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Background: Genome-wide association studies can provide novel insights into diseases of interest, as well as to
the responsiveness of an individual to specific treatments. In such studies, it is very important to correct for
population stratification, which refers to allele frequency differences between cases and controls due to systematic
ancestry differences. Population stratification can cause spurious associations if not adjusted properly. The principal
component analysis (PCA) method has been relied upon as a highly useful methodology to adjust for population
stratification in these types of large-scale studies. Recently, the linear mixed model (LMM) has also been proposed
to account for family structure or cryptic relatedness. However, neither of these approaches may be optimal in
properly correcting for sample structures in the presence of subject outliers.

Results: We propose to use robust PCA combined with k-medoids clustering to deal with population stratification.
This approach can adjust for population stratification for both continuous and discrete populations with subject
outliers, and it can be considered as an extension of the PCA method and the multidimensional scaling (MDS)
method. Through simulation studies, we compare the performance of our proposed methods with several widely
used stratification methods, including PCA and MDS. We show that subject outliers can greatly influence the
analysis results from several existing methods, while our proposed robust population stratification methods perform
very well for both discrete and admixed populations with subject outliers. We illustrate the new method using data

Conclusions: We demonstrate that subject outliers can greatly influence the analysis result in GWA studies, and
propose robust methods for dealing with population stratification that outperform existing population stratification

Keywords: Population structure, Population stratification, Robust principal component analysis, Resampling by half

Background

In genome-wide association (GWA) studies, hundreds of
thousands of single-nucleotide polymorphisms (SNPs)
are assayed using high-throughput genotyping technolo-
gies and are tested for their associations with clinical
outcomes of interest. The new genetic associations iden-
tified by these studies can be used to improve the detec-
tion, treatment and prevention of certain diseases,
particularly when used in conjunction with other clinical
biomarkers. For example, individuals may be identified
who are more likely to respond to a specific treatment
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while experiencing fewer side effects. Eventually, each
patient may be able to receive his/her personalized treat-
ment instead of a one-size-fits-all treatment.

To date, the most frequently used GWA study design
has been the case-control design, in which allele frequen-
cies in patients with the disease (cases) are compared to
those without the disease (controls) among unrelated in-
dividuals, or allele frequencies in patients who responded
to the treatment are compared to those who did not re-
spond to the treatment. Compared to family-based de-
signs, the case-control studies are usually less expensive
and easier to conduct. Specifically, collecting samples of
unrelated cases and controls is easier and less expensive
than collecting family-based samples [1]. The goal of the
case-control studies is to identify SNPs associated with
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the outcome of interest, such as disease status or re-
sponder/non-responder status.

GWA studies involve large amounts of data. For ex-
ample, the Illumina HumanlM Duo BeadChip has more
than 1 million genetic markers per sample, and Affymetrix
Genome-Wide Human SNP Array 6.0 features more than
1.8 million genetic markers. Proper statistical methods are
needed to analyze such large datasets in order to draw
meaningful conclusions. There are several steps involved
in the analysis of the GWA case-control studies: 1) pre-
process the raw data to give the genotype calls and filter
out certain SNPs and samples based on quality control
criteria [2,3]; 2) perform preliminary analyses, including
computing allele and genotype frequencies, and testing
Hardy-Weinberg equilibrium and linkage disequilibrium
(See Balding at al. [4] and Gordon et al. [5] for an over-
view); 3) identify SNPs or haplotypes related to the out-
come of interest while controlling false-positive findings
by identifying and adjusting population stratification,
performing association analysis using SNPs or haplotypes,
etc. While there are challenging statistical issues implicated
at each step, we will focus on the correction for population
stratification involved in step 3.

In the population-based GWA case-control studies, it is
assumed that the case and control participants are sampled
from the same population, so the differences in allele fre-
quencies are related only to the outcome of interest,
instead of being related to background population differ-
ences between cases and controls. However, if this assump-
tion is not met, it can cause spurious associations.

Population stratification (PS) refers to allele frequency
differences between cases and controls unrelated to the
outcome of interest, but due to sampling from popula-
tions with different ancestries. Correcting for population
stratification is very important in GWA studies [6] since
it can cause false positive findings. Large-scale GWA
studies with many subjects are particularly vulnerable to
population stratification artifacts [7,8]. Because of the
large number of subjects, it is likely that there are some
unrecognized hidden population structures that may be
responsible for systematic differences being detected in
SNPs between cases and controls.

A number of methods have been proposed to over-
come confounding effects due to population stratifica-
tion, and these have proven useful in certain situations.
Two earlier approaches are the genomic control ap-
proach and the structured association approach. The
genomic control (GC) approach [9] modifies the asso-
ciation test statistic by a common factor for all SNPs
to correct for PS. This uniform correction can over-
adjust or under-adjust certain SNPs, depending on the
ancestral information of individual SNPs [10]. The
structured association approach [11] tries to assign
the samples to discrete subpopulation clusters and
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then accumulates evidence of association within each
cluster. The structured association approach can be
useful for small datasets (http://pritch.bsd.uchicago.edu/
software/structure2_1.html). However, the STRUCTURE
program can be computationally intensive and unwieldy for
large scale GWA studies [10].

