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Abstract
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Background: Despite progress in conventional cancer therapies, cancer is still one of the leading causes of death
in industrial nations. Therefore, an urgent need of progress in fighting cancer remains. A promising alternative to
conventional methods is immune therapy. This relies on the fact that low-immunogenic tumours can be eradicated
if an immune response against them is induced. Peptide vaccination is carried out by injecting tumour peptides
into a patient to trigger a specific immune response against the tumour in its entirety. However, peptide
vaccination is a highly complicated treatment and currently many factors like the optimal number of epitopes are
not known precisely. Therefore, it is necessary to evaluate how certain parameters influence the therapy.

Results: We present the Vacclmm Server that allows users to simulate peptide vaccination in cancer therapy. It uses
an agent-based model that simulates peptide vaccination by explicitly modelling the involved cells (immune
system and cancer) as well as molecules (antibodies, antigens and semiochemicals). As a new feature, our model
uses real amino acid sequences to represent molecular binding sites of relevant immune cells. The model is used to
generate detailed statistics of the population sizes and states of the single cell types over time. This makes the
Vacclmm web server well suited to examine the parameter space of peptide vaccination in silico. Vacclmm is
publicly available without registration on the web at http://bioinformatics.charite.de/vaccimm; all major browsers

Conclusions: The Vacclmm Server provides a convenient way to analyze properties of peptide vaccination in
cancer therapy. Using the server, we could gain interesting insights into peptide vaccination that reveal the
complex and patient-specific nature of peptide vaccination.

Keywords: Systems biology, Immunoinformatics, Cancer, Modelling, Proteins, Protein interaction

Background

To mount an immune response against tumours is the
objective of immunotherapy and constitutes a promising
alternative to conventional methods [1]. However, the
applicability of this approach remains limited so far,
because of largely undefined treatment parameters. For
instance, the success of immunotherapy depends strongly
on the cancer epitope sequence, the individual major
histocompatibility complex (MHC) genotype of the indi-
vidual, and on the overall immune response dynamics. To
explore this parameter space systematically, we have
developed an agent-based model simulating a certain line
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of immunotherapy called peptide vaccination [2]. Our
model VaccImm has the ability to take the MHC geno-
type, the amino acid epitope sequences and the spatial cell
dynamics into account.

Here, we present a server that allows users to run these
simulations online. Several parameters, like the cancer
antigens and the MHC genotype of the virtual individual,
can be selected for the simulation.

Implementation

Agent-based models are well suited to model the immune
system. They consist of independent agents, each repre-
sented with individual properties and behavioural rules.
For example, every single cell is localized within a given
simulated volume, has a specific type, clonotype (in case
of lymphocytes) and developmental stage. This allows
agent-based models to simulate the immune system, in

© 2013 von Eichborn et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


http://bioinformatics.charite.de/vaccimm
mailto:robert.preissner@charite.de
http://creativecommons.org/licenses/by/2.0

von Eichborn et al. BVIC Bioinformatics 2013, 14:127
http://www.biomedcentral.com/1471-2105/14/127

which the different cells and cell types may be distributed
very inhomogenously [3].

Back in 1992, Celada and Seiden published a cellular
automaton called ImmSim to model cellular interactions
in the immune system [4]. In this model, the interactions
of immune cells were rather simplistically modelled by
bit string complementarity. Nevertheless, this automaton
was able to reproduce basic immune properties like
clonal expansion of B-cells and T-cells after stimulation
as well as more advanced immune system traits like the
competition between cross reacting clones [5]. Since
1992, several other rule based models have been deve-
loped in order to simulate the immune system [6,7]. The
original ImmSim has been upgraded and extended in
the meantime, leading to different forks like C-ImmSim
[8] and the mice-specific SimTriplex [9].

C-ImmSim is a refined version of the original ImmSim
model that was ported to ANSI C language. However,
the interaction between immune cells is still modelled as
bit strings in C-ImmSim, thus having no direct transla-
tion to biologically meaningful amino acid sequences.
Therefore, Rapin et al. developed an extension of C-
ImmSim simulating the branch of bacterial infection
[10,11]. As immune reactions against cancer cells follow
different rules, they left out this part of C-ImmSim.

