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Abstract

Background: The binding of transcription factors to DNA plays an essential role in the regulation of gene expression.
Numerous experiments elucidated binding sequences which subsequently have been used to derive statistical
models for predicting potential transcription factor binding sites (TFBS). The rapidly increasing number of genome
sequence data requires sophisticated computational approaches to manage and query experimental and predicted
TFBS data in the context of other epigenetic factors and across different organisms.

Results: We have developed D-Light, a novel client-server software package to store and query large amounts of
TFBS data for any number of genomes. Users can add small-scale data to the server database and query them in a
large scale, genome-wide promoter context. The client is implemented in Java and provides simple graphical user
interfaces and data visualization. Here we also performed a statistical analysis showing what a user can expect for
certain parameter settings and we illustrate the usage of D-Light with the help of a microarray data set.

Conclusions: D-Light is an easy to use software tool to integrate, store and query annotation data for promoters. A
public D-Light server, the client and server software for local installation and the source code under GNU GPL license
are available at http://biwww.che.sbg.ac.at/dlight.

Background
The specific transcription of genes is largely controlled
by the interplay of transcription factors (TFs) attached
to their specific binding sites (TFBSs). It is commonly
accepted that for higher organisms the concurrent binding
of two or more TFs is required to change the transcrip-
tional state of a gene. In addition, the evolutionary con-
servation of such binding pattern is assumed – although
differences are expected [1].
A number of computational tools have been developed

to process experimental data for subsequent prediction
of potential TFBSs and affected pathways. Experimentally
determined binding regions are sequenced and compared
for common patterns by elaborate statistical methods as
e.g. implemented in MEME [2] or WEEDER [3]. The
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obtained binding site data are collected in databases such
as JASPAR [4] or TRANSFAC [5]. Finally, with differ-
ent prediction methods [6-10] occasionally incorporating
homologous genes [11,12] a huge amount of data for
potential binding sites can be generated.
Currently several software packages or web servers are

available to deal with these data. In general the different
approaches are restricted to certain aspects or limited in
the amount of data they are able to handle. For example,
some tools are restricted to a only few genes [13,14] and
just very few implementations utilize information from
orthologous genes [15-18]. Other methods require addi-
tional experimental data such as expression levels [19].
Moreover the servers are not always easy to use or cannot
be complemented with user data. To our knowledge, no
service is available for performing combinatorial queries
on a genome wide level with concurrent inference of
orthologous genes. Finally, only very few tools are freely
available for local installation.
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Our client-server based software, D-Light, provides a
new tool which aims to overcome most of these lim-
itation. (i) D-Light allows for combinatorial searches
within or between different species on a genome wide
scale. (ii) The software provides a simple JAVA-based
graphical user interface (GUI) available as browser
applet, Java Web Start application or as stand-alone
JAVA application. (iii) Users can add new promoter
sequences, positional frequency matrices (PFMs) repre-
senting the TFs or generic annotations for their subse-
quent usage in the combinatorial queries. (iv) A user
management enables privacy. (v) Client and server are
open source software and can be installed locally. We
also provide a public D-Light server pre-filled with data
from human, mouse and rat.
Below we first describe the technical concepts and their

implementation. We then use D-Light to determine on
average useful promoter sizes and score cutoff values.
We finally demonstrate the relevance of D-Light on a
biological example.

Implementation
We first discuss design principles of the D-Light sys-
tem regarding datasets, access control and data retrieval.
Then we describe server and client characteristics. A
scheme of software components and data flow is shown
in Figure 1. The implementation ofD-Light solely employs
open source software.

Design principles
D-Light implements a gene centered concept for data stor-
age and access. The promoter is seen as a continuous

region on the genomic DNA sequence which is associated
with a certain gene and labeled with an accession code.
Users added sequence data, however, may comprise any
piece of genomic DNA labeled with a unique accession
code. D-Light supports multiple genomes defined during
server setup. Genomic coordinates provided for a certain
promoter allow linkage to external genome browsers.
The second type of data stored in D-Light are features,

which are in general binding sites of a certain tran-
scription factor. User-added data may contain any type
of features, with or without an associated score. If the
user-added features are TFs with an associated PFM, an
integrated predictionmethod allows the assignment of the
TFs to all currently stored promoters.
All user-added data, namely promoters, features and the

annotated locations thereof are private. Default data cal-
culated during the D-Light server setup are accessible to
all users. A certain user thus queries the union of default
and his private data.
Inquiries to the server for the occurrences of certain

features (or combinations thereof) are performed in two
steps. First a list of promoters is generated, where at least
one hit appears. Only during visualization of a certain
promoter, all hits on that promoter are calculated (see
Figure 1). This optimizes the response time for the inter-
active database queries. Complete hit lists are generated
on request and can be downloaded in text format (csv
format), which then requires more time.