Currently, a widely used approach is the principal com-
ponent analysis (PCA) approach, which was proposed by
Price et al. [10]. In that paper, the EIGENSTRAT method
based on PCA identifies several top principal compo-
nents (PCs) and uses them as covariates in the associ-
ation analyses. The PCA approach can be easily applied
to thousands of markers, and the correction is specific to
a marker’s variation in allele frequency across ancestral
populations. This approach has been widely used in
GWA studies [12,13], etc. However, the PCA approach
may not adequately adjust for PS if the PS is due to the
presence of several discrete subpopulations, since PCA
uses the identified eigenvectors as continuous covariates.
In addition, if there are outliers, the results based on the
PCA adjustment may be misleading.

Li and Yu [8] proposed to combine multidimensional
scaling (MDS) and clustering to deal with PS. Since MDS
is equivalent to PCA for certain similarity matrices, that
paper is essentially an extension of the PCA approach by
adding subpopulation membership information. That ap-
proach can adjust for PS due to both discrete and con-
tinuous population structures, and it performs well for
both large scale GWA studies as well as for smaller stud-
ies. However it has similar disadvantages to PCA as far
as outliers are concerned, which will be shown in our
simulation studies.

The linear mixed model has also been proven useful
theoretically but it is computationally intensive. Re-
cently, Zhang et al. [14] and Kang et al. [15] have pro-
posed practically effective approaches to apply the
linear mixed model to large scale GWAS studies to deal
with population stratification and account for family
structure and cryptic relatedness. Their methods have
been implemented in software programs TASSEL and
EMMAX respectively. However, the results based on
these approaches are influenced by outliers as well.

In this paper, we propose to combine the clustering
method used in Li and Yu [8] with robust PCA as an im-
proved approach for correcting for artifacts arising from
population stratification. The advantage of our approach
is that it can deal with both discrete and continuous
population structures, in the presence of subject outliers.
Through simulation studies, we show that even a small
percentage of outliers can greatly influence the analysis
results from some widely used methods. This critical goal
of handling the outliers properly is our motivation to
propose new robust methods. We compared our proposed
robust methods with several widely used methods using
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simulations and we demonstrated the usefulness of our
proposed methods under various scenarios involving
discrete and admixed population structures.

Methods

Summary of the procedure

We write the SNP data as an # by p matrix X, with rows
representing the # subjects, and columns representing the
p SNPs. The steps of the procedure are described below.

First, we identify subject outliers using a robust PCA
approach based on the GRID algorithm [16] or the
resampling by half means (RHM) approach [17]. Both
approaches can handle the issue of large number of vari-
ables (n<p).

Second, we perform regular PCA on the SNP data
matrix after removing the subject outliers, and select
several top PCs. We apply the k-medoids clustering
method [18] to the selected PCs, decide on the optimal
number of clusters based on Gap statistics [19], and then
assign each subject to a cluster.

Third, we test each SNP’s association with the out-
come of interest by building a logistic regression model
that includes the specific SNP as one factor, the selected
PCs as covariates, and the cluster membership indicators
as additional factors.

We explain the details of each step in the following
sections.

Robust PCA for outlier detection

There are a number of robust PCA approaches for
multivariate data, such as minimum volume ellipsoid
(MVE) [20], minimum covariance determinant (MCD)
[21], as well as certain modifications of these methods.
However, these approaches require the number of sam-
ples (subjects) to be larger than the number of variables
(n>p). For example, the MCD estimator tries to identify
a subset of size & for which the classical covariance
matrix has a minimal determinant, and it is popular be-
cause of its high resistance to subject outliers. However,
it cannot be used in studies involving a large number of
variables (n<p) because the determinant of a covariance
matrix of n<p observations will always be zero.

Projection pursuit robust PCA

The robust PCA based on the projection pursuit (PP) ap-
proach [16,22,23] can overcome the issue of a large num-
ber of variables (n<p). This approach does not use the
covariance matrix, so it does not have the drawback of the
covariance-based estimates that require that the number of
samples be larger than the number of variables.

In the classical PCA the variances of the data on the
projected directions are maximized. The robust PCA
using the PP approach replaces the variance with a ro-
bust scale estimator S, called the PP index. For example,
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S,, can be the median absolute deviation (MAD) [16,23].
For a sample {z,. . ,z,}, MAD is defined as

MAD(z1, . ..,z,) = 1.4826 median |z; — median (z;)|
] L
If x;, ..., x, denote the n rows (observations) of the
data matrix X, the first principal component can be
obtained by finding the vector b that maximizes the ro-
bust scale estimator S,, of the projected data:

by = argmaxS, (a'xi, ... ,a'x,).

[lafl=1

This method was first proposed by Li and Chen [22],
who proved that this estimator is consistent, qualitatively
robust, and inherits the breakdown point of the robust
scale estimator. However, the algorithm they proposed is
very complicated and difficult to apply in practice. Later
improved algorithms have been proposed [16,23], etc. to
make the method practical. The robust PCA based on
the PP approach searches for eigenvectors sequentially.
Thus in high dimensional SNP data, we only need to
compute the top eigenvectors that we are interested in
with reduced computational time.

In this paper, we considered two algorithms for the
projection pursuit robust PCA: the CR algorithm pro-
posed by Croux and Ruiz-Gazen [23], and the GRID al-
gorithm proposed by Croux et al. [16].