In a completely independent approach, we have cre-
ated VaccImm - another extension of C-ImmSim - that
now simulates immune reactions against cancer using
amino acid sequences and knowledge-based interaction
potentials to predict cell interaction. The parameters
used in VaccImm were carefully examined elsewhere [2].

Technical background

VaccImm models a three-dimensional Cartesian lattice
which contains the simulated cells (cancer cells, helper
T-cells, cytotoxic T-cells, B-cells, dendritic cells, macro-
phages) and molecules (antigens, antibodies, interleukin-2
and a danger signal that acts as a general activator of mac-
rophages). These cells and molecules can interact and
move within the lattice according to their behavioural
rules. The model simulates an adaptive immune response
against cancer. The thymus selection is modelled impli-
citly. All T-cells are checked for reactivity against MHC
and self-peptides before being introduced in the simula-
tion. Only cells having sufficiently high reactivity against
the own MHC complexes (positive selection) and suffi-
ciently low reactivity against self-peptides (negative selec-
tion) will be able to enter the simulation.

As one input parameter for the model, a certain anti-
genic sequence is given. Peptides for injection originat-
ing from this protein sequence are predicted for their
binding capability to MHC I or MHC II using acknow-
ledged prediction algorithms (consensus [12] for MHC I,
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smm_align [13] for MHC II) from the Immune Epitope
Database [14].

To assess the binding probability of a receptor-ligand
pair in amino acid dependent manner, knowledge-based
interaction potentials are a convenient solution. We
developed different interaction potentials for B-cell
receptors and T-cell receptors to be used in VaccImm
and we have shown that they are able to clearly distin-
guish between random complexes and experimentally
observed ones (details are described elsewhere [2]).

Simulation steps
The simulation is carried out in discrete time steps, each
corresponding to eight hours of real life, which corre-
sponds to one cell division cycle. In each time step the
cells can interact, move and generally follow their beha-
vioural properties with respect to their environment.

A brief outline of the single steps taken during the
simulation is:

1) Injection of peptides, either emulsified in adjuvant
or not. Adjuvant is modelled using the general
danger signal mentioned before.

2) Antigen presenting cells take up the peptides. In the
case of macrophages and dendritic cells,
phagocytosis happens in an unspecific manner
whereas B-cells take up only antigens they
recognize. Whether antigens are recognized by
B-cells or not is computed using the B-cell
interaction potentials.

3) MHC I and 1II processing and presentation of
peptides by antigen presenting cells.

4) If a peptide presented on MHC I or MHC 1II is
recognized by cytotoxic T-cells (TC) or helper
T-cells (TH), respectively, T-cells get activated,
duplicate and create memory cells. Whether
recognition takes place or not is assessed using the
T-cell interaction potentials.

5) Both humoral and cytotoxic immune response is
initiated. Activated TCs kill the cells they recognize,
thereby eliminating the tumour. Recognition is again
computed using the T-cell interaction potential.
B-cells that are stimulated by THs duplicate into
memory cells and plasma cells. These plasma cells
produce antibodies that clear the antigen.

Results and discussion

The simulation is freely available without registration on
our server http://bioinformatics.charite.de/vaccimm. The
server offers possibilities to access the results of previous
performed simulations in a personal “workspace” or to
perform new simulations (Figure 1). Although the server
can be used without registration, the registration offers
the advantage that the simulation results are protected
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Figure 1 Scheme illustrating the workflow of the Vacclmm server. On the left the input parameters are shown and on the right hand side

by the account password, such that they cannot be
seen or deleted by other users. It is also possible for
the users to discuss their results in an integrated
discussion board.

To start a new simulation, the user can decide, whether
urological cancer (kidney or prostate) or another cancer
type should be simulated. If one of the former types is
chosen, the user can select the antigen from a list of
proteins that are over-expressed in this tumour type [15].
Alternatively, a protein-sequence can be entered.

In the next step, the MHC-genotype of the virtual
individual can be selected from a list of all human
MHC-alleles. With this information, the strongest
MHC-binding peptides are successively computed using
prediction tools from the Immune Epitope Database
[16]. These are the ones used for vaccination; the
user can then set how many different peptides are to
be injected.

Finally, some general parameters of the simulation can
be changed, ie., the simulated volume, the duration of
the simulation and the initial tumour size.