Server
All data are stored in a MySQL relational database. The
database schema is optimized for speed rather than for

Figure 1 Block diagram of the D-Light client-server system. Green arrows represent the data flow on user queries, red arrows the data flow
when a user uploads new data via the client GUI. Once a gene hit list is provided to the viewer, data are requested gene-wise via the DAS protocoll.
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space requirement. Stored procedures additionally speed
up complex queries.
The server setup is controlled by an XML formatted

setup file and performed with Python scripts. By default,
the scripts download data from NCBI, the JASPAR ftp
server and our web site. If D-Light should use different
data sources or prediction tools the setup scripts can be
easily modified. Related comments are included in the
corresponding scripts.
The controller is written in Java to utilize RMI (Remote

Method Invocation) for the client. Annotation data trans-
fer is captured by the BioDAS protocol using the Java
based MyDas server [20] (see also Figure 1).

Client
The client is written in Java and communicates with the
server via RMI. The GUI is based on AWT/Swing.
The annotation viewer uses the GenoViz toolkit [21].
The client provides multiple query instances. The data
required to visualize certain queries are stored in dis-
tinct objects which subsequently allows to change quickly
between views.
All data visualized in lists, such as genes or features,

are equipped with a filter which dynamically displays only
records matching a regular expression style criterion.

Sequential data flow on user queries
The numbers 1 to 6 in the flowchart (Figure 1) reflect the
sequential data flow during a typical user query to display
annotations for a set of genes. (1) A query string is passed
to the controller, which translates it to SQL queries. (2)
The SQL query results in a list of matching genes which is
passed to the client (3). When the user selects a gene, the
BioDAS server is contacted (4). Then, the BioDAS server
formulates a SQL query (5) and returns the data via a
DAS-xml envelop (6).

TFBS prediction
The built-in binding site scanner, pyfscan, is written in
C++ and implemented Python as extension. A stand-alone
version of the TFBS scanner for usage independently of
D-Light is included in the server package. By default, pyf-
scan calculates log-likelihood ratio scores with uniform
background distribution bA = bC = bG = bT = 0.25:

S =
L∑

i=1
ln

fa,i
ba

where i is the ith column in the PFM, a denotes the current
base given by the respective DNA sequence, fa,i is relative
frequency of base a in column i and L is the length of the
PFM.
The scores are converted into p-values using themethod

of Staden [22]. Raw scores are converted to normalized

scores ranging from 0 to 100, where 100 corresponds to
the maximum reachable score of a given PFM.

Retrieving promoter data
Promoter data are extracted from UCSC chromosome
files. Currently we only provide promoter data for
genomes with assigned RefSeq IDs. Since D-Light imple-
ments a gene-focused concept, a certain RefSeq ID may
only appear once in the promoter set. In practice, UCSC
assigns some RefSeq ID to several chromosomal loca-
tions. If this is the case, we sort by chromosome name
and take the first one. This way, the assignments in
normal chromosomes are preferred compared to “ran-
dom” or “unknown” entities, e.g. chr1 is preferred to
chr1_random. In hg19, multiply used IDs affects 3%
of all IDs. In many cases these are non coding RNAs
or microRNAs.
The chromosomal location information is taken from

the respective refGene tables. Following UCSCs strategy
we extract ±1 kB, ±2 kB and ±10 kB regions rela-
tive to the proposed TSS. In contrast to UCSCs strat-
egy for providing promoter fasta files we also include
sequences with unknown TSS. In this case, the CSS
(coding sequence start) will be known. In many cases
the TSS and CSS are within a few hundred bases, and
the extracted promoters are likely to include an active
TSS (see statistical analysis).
For cross-genome search homology information is

required. We use the homology relations defined by the
gene product rather than by genomic alignments. The
homologous groups are derived from NCBI HomoloGene
database [23] and transferred to the MySQL database
during the D-Light server setup.