Let X be a n (subjects) by p (variables) matrix, x; be
the vector for subject i, and j(X) be a location estimate
vector for X, such as the median of X. Let K be the
number of components that we want to compute and let
S, be the chosen robust scale estimator. The CR algo-
rithm is as follows:

(i) To compute the first component (k =1), we first
normalize the data by subtracting the centers of the
variables x} = x; — [i(X) for i =1, 2, ..., n. Define

An(X) = {H’;”, 1<ig n}, and the first eigenvector

can be obtained as b; = argmax$, (atx}, ey
acAn,1(X)

and the first eigenvalue can be obtained by
A =S,2 ((l;ix{, e l;ix;)) Then the scores for the

~t
first component can be computed as y;} = b,x/ for
i=1,...,n.

i
i

a'xl)

(ii) To compute the kth component (k=2,...,K),

k-1
i

define x = x}"1 — y*=1b,; for i=1,...,n,

k
A (X) = {H);—LH, l1<is n}, the estimated
k

eigenvector by = argmaxS, (a'x}, ..
aGAn_k(X> ¢

the estimated scores y¥ = bkx{‘ for the kth

component.

tyok
.,a'x¥), and
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The kth eigenvalue for k =1 ,..., K is approximated by
e = Sﬁ((l%,ix’f, . ,l;,t( xﬁ)) , and the robust covariance

K 2~ ot
estimate can be calculated as Cs, = Zkﬂ/lkbkbk.

Croux et al. [16] proposed an improved algorithm
called GRID. The basic idea of the GRID algorithm is to
perform optimization using grid search. In the case of
two dimensions (p=2), the optimization problem reduces
to maximizing the function 6—S((cos(6), sin(6)))" over
the interval [-/2,7/2], which can be done using a grid
search. That is, we divide the interval into a number of
equal-sized sub-intervals (for example, /-1 sub-intervals),

and evaluate the function at the grid points (—%4—1)71

for j=1,...J. We can arrive at a good approximation to
the solution if J is large enough. For the general case of
p>2, we can perform iterative optimizations in two-
dimensional space; for details, see Croux et al. [16].

In our simulations, we applied both the CR algorithm
and the GRID algorithm. The CR algorithm tended to
identify more observations as outliers compared to the
GRID algorithm, but the results based on the CR algo-
rithm and the GRID algorithm were similar in many
cases of our simulations. Croux et al. [16] pointed out
that the CR algorithm may have a swamping effect
(meaning that good observations are incorrectly flagged
as outliers) especially for small sample size with p>>n.
As the number of variables p increases, the swamping
effect may get worse. Some simulations with 100 sub-
jects and 20,000 SNPs did show some swamping effect
of the CR algorithm (data not shown). In a real GWA
study, for example an Illumina 550 K chip, we can have
545,080 SNPs. After quality control and pruning based
on the correlation between SNPs, we can still have sev-
eral thousands to tens of thousands of SNPs that will be
used for detecting outliers and adjusting for population
structures. Thus for the GWA studies, the projection
pursuit robust PCA based on the GRID algorithm is
recommended, and the results based on the GRID algo-
rithm were presented in this paper.

Outlier detection using robust PCA

Hubert et al. [24] proposed a diagnostic plot to identify dif-
ferent types of outliers. The plot is based on the score dis-
tance and the orthogonal distance of each observation.
Denote the right robust eigenvector matrix corresponding
to the variables as P, and the robust location estimate
(column vector) as ji. The robust score matrix is given as

Tn,k == (Xn,p - 1nﬂ/)Pp,k

The robust score matrix contains the robust scores of
each subject (row) based on each of the first kK components.
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The score distance is given by

SDL‘ =1/ t;»Lflti =

where £;; is an element of the robust score matrix and /; is
the jth eigenvalue, i=1,...,n (number of observation), and
j=1.. .,k (number of selected principal components). The
cutoff value for the score distance is taken as square root
of the 0.975™ quantile of y7 distribution, ie.,

_ /2
Cocore = \/Xk0975

The orthogonal distance measures the distance between
an observation and its projection in the k-dimensional
PCA subspace. It is defined as

OD,‘ = ||x, —5Ci||

where x; is the ith vector (row) in the original data
matrix X, and x; is the estimated vector in the PCA sub-
space. To obtain the cutoff for the orthogonal distance,
Hubert and Driessen [25] proposed to approximate the
squared orthogonal distances by a scaled x* distribution
with g; degrees of freedom OD?~gyx; Robust estimates
for g; and g, are derived using the Wilson-Hilferty trans-
formation [26] to normality. Todorov and Filzmoser [27]
have implemented a number of robust PCA methods, in-
cluding a projection pursuit method, in an R package
rrcov, which is available from Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org.