The simulation results consist of the detailed dynamics
of immune and cancer cell populations over time. They
are presented as a number of interactive plots that
enable the user to hide and show individual data lines in
the plot and to get the exact cell population size at any
given time. Each plot is annotated with a description
that states what it is showing. Furthermore, the plots
can be downloaded as image files and the raw simulation
output data is accessible.

In the next sections, we will analyze how strong the
influences of the above-mentioned parameters are on
the outcome of the simulation.

Dependence on the type of antigen

Clinical studies of peptide vaccination in cancer treat-
ment usually use peptides from several different cancer
proteins in the hope that the immune system will react
to at least one of them [17]. The problem of finding an
immunogenic epitope able to induce an effective immune
response in vivo is one of the critical steps in immune
therapy.

To investigate the influence of the antigen on the
success of peptide vaccination therapy, we tested five
different antigens while keeping all other parameters
constant (Figure 2). The relative number of cancer cells
one year after starting the treatment clearly depends on
the antigen. Vaccinating individuals with the MHC-
genotype shown in Figure 2A with peptides derived from
Wilms tumour 1 (Uni-Prot-ID: AOFJ57), the eukaryotic
translation initiation factor 4E-binding protein 1 (4EBP1)
or the brain type mu-glutathione S-transferase (A4UJ43),
induces almost no immune response, as can be seen by
the fact that the amount of cancer cells has doubled after
one year in most of the simulations. In contrast, the injec-
tion of peptides from RAS-like family 11 member B vari-
ant A (AOPHLI) or the endoplasmic reticulum chaperone
(AORZB6) leads to eradication of the tumour within one
year in most of the simulations. However, the individuals
with the MHC-genotype shown in Figure 2B do not react
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Figure 2 Dependence on the type of antigen. The relative number of cancer cells after one year of treatment compared to the tumour size at
the beginning of the simulation is depicted. The mean number of cancer cells at the end of simulation is shown. Data were obtained from 500
simulations. A: MHC-genotype is HLA-A*01 | HLA-B*08 | HLA-DPA1/DPB1 | HLA-DRB3. B: MHC genotype is HLA-A*02 | HLA-B*44 | HLA-DQA1/
DOB1 | HLA-DRBS. For all experiments, one hundred initial cancer cells were simulated within 5 pl of blood that were treated with injections of
peptides emulgated in adjuvant starting at time point zero and being repeated five times at an interval of 28 days. Antigens were chosen from
over-expression data in kidney tumours. Two MHC I-binding peptides and two MHC Il-binding peptides were injected. Description of antigen
UniProt-IDs: AOFJ57_HUMAN: Wilms tumour 1; AOPHL1T_HUMAN: RAS-like family 11 member B variant A; 4EBP1_HUMAN: Eukaryotic translation
initiation factor 4E-binding protein 1; AORZB6_HUMAN: Endoplasmic reticulum chaperone; A4UJ43_HUMAN: Brain type mu-glutathione

against RAS-like family 11 member B variant A
(AOPHL1), but exhibit an immune response against
eukaryotic translation initiation factor 4E-binding protein
1 (4EBP1) in about 50% of the simulations. Therefore, the
MHC-genotype seems to influence the success of treat-
ment dramatically (see next section). The large qualitative
differences in reactivity against the different antigens
ranging from no response to a complete response are
observed in classical vaccination approaches as well [18].
Different antigens might produce peptides having very
different MHC-binding ability or being simply more or

less immunogenic towards the immune system. Therefore,
a tailored patient-specific choice of antigen in the vacci-
nation therapy is of great importance, as it determines
which peptide sequences can be possibly derived from it.

Dependence on the MHC-genotype

The peptide binding characteristics of MHC alleles differ
significantly and susceptibility to several diseases has been
associated with the MHC-genotype [19,20]. Therefore, we
wanted to investigate the influence of the MHC-genotype
on the success of peptide vaccination therapy.
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For this purpose, we compared simulations performed
with eight different MHC-genotypes, keeping all other
parameters constant (Figure 3). In the first four MHC-
allele combinations, the immune response was very
strong and able to eradicate the tumour completely in
almost all of the simulations. In contrast, in the last four
MHC-allele combinations the immune system exhibited
a weaker response and full eradication occurred only in
some cases. Still, there are significant differences within
the last four MHC-allele combinations. In both experi-
ments including HLA-DRB1*04 (Figure 3 yellow and
brown bars), the immune response was absent in almost
all of the simulations, while the tumour is eradicated in
the majority of the simulations including HLA-DRB5
(Figure 3 black and pink bars). Interestingly, simulations
with HLA-A*02 in combination with HLA-DRB5 exhibit a
stronger immune response than with HLA-A*03/HLA-
DRB5, while the immune response is similar for HLA-A*02
and HLA-A*03 if combined with HLA-DRB1*04.