Default settings of the server
The space an time requirements of D-Light depend essen-
tially on the promoter sizes, the size and composition of
the PFM database and the p-value cutoff of the predic-
tion method. We aimed to find parameter settings which
are useful for an “average” gene. Considering the aver-
age density of predicted TFBS and average GC content
(Figure 2), we decided to use ±2 kB promoter sequences
by default. We also include genes with unknown TSS
(see also section Results and discussion). Our defaults
include the promoters for human, mouse and rat. There
are, however, 25 genomes with RefSeq associations avail-
able (e.g. D. melanogaster or C. elegans) and provided for
download on our web server.
In accordance with FIMO [24], which we used as ref-

erence TFBS prediction tool during our software devel-
opment, the p-value cutoff is set to 10−4. By default, the
JASPARCOREVertebrata set is enabled inD-Light, result-
ing in 116 usable PFMs which can achieve scores with a
p-value smaller than 10−4.
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Figure 2 GC-content, TFBS frequencies at various p-value cutoffs and ENCODE Txn occurrences. Data are collected in bins of 50 bases from a
non-redundant human promoter set consisting of approx. 23.000 ±10 kB sequences. Upper panel: For high cutoff values such as p = 10−2 (red line)
the TFBS density (TFBSd) curve approximately mirrors the GC content (right axis). Lower p-value cutoffs result in curves with a sharp peak around the
TSS. Lower panel: The distribution of ENCODE Txn peak centers. The left y-axes are scaled to one according to the maximum peak.

Results and discussion
We first show a statistical analysis of the promoters from
the human genome regarding the distribution of pre-
dicted TFBS with respect to different parameters. Then
we perform a case study applying D-Light to a microarray
experiment based gene sets from a cell cycle study.

Statistics on promoters
From the hg19 we created ±10 kB promoters set
with annotated TSS consisting of approximately 23,000
sequences. We then predicted TFBS for the JASPAR
CORE Vertebrata PFMs using the log-likelihood ratio
score with different p-value cutoffs.
We first plotted the frequencies of predicted binding

sites the GC content of the promoter sequences in inter-
vals of 50 bases (Figure 2, upper panel). With a loose
p-value cutoff (< 0.01) the hits are almost equally dis-
tributed but with less hits around the TSS.
The average GC content of the applied PFMs is

47.4%. Therefore less hits appear in the GC reach
regions around the TSS on average. The negative peak
is rather small compared to the ground level. The
PFMs which remain at lower p-value cutoffs only
have a marginally higher GC content (49% for PFMs
which reach p-values below 10−5). The positive peaks
which appear at more stringent p-value cutoffs presum-
ably appear because of the increasing number of real
binding sites.

This result is supported by a comparison to ENCODE
[25] data. We extracted the Txn Factor ChIP track data
from the UCSC database and calculated the distance of
the peak centers to the nearest TSS of RefSeq genes and
plotted the relative frequencies of occurrence again with
bin width of 50 bases (Figure 2, lower panel). The shape
of the distribution is very similar to the curve of the
predicted TFBS at p-value cutoff < 104 and < 105 respec-
tively. Note that the base level of predicted TFBS is much
higher than the base level of experimentally determined
TFBS.
The peaks of all TFBS curves lie within two kilo-bases

upstream the TSS and 1.5 kilo-bases downstream. There-
fore we consider at least a ±2 kB region in D-Light.
Unfortunately, for many genes the TSS is not known.

However, when the gene is coding for a protein, in gen-
eral the start of the coding sequence (CSS) is known and
annotated. We were interested in the distribution of the
distance between the proposed TSS and CSS, in case that
both entities are annotated. The distance varies between
1 base and a 1.9 mega bases. The quantiles are 114
(0.25-quartile), 373 (median), and 4280.25 (0.75-quartile).
Therefore, in themajority of these cases the TSS is in close
proximity to the CSS. In the human genome there are
about 4000 genes with RefSeq association annotated with
a CSS but not with a TSS. These genes are neglected by the
UCSC rules for creating promoter sequences. We subse-
quently include such genes and use the CSS as anchor for
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defining the “up- and downstream” region, as only a frac-
tion of those genes will have the TSS outside the proposed
promoter region.
Of significant importance for studying gene regulation