The score distance and orthogonal distance define
four types of observations. The observations with
small score distances and small orthogonal distances
are the regular observations, and they form one
homogeneous group that is close to the PCA sub-
space. The observations with large score distances
and small orthogonal distances lie close to the space
spanned by the PCA components, but far from the
regular observations. This means that they are differ-
ent from the regular observations, but there is not
much loss of information when we use their fitted
values in the PCA subspace. We call these observa-
tions type A outliers. The observations with large or-
thogonal distances but small score distances cannot
be distinguished from the regular observations once
projected onto the PCA subspace, but they lie far
from this PCA subspace. This means that there is a
considerable loss of information if we use their fitted
values in the projected PCA subspace. We call these
observations type B outliers. The observations with
large score distances and large orthogonal distances
lie far from the PCA subspace and after projection
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also far from the regular observations in the PCA
subspace. We call these observations type C outliers.
For the purpose of population stratification adjust-
ment and association testing, we need to remove all
the three types of outliers. The type C outliers will
definitely need to be removed since they typically
have a large influence on classical PCA as the eigen-
vectors will be shifted toward them. The type A out-
liers need to be removed since they are different from
the regular observations and will influence the popu-
lation stratification adjustment. And we also need to
remove the type B outliers since they may influence
the association tests. The type C and type A outliers
will have a greater impact on the calculated eigenvec-
tors used to adjust population stratification and thus
a more pronounced impact on the GWA results com-
pared with the type B outliers.

Resampling by half means (RHM) for outlier detection
Resampling by half means (RHM) is another outlier de-
tection approach for multivariate data that can overcome
the issue of a large number of variables (n<p). This
method was proposed by Egan and Morgan [17] and ap-
plied in chemometrics. It is an easy to understand
method and we have implemented it in R. To start
RHM, we can randomly select half of the total observa-
tions. The sampled data matrix is written as a n/2 by p
matrix X,(i), and the mean m(i) and standard deviation s(i)
vectors are determined. The original data matrix X is
then scaled using m(i) and s(i) to arrive at a n by p
scaled matrix X(i).

The Euclidean distance is calculated for each observation
(row) and a 7 by 1 vector of lengths / (i) is obtained. All
vector lengths are then stacked into a # by nrep (number
of sampled data matrices) matrix L. We can then calculate
the mean for each observation (row), and all the means
form a n by 1 vector xI. A cutoff point c is defined to iden-
tify outlier observations. The plot of the mean vector
lengths can be used to identify the outliers. In our applica-
tion, those mean vector lengths that are bigger than the
median+3*MAD are defined as outliers, where MAD is de-
fined as MAD = 1.4826 me?iian {|ol; — me?iian (%)}

Clustering based on principal components

After outlier detection using either robust PCA or
RHM, classical PCA can be applied to the outlier-
removed genotype data matrix. To decide on the
number of components, we used the Tracy-Widom
statistic [28] to test the number of significant eigen-
values, as in Price et al. [10]. The scree plot of the ei-
genvalues can also be used to decide upon the
number of components. The cluster membership was
obtained using the k-medoids clustering method [18],
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and the number of clusters was obtained using the
Gap statistic [19] as in Li and Yu [8].

The k-medoids clustering method is more robust to
outliers than the k-means clustering method. Compared
with the k-means clustering method, the k-medoids clus-
tering method requires the cluster center to be an obser-
vation instead of the calculated mean based on the
observations and it minimizes a sum of pair-wise dis-
similarities instead of a sum of squared Euclidean dis-
tances. Even though the outliers have been removed in
the previous step based on robust PCA, it is still better
to use a robust clustering method as a prudent step.

For a given number of clusters k ranging from 1 to K,
the Gap statistic is defined as the log difference between
the averaged within-cluster dispersions from the B sets
of simulated datasets with no clusters and the within-
cluster dispersion of the observed data.

The estimated number of clusters is the smallest k that
satisfies Gap(k)>Gap(k+1)-oy,1, where oy, is the stand-
ard deviation of the B replicates of log within-cluster
dispersions from the simulated datasets. In our simula-
tions, we set B=1000.

In cases when there are missing values, the alternat-
ing least squares approach [29,30] can be used to ob-
tain the PCs. We start with an estimate of the first
right eigenvector, and we regress each row of the ori-
ginal data matrix against the estimated first right
eigenvector using a model with no-intercept. This
gives a vector (1 by 1) of coefficients. Now we regress
each column of the original data matrix against this
new coefficient vector with no-intercept and we ob-
tain an updated (p by 1) estimate for the first right
eigenvector. We keep alternating the regressions until
we identify the first right eigenvector and the first left
eigenvector. Then we can modify the original data
matrix by subtracting the first principal component
based on the first right and left eigenvectors, and gen-
erate the second set of left and right eigenvectors by
applying alternating regressions on the modified data
matrix with first principal component removed.

Association testing using logistic regression models

To perform the association analysis for each SNP, a lo-
gistic regression model was used with the specific SNP
as one factor, the PCs from the robust method as the co-
variates, and the cluster membership indicators as add-
itional factors, as in Li and Yu [8]. The model is

logit (Y) = Bg + yX + #Z,

where Y represents the binary response variable (such
as the disease status), g represents the genotype value
of the specific SNP, X represents the PCs from the ro-
bust method, and Z represents the cluster membership
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indicators. In this model, the principal components ad-
just for the continuous population structure and the
class membership indicators adjust for the discrete
population structure. To test whether there is an asso-
ciation between the specific SNP g and the binary re-
sponse Y, a likelihood ratio test can be used to compare
the model with and without SNP g, or a Wald test can be
used to test the statistical significance of SNP g adjusted
for covariates X and Z. If multiple SNPs are tested, multi-
plicity adjustment methods, such as Bonferroni-Holm
method [31] or Benjamin-Hochberg false discovery rate
method [32], can be used.