This demonstrates, once more, the complex nature of
the immune response against tumours. Injecting peptides
from the same antigen might induce a strong immune
response having a certain MHC-allele combination, while
the response could be completely absent when having a
different allele combination, as can be seen in Figure 2. It
is worth emphasizing that in VaccImm, the injected
peptides are chosen in accordance with the MHC alleles.
Therefore, a possible explanation for the different res-
ponses to the same antigen presented on different MHC-
alleles could be that the peptide sequences binding to one
MHC are different from the peptides binding to other
MHCs, which results in a difference in immunogenicity of
these different peptides.

This experiment is an indication that peptide vaccination
remains a personalized treatment because injecting the
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peptides derived from the same antigen might have a
completely different outcome depending on the individual
MHC-alleles present.

Dependence on the number of injected peptides

When a possible cancer target is found by expression
analysis, the respective peptide presented on MHC I or
MHC 1I is often unknown. Consequently, prediction
algorithms are usually used to find cancer epitopes
presented on MHCs. Likewise, we have used this kind of
algorithm, bearing in mind that they are of limited
accuracy [21] and the highest ranked peptide could turn
out not to be the one eventually presented by APCs.
Therefore, we investigated whether injecting more
peptides from the same antigen increases the chance of
successful treatment.

For that purpose, we compared simulations with
different numbers of peptides from the same antigen
while keeping all other parameters constant (Figure 4).
The immune response to this antigen differs clearly
depending on the number of peptides injected. When
injecting one peptide for each MHC type, almost no
immune response is observed, whereas the tumour is
eradicated in almost all of the simulations where four or
more peptides for each MHC type are injected. Interes-
tingly, the likelihood of inducing an immune response
increases stepwise with the number of peptides. This
observation indicates that T-cells not only become acti-
vated against the most immunogenic peptide. Instead,
different T-cell clones expand whilst reacting against
several of the injected peptides and have an additive effect,
resulting in the stronger immune response.

It seems that a strong responsiveness of TCs can com-
plement a weaker TH responsiveness and vice versa; for
example, injecting one MHC II and nine MHC I peptides

~N

Figure 3 Dependence on the MHC-genotype. The relative number of cancer cells after one year of treatment compared to the tumour size at
simulations. MHC-genotypes are given in the legend of the graph. For all experiments, one hundred initial cancer cells were simulated within 5 pl
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expression data in kidney tumours.

and being repeated five times at an interval of 28 days. The antigen 7B2_HUMAN (Neuroendocrine protein 7B2) was chosen from over-

or one MHC I and nine MHC II peptides induces an
equally strong immune response whereas injecting one
peptide for both MHC types does not. This observation
highlights the interconnection of the immune cells. TCs
need the help of THs to become activated, while their
reactivity depends on the immunogenicity and binding
properties of MHC I peptides, but also on the reactivity of
THs. In some cases, the reactivity of TCs and THs may
complement each other, although the actual mechanisms
behind are more complex than simple dose-dependent
reactions.

It should be mentioned that this dependency on the
number of injected peptides is not observed for all anti-
gens and MHC-allele combinations. Some antigens fail
to induce an immune response regardless of the number
of injected peptides whereas others lead to tumour
eradication even when only one peptide for each MHC
type is injected (data not shown).

The observation above suggests using as many
peptides as possible in planning a clinical study. How-
ever, this is not practically because every injected peptide
bears the risk of inducing an autoimmune disease. What
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Figure 5 Dependence on the initial number of cancer cells. The relative number of cancer cells after one year of treatment compared to

the tumour size at the beginning of the simulation is depicted. The mean number of cancer cells at the end of simulation is shown. Data were
obtained from 1,000 simulations. The number of cancer cells at the beginning of the simulation is given in the legend. MHC-genotype is
HLA-A*01 | HLA-B*08 | HLA-DRB3 | HLA-DPA1/DPBI. For all experiments, simulation space was 5 pl of blood and injections of peptides emulgated
in adjuvant started at time point zero being repeated five times at an interval of 28 days. The antigen AOPHLT_HUMAN (RAS-like family 11
member B variant A) was chosen from over-expression data in prostate tumours. Two MHC I-binding peptides and two MHC II-binding peptides
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must be carefully taken into account is which peptides are
likely to induce a strong favoured response against the
tumour but a low or absent response against self proteins.

