dismiss the dan-
gerous idea that “five arrays per-group ought to be good
enough for my study”. Our somewhat counter-intuitive
findings suggest that if data with dramatic gene differen-
tiation have only limited sample size (e.g., less than 10
per group), rank and quantile normalizations may not
be able to improve testing power as one expects. For
such a scenario we recommend conducting an additional
differential expression analysis with other normalization
procedure or even without normalization first, and then
compare/combine the results with the original analysis
with quantile or rank normalization.
Although we choose to focus on the Affymetrix

GeneChip platform throughout this paper, we believe
our conclusions should be valid for other array plat-
forms which require/recommend normalization, such as
Affymetrix exon arrays, Illumina BeadChip arrays and
many others. We hope this study can help biological
researchers choose an appropriate normalization proce-
dure in their experiments or even develop novel normal-
ization procedures with better downstream testing power
when the gene differential expression is dramatic.
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