Simulations

Simulations were used to compare six different methods:
the likelihood ratio test (LRT) without PS adjustment
(Trend) [8], the genomic control method (GC) [9], the
PCA method [10], the MDS method [8], the robust
method using RHM and PCA (RPCA-RHM), and the ro-
bust method using PP robust PCA (RPCA-PP). We
compared these methods with respect to their empirical
false positive rate and true positive rate. The nominal
level was set as 0.01. The empirical false positive rate
was calculated based on situations when there were no
associations between SNPs and the endpoint; while the
true positive rate was calculated based on situations
when there were associations between SNPs and the
endpoint. We used simulated datasets with and without
subject outliers. In simulations I and III, there were no
outliers, while in simulations II and IV, subject outliers
were added to the data.

Design for simulation |

As in Price et al. [10], for each subpopulation, the al-
lele frequency for each SNP was generated independ-
ently from a beta distribution with two parameters,
p(1-Fs1)/Fst, (1-p)(1-Fs1)/FsT, where the inbreeding
coefficient Fst was set to 0.01 (Fst of 0.01 is typical of dif-
ferentiation between divergent European populations) and
the ancestral population allele frequency p was simulated
from the uniform distribution on [0.1,0.9]. Assuming two
or three underlying populations, we simulated 500 cases
and 500 controls. We used the genotypes of 2000
disease-unrelated SNPs to correct for PS. The details for
each scenario are shown in Table 1, where there are
two underlying populations in S1 and S2, and there are
three underlying populations in S3 and S4. These sce-
narios were the same as those used in Li and Yu [8] to
perform method comparisons.

To evaluate the performance of the different methods
in association testing, we simulated three types of testing
SNPs and applied the different methods to test the asso-
ciation between the testing SNP and the binary endpoint
(case or control). The first type included the random
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Table 1 Population stratification configurations in
simulations | and Il

Case Control
proportion proportion
S1 (moderate) 06047 (04,06)°
S2 (more extreme) (0.5,0.5) 0,1)
S3 (moderate) (0.45,0.35,0.20) (0.35,0.20,0.45)
S4 (more extreme) (0.33,067,0) (0,0.33,067)

2 The proportion of cases sampled from each subpopulation.
P The proportion of controls sampled from each subpopulation.

SNPs with no association to the disease. These SNPs
were generated the same way as those SNPs chosen
for detecting the population stratification. The second
type included the differential SNPs with no associ-
ation to the disease. These SNPs have high allele fre-
quencies differences between subpopulations. In our
simulations, the allele frequency for population 1 was
0.8, while the allele frequency for population 2 was
0.2. The third type included the causal SNPs that
were associated with the disease. We assume a rela-
tive risk of R=1.3 for the causal allele similar to Li
and Yu [8]. The risk model with a relative risk R for
the causal allele was generated as follows: for individ-
uals from population [ with population allele fre-
quency p;, control individuals were assigned genotype
0, 1, or 2 with probabilities (1 — p,)°, 2p(1 - p)), or
P’ respectively, and case individuals were assigned
genotype 0, 1, or 2 with relative probabilities (1 — p,)?,
2pi1 - py), or p°;, respectively, and case individuals
were assigned genotype 0, 1, or 2 with relative prob-
abilities (1 — p,)%, 2Rp,(1 — p,), or R°p®;, respectively,
each scaled by (1 - p)*+ 2Rp(1 - p) + R*p.

To evaluate the false positive rate and true positive
rate, we generated 100 datasets including 500 cases and
500 controls. Each dataset contained 2000 disease-
unrelated SNPs which were used to adjust PS and 1000
testing SNPs for each category (random, differential, or
causal). The same numbers of testing SNPs were used in
Li and Yu [7].

Design for simulation Il

Simulation II data were generated by adding subject out-
liers to the simulation I data. Five percent outlier sub-
jects were generated by replacing 5% of the 2nd
eigenvector values corresponding to the subjects with
extreme values, and then reconstructing the SNP data
matrices. The detailed steps are as follows. First, gener-
ate the simulated data as in simulation I. Second, apply
singular value decomposition to the simulated data X
and obtain the left eigenvectors corresponding to the
subjects (U), right eigenvectors corresponding to the
SNPs (V) and eigenvalues (d), where X=UdV?'. For
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example, the second left eigenvector contained 1000
values and corresponded to the 1000 subjects. Third,
replace 5% of the values in the second left eigenvector
with extreme values, and call the modified left eigen-
vectors U,,.4. Fourth, reconstruct the data matrix back
using the modified second left eigenvector together with
the other eigenvectors and eigenvalues from the originally
simulated data matrix. That is, Xnoq= UmoeadV". Fifth,
since we are generating SNP data, replace all those values
smaller than 0 in X,,q with 0, and all those values greater
than 2 with 2. This will give us a modified data matrix
with 5% subject outliers.

To evaluate the false positive rate and true positive rate,
we generated 100 datasets including 500 cases and 500
controls. Each dataset contained 2000 disease-unrelated
SNPs which were used to adjust PS and 1000 testing SNPs
for each category (random, differential, or causal).

Design for simulations Ill and IV
In simulation III, we generated an admixed population
with two ancestral populations. As in Price et al. [9], the
disease status for individuals with proportions a from
population 1 and (1-a) from population 2 was simulated
using disease risk proportional to r#, where a is uni-
formly distributed on (0,1) and r is the ancestry risk, set
to 3 in our simulations. To obtain an average value of
0.5 across all possible values of a, the probability of dis-
ease was set to 0.5log(r)r*/(r-1). The risk model with a
relative risk of R=1.3 for the causal allele was
implemented as in the discrete cases, by replacing p,
with ap; + (1 — a)p,, the allele frequency conditional on
an individual’s ancestry proportion a.