Dependence on the initial tumour size

Cancer dormancy describes the phenomenon that small
tumours can be kept in check without treatment for a
longer period of time [22]; in contrast, larger tumours
often grow exponentially. In general, the chosen therapy
depends on the tumour size. For example, for a prostate
tumour of a considerable size, radical prostatectomy is
often the treatment of choice, whereas smaller tumours
are frequently kept under active surveillance for a long
time [23]. It is therefore of special interest to analyze
how the initial tumour size influences the success rate of
the immune therapy.

For a given parameter set, simulations starting with
10, 10% or 10 cancer cells have almost the same outcome
with a mean tumour size of below 10% after one year
whereas the size increases to over 30% when starting with
10* cancer cells (Figure 5). Hence, the initial number of
cancer cells when starting the treatment has an impact on
the outcome. In contrast to the parameters discussed
previously, it seems that the initial number of cancer cells
has only a quantitative but not a qualitative influence.

The results in Figure 5 indicate that if the immune
system is activated sufficiently against a tumour, eradica-
tion is only a matter of time. Yet, the problem with cancer
cells is that they are usually composed of an ever growing
diversity of cells with different expression patterns; a fact
that is not considered in our model so far. Thus, a larger
tumour has more time to mutate or to change the expres-
sion pattern and hence a cure with peptide vaccination is
less likely to have a positive effect.

Our future plan is to include the diversity of cells, since
without this parameter we cannot deduce from the results
of this experiment whether the initial tumour size is an
indication of success for peptide vaccination therapy.

Conclusions
We have presented Vacclmm, a user-friendly server to
simulate the effect of peptide vaccination in cancer
therapy. We believe this tool is very useful for analyzing
parameters of peptide vaccination in cancer therapy. It is
the first web server that can model cancer immunothe-
rapy based on cancer epitope sequences and MHC geno-
types. All sequence-related parameters can be selected
by the user, along with parameters concerning size and
duration of the simulation. The output shows detailed
cell population statistics for all modelled cell types. Their
population sizes and activation states can be studied
over time.

As stated in the introduction, VaccImm can be very use-
ful to explore the parameter space of peptide vaccination.
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For instance, we have performed some studies analyzing
the influence of several parameters on the success of
peptide vaccination. The results presented above revealed
the complex nature of peptide vaccination as the influ-
ences of the single parameters strongly depend upon each
other. The selection of the antigen is crucial for peptide
vaccination, because the antigen must be able to evoke an
immune response. However, the quality of a potential
antigen in turn depends on the MHC-genotype of the
patient. This is because the antigens are processed and
subsequently different MHCs may present different parts
of the antigens. VaccImm accounts for this by predicting
the MHC binding peptides based on the MHC-genotype.
It could also be shown, that a successful therapy gets more
likely the more different peptides are injected, still bearing
the risk of an autoimmune reaction. One feature that is
currently not included in our model is mutation of cancer
cells. Therefore, the initial size of the tumour has no quali-
tative effect on the outcome of the simulation. If mutation
of tumour cells was possible, one would expect a higher
probability for a cell in a large tumour to mutate in such a
way that it is not or less affected by the evoked immune
response. Thereby the probability of a successful treatment
can be expected to become smaller with increasing tumour
size. Due to the modular structure of our model, it is easily
possible to add such behaviour in a future version.

Availability and requirements

Project name: VaccImm

Project home page: http://bioinformatics.charite.de/
vaccimm/

Operating systems: Platform independent
Programming language: C and PHP

Other requirements: Up-to-date web browser with
JavaScript enabled

License: Vacclmm is available free of charge without
registration

Any restrictions to use by non-academics: None

Abbreviations
MHC: Major histocompatibility complex; TC: Cytotoxic T-cell; TH: Helper T-cell.
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