Simulation IV data were generated by adding subject
outliers to the simulation III data. As described previously,
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5% outlier samples were generated by replacing 5% of the
2nd eigenvector values with extreme values and then
reconstructing the SNP data matrices.

For both simulations III and IV, we generated 20 datasets
of 500 cases and 500 controls. Each dataset contained
20,000 substructure inference SNPs and 1000 testing
SNPs for each category (random, differential, or causal).
Compared to simulations I and II, we have more substruc-
ture inference SNPs since more SNPs are needed to iden-
tify the population structures in the admixed populations
than in the discrete populations.

Results and discussion

For each population stratification simulation scenario, the
empirical false positive rate and true positive rate were esti-
mated by averaging the results corresponding to the 1000
SNPs from each category of the simulated datasets. The
nominal significance level was chosen to be 0.01.

Simulation | results

The results for simulation I are listed in Table 2. In
simulation I, there were no outliers. As can be seen, the
empirical false positive rates for the Trend method were
inflated for both random and differentiated SNPs. Using
the GC method, the false positive rates for random SNPs
were less than or close to the nominal level, but the false
positive rates for differentiated SNPs were inflated con-
siderably. As for the PCA method, when there were mod-
erate differences between cases and controls, the false
positive rates for random SNPs and differentiated SNPs
were close to the nominal level; for more extreme differ-
ences between cases and controls, the false positive
rates for random SNPs were under control, but the false
positive rates for differentiated SNPs were inflated. As

Table 2 Empirical false positive rate and true positive rate results for simulation | (Discrete Populations without Outliers)

Case control Testing SNP Trend GC PCA MDS RPCA- RPCA-
Difference Types RHM PP
S1 Random SNPs 267 091 0.97 097 0.99 097
(2 populations, moderate) Differentiated SNPs 99.85 98.86 130 0.90 0.88 0.89
Causal SNPs 48.99 3413 47.37 47.29 46.92 4733
S2 Random SNPs 16.56 0.89 1.11 092 093 0.92
(2 populations, more extreme) Differentiated SNPs 100.00 100.00 13.60 1.00 1.01 0.99
Causal SNPs 4991 1091 33.89 31.76 31.63 31.77
S3 Random SNPs 3.14 097 0.94 093 0.95 0.92
(3 populations, moderate) Differentiated SNPs 99.99 99.98 224 1.00 1.01 1.00
Causal SNPs 48.18 31.76 45.16 45.08 44.60 45.09
S4 Random SNPs 21.76 0.94 145 1.05 1.05 1.06
(3 populations, more extreme) Differentiated SNPs 100.00 100.00 4178 0.96 0.95 0.96
Causal SNPs 50.79 842 23.51 19.34 1913 1934

@For random SNPs and differentiated SNPs, the values in the table represent the empirical false positive rates; for causal SNPs, the values in the table represent
the empirical true positive rates. The nominal false positive rate is 0.01. Note that the numbers in the table refer to percentages.



Liu et al. BMC Bioinformatics 2013, 14:132
http://www.biomedcentral.com/1471-2105/14/132

expected, in the absence of outliers, the performance
of the MDS, RPCA-RHM, and RPCA-PP methods
was similar. The empirical false positive rates for ran-
dom SNPs and differentiated SNPs were close to the
nominal level.

Simulation Il results

Simulation II data were generated by adding outliers to
the simulation I data. The results, summarized in
Table 3, reveal that when using the Trend method, the
empirical false positive rates for random SNPs were
somewhat inflated while the empirical false positive
rates for differentiated SNPs were substantially inflated.
Using the GC approach, the false positive rates for ran-
dom SNPs were modestly inflated, while the false posi-
tive rates for differentiated SNPs were substantially
inflated. Using the PCA method, the false positive rates
for random SNPs were somewhat inflated, while the
false positive rate s for differentiated SNPs were consid-
erably inflated. The MDS approach performed well
under the scenarios of moderate case control differ-
ences, but the false positive rates for differentiated
SNPs were moderately inflated under the scenarios of
more extreme case control differences. Both the RPCA-
RHM and RPCA-PP methods performed well, and the
false positive rates for random SNPs and for differenti-
ated SNPs were close to the nominal levels. The empir-
ical true positive rates of the RPCA-RHM method and
RPCA-PP method were comparable. Figure 1 shows the
plot of orthogonal distances versus score distances for
one simulated dataset under scenario S4. The majority
of the data points cluster on the lower left corner, while
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the subject outliers are scattered on the right side of
the vertical line or above the horizontal line.

Simulations Il and IV results

Table 4 shows the results for the admixed populations
from simulations III and IV. As we can see, using the
Trend test, the empirical false positive rates for random
SNPs were modestly inflated, but the false positive rates
for differentiated SNPs were more substantially inflated.
For the GC method, the false positive rates for random
SNPs were close to the nominal level, but the false posi-
tive rates for differentiated SNPs were inflated quite sub-
stantially. For the PCA and MDS methods, the false
positive rates for random SNPs and differentiated SNPs
were close to the nominal level if there were no outliers;
however, the false positive rates for differentiated SNPs
were highly inflated if there were outliers in the data. Both
the RPCA-RHM and RPCA-PP methods performed well,
and the false positive rates for random SNPs and for differ-
entiated SNPs were close to the nominal levels. The empir-
ical true positive rate of the RPCA-RHM and RPCA-PP
methods were comparable.

Application to rheumatoid arthritis study
We applied our proposed method to a rheumatoid arth-
ritis (RA) GWAS data used in a genetic analysis work-
shops (GAW16). This dataset, provided by the North
American Rheumatoid Arthritis Consortium (NARAC),
involved 868 RA cases and 1194 controls. There were
545,080 SNPs available for analysis.

Quality control of genotype data was conducted using
PLINK as follows [33]. At the subject level, a call rate of

Table 3 Empirical false positive rate and true positive rate results for simulation Il (Discrete Populations with Outliers)

Case control Testing SNP Trend GC PCA MDS RPCA- RPCA-
Difference Types RHM PP
S1 Random SNPs 2.75 141 1.94 0.97 1.01 0.99
(2 populations, moderate) Differentiated SNPs 99.85 98.75 93.03 133 0.99 1.00
Causal SNPs 4897 37.55 4833 46.95 44.69 45.06
S2 Random SNPs 16.74 1.71 838 1.09 0.99 1.00
(2 populations, more extreme) Differentiated SNPs 100.00 100.00 100.00 6.91 1.14 1.29
Causal SNPs 4994 14.09 4477 32.81 30.07 30.21
S3 Random SNPs 340 112 1.65 1.08 1.06 1.06
(3 populations, moderate) Differentiated SNPs 100.00 99.99 63.28 1.36 1.02 1.02
Causal SNPs 48.85 3161 46.72 4581 4329 43.89
S4 Random SNPs 2135 1.15 9.82 1.10 092 0.97
(3 populations, more extreme) Differentiated SNPs 100.00 100.00 100.00 18.13 1.29 151
Causal SNPs 50.09 941 37.56 21.76 18.66 18.81

@For random SNPs and differentiated SNPs, the values in the table represent the empirical false positive rates; for causal SNPs, the values in the table represent
the empirical true positive rates. The nominal false positive rate is 0.01. Note that the numbers in the table refer to percentages.
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Figure 1 The orthogonal distance versus the score distance for
one simulated dataset. The plot is based on projection pursuit
robust PCA using the GRID algorithm for one simulated dataset
under scenario S4 in simulation Il. The vertical line is the outlier
cutoff line for the score distance, the horizontal line is the outlier
cutoff for the orthogonal distance, and those points on the right of
the vertical line or above the horizontal line were identified

as outliers.

at least 0.95 was required. At the SNP level, a call rate of
at least 0.95, a minor allele frequency of at least 0.01,
and a p-value of at least 10 from the Hardy-Weinberg
equilibrium test were required. After the quality control
step, we have 490,209 SNPs.

To perform population stratification, the remaining
SNPs were further reduced as follows: (i) certain known
high linkage disequilibrium (LD) regions were excluded
(chr8:8000000..12000000, chr6:25000000..33500000, chrll:
45000000..57000000, chr5:44000000..51500000); (ii) SNPs
were pruned such that all SNPs within a window size of
1,500 (step size of 150) had pairwise r’<0.05; (iii) only
autosomal SNPs were used. After pruning and filtering,
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32,292 autosomal SNPs were kept. These SNPs were used
to adjust population stratification using different methods.

In the proposed robust methods, we first need to
identify outliers. To do this, the 32,292 autosomal
SNPs were further reduced by requiring that all SNPs
within a window size of 1,500 had pairwise r’<0.02.
This gave us 17,792 SNPs. The PP robust PCA was
then applied on these reduced autosomal SNP sets.
Figure 2 presents the diagnostic plot for outlier detec-
tion based on PP robust PCA using the Grid algo-
rithm. Eleven subjects were identified as possible
outliers. Among the 11 outliers, 2 subjects have large
score distances and 9 have large orthogonal distances.
We also applied the RHM method to identify outlier
subjects. Among the eleven outliers identified by PP
robust PCA, 7 subjects were also identified by RHM,
and the other four were close to the cutoff of the
RHM method. Since the PP robust PCA and RHM
methods were consistent for this dataset, we used PP
robust PCA method for further comparisons with sev-
eral other existing methods.

To study the performance of different methods for
the real dataset, we carried out association tests for all
the SNPs (490,209 SNPs) using different methods. To
adjust population stratification using PCA, MDS or
Robust PCA, 32292 autosomal SNPs were used. For this
dataset, we definitely need to take population stratifica-
tion into consideration as the inflation factor is 1.43
without any adjustment. The PCA, MDS and Robust
PCA methods were all able to adjust population struc-
tures and reduced the inflation factor to about 1.05.
Figure 3 shows the results from the five GWA analyses
using logistic regression without any adjustment, GC
method, PCA method, MDS method and our proposed
robust method using PP robust PCA. As we can see, all
the methods were able to identify the HLA region on
chromosome 6, which had been implicated in numerous
rheumatoid arthritis (RA) studies [34-37]. Among the
SNPs in the non-HLA region, the top three SNPs identi-
fied by robust PCA are on chromosome 9, a region that

Table 4 Empirical false positive rate and true positive rate results for simulations Ill and IV (Admixed populations)

Case Testing SNP Trend GC PCA MDS RPCA- RPCA-
Control Types RHM PP
Difference
Simulation Il Random SNPs 2.09 091 0.90 0.89 091 1.10
(no outliers) Differentiated SNPs 97.16 94.29 112 1.09 1.09 1.10
Causal SNPs 49.22 36.88 45.09 45.06 44.64 44.10
Simulation IV Random SNPs 227 1.12 1.89 1.04 091 0.80
(with outliers) Differentiated SNPs 97.59 9417 88.11 10.09 1.01 1.40
Causal SNPs 49.15 37.63 4823 45.30 4237 4550

@For random SNPs and differentiated SNPs, the values in the table represent the empirical false positive rates; for causal SNPs, the values in the table represent

the empirical true positive rates. The nominal false positive rate is 0.01. Note that the numbers in the table refer to percentages.
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Table 5 Comparison of the analysis results for three SNPs
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score distance
Figure 2 The orthogonal distance versus the score distance for
NARAC data. The vertical line is the outlier cutoff line for the score
distance, the horizontal line is the outlier cutoff for the orthogonal
distance, and those points on the right of the vertical line or above
the horizontal line were identified as outliers.

links to TRAF1, C5 and PHF19. TRAF1, C5 and PHF19
were reported to be associated with risk of RA in several
studies [38-41]. As shown in Table 5 with both pvalues
and rankings, these three SNPs were ranked at the top
by three methods: robust PCA, PCA and MDS.

Rol;:sé:’igA on chromosome 9 known to be associated with RA
3 SNP rs2900180 SNP rs1953126 SNP rs881375
o Rank in Rank in Rank in
o e o non-HLA non-HLA non-HLA
7 S p-Value SNPs p-Value SNPs p-Value SNPs
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%*
- However, robust PCA generated the most significant

p-values. On the other hand, three SNPs (rs12913832,
rs3930739, rs11632017) on chromosome 15 were found
possibly associated with risk of RA by GC and Trend
methods with p-values less than 0.0005, but not by ro-
bust PCA (p-values > 0.1), PCA (p-values > 0.05) or
MDS (p-values > 0.05) at all. Further interrogation sug-
gests that rs12913832 links to HERC2, and has been
reported to be associated with hair colors; rs3930739
links to OCA2; and rs11632017 links to GABRGS3.
However, none of those three genes were reported to
be associated with risk of RA. In this example, the
GWA analysis results based on PCA, MDS and robust
PCA were not dramatically different since there were
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no extreme outliers (outliers with very large score dis-
tances based on the diagnostic plot).

Conclusions

In GWA studies, properly adjusting for population
stratification is extremely important. There are existing
methods, such as the PCA and MDS methods, which
have been proven to be highly useful for such large-scale
studies. However, these methods are sensitive to outliers
and may yield misleading results if there are outliers in
the data. As it can be seen from our simulation studies,
the false positive rates can be greatly inflated under cer-
tain scenarios if the outliers are not handled properly.
One may argue that the classical PCA can also be used
to identify outliers. However, we may not be able to
identify all the outliers using the first few components
from the classical PCA, and in fact artificial datasets can
be constructed where all outliers remain masked by a
classical PCA [23].

We herein propose robust methods for handling outliers
and minimizing the confounding effects of population
stratification in GWA studies. Our proposed methods can
be considered as an extension of PCA and MDS methods
to deal with outliers. We compared the performances of
our proposed methods with several existing methods
using simulation studies. For the two robust methods we
proposed (RPCA-RHM and RPCA-PP), the false positive
rates for random SNPs and differentiated SNPs were close
to the nominal level in all the scenarios considered. Of the
two robust methods proposed, both of them performed
well in our simulations. The RPCA-PP method uses pro-
jection pursuit robust PCA to handle outliers, and a freely
available R package can be used to perform projection
pursuit robust PCA. The RPCA-RHM method uses a
resampling by half means approach to handle outliers, and
is quite straightforward in concept and easy to implement.
However, RPCA-RHM may take longer for large datasets.

Overall, if there were no outliers in the data, our pro-
posed methods were comparable to the best performing
available methods. Importantly, if there were subject
outliers in the data, our proposed methods performed
superior to the other methods, especially for admixed pop-
ulations and discrete populations with more extreme differ-
ences between cases and controls (S2 and S4 in Table 3,
and Simulation IV in Table 4).

In this paper, we propose effective method to adjust for
population structures. For well designed studies with un-
related subjects, embedded population structures may be
the major concern. However, if some other sample struc-
tures such as family structures or cryptic relatedness are
of concern, the linear mixed models [14,15,42] can be
used. However, the results based on linear mixed model
approaches are influenced by outliers based on our simu-
lations (results not shown). In this case, our proposed
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methods can be extended to the linear mixed model set-
ting to minimize confounding effects of population struc-
tures as well as family structures or cryptic relatedness.

To summarize, we demonstrate that subject outliers can
greatly influence the analysis results in GWA studies. Our
proposed robust methods outperform the existing popula-
tion stratification methods in the presence of subject
outliers. In practice, it is recommended to use robust
population stratification methods in the analysis of GWA
study data to avoid making inappropriate conclusions due
to outliers.
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