on the basis of predicted TFBS’s is the balance between
statistical significance of the hits and potentially false hits.
Different authors use different p-value cutoffs for their
methods to predict TFBS, commonly between 10−4 and
10−6. We therefore investigated the reachable significance
of the 130 JASPAR CORE Vertebrata PFMs using our
built-in prediction method. In Figure 3 we plotted the per-
centage of matrices able to achieve a certain p-value, given
a uniform background distribution. With a p-value cut-
off of 10−4 13 PFMs can not obtain hits, namely GATA2,
Prrx2, ETS1, NFE2L1::MafG, ARID3A, Arnt, Arnt::Ahr,
GATA3, MZF1_1-4, NFIC, Pdx1, SOX10, YY1, ZEB1,
ZNF354C, and Sox5. The most significant hits can be
obtained with the PFM Pax4.
Using the same dataset and prediction method as men-

tioned above we calculated the number of hits (in percent
of the maximum possible hits) below a certain p-value
cutoff (Figure 3). The percentage is decreasing linearly
with the cutoff until a p-value of 10−7. Then the curve
flattens presumably due to the low number of different
PMFs effective for those p-value cutoffs. We also have
been interested in howmany different corresponding pro-
moters are affected. Until a cutoff of 10−6 all promoters
receive a hit. When increasing the significance in a TFBS
search from the default cutoff 10−4 to 10−7 (i.e. by the fac-
tor 1000), only half of the matrices will report hits from
only 50 percent of the promoters. It is thus important to

know down to which p-value cutoff a certain PFM is able
to obtain hits. A table for the JASPAR CORE Vertebrata
PFMs is given in Additional file 1.

Comparison with similar tools
We have compared the capabilities of D-Light with
eight similar publicly accessible services. While some of
the tools use a pure HTML/JavaScript approach, others
including D-Light implement a Java-Client software. We
investigated regarding six properties: (i) The tool uses
precalculated TFBS. (ii) It enables combinatorial queries,
either by searching for co-occurrences of TFBS or clus-
ters of TFBS or comparison between occurrence in a set
of homologous sequences with the final goal to decrease
false positive predictions. (iii) The tool provides access
to sequences of multiple genomes. This is implicitly the
case when multiple sequences can be uploaded. (iv) The
tool accepts sequences uploaded by the user. (v) The tool
accepts PFMs uploaded by the user. And (vi), the results
can be downloaded in a textual, tabular form, or textual
results can easily be copy-pasted from the corresponding
web page for further processing by the user. The results
are summarized in Table 1.
A short survey of how the tools characterize themselves

on their respective web page, the corresponding web links
and some remarks are given in Additional file 2. Note that
there are other similar software tools such as SeqVISTA
[30] or GeneACT [15], which were not accessible or fully
working at the time of writing the manuscript. We there-
fore could not properly evaluate these tools for adding
them to the table.

Figure 3 Number of PFMs, hits and promoters for different p-value cutoffs. The number of hits (red), number of affected promoters (green)
and number of hit producing PMFs (blue) depend on the p-value cutoff. Note that the percentage of hits are plotted on the logarithmic scale (right
side). The 100% baseline corresponds to the values obtained without any P-value cutoff, i.e. all possible positions for a hit, all promoters and all PFMs
respectively.
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Table 1 Comparison with similar tools

Tool Foot- TFBS Precalc. Sequence PFM Textual Ref.

print comb. sites upload upload results

MotifViz - - - + + + [26]

TargetExplorer - + - + + + [27]

TFM-Explorer - + - + - + [13]

CONREAL + - - + - + [17]

MAPPER2 + - + + + + [18]

rVista + + - + + - [28]

EELWeb + + + - - + [11]

Toucan 3 + + - + + + [29]

D-Light + + + + + +

Application to a microarray dataset
Cheung et al. demonstrated the applicability of their soft-
ware GeneACT [15] by using the microarray data set
(GSE1692) deposited in NCBI Gene Expression Omnibus
[31] by Cam et. al [32]. The GSE1692 set contains expres-
sion data of cell cycle dependent genes in T98G fibrosar-
coma cells. Cheung et al. defined differentially expressed
genes (positive set) and non differentially expressed genes
(negative set) by f-test p-value cutoff of p < 0.05 and
p > 0.7 respectively and provided the corresponding
lists of genes as Additional file 1 to their publication. We
extracted the list of genes, respectively the corresponding
NM numbers and prepared the positive and the nega-
tive list by adding a ‘$’ sign to end of each NM number
(NM_xxxxxxx\.) to enforce full length accession code
matches in D-Light while ignoring the sequence version
number.
Cheung et al. found that the E2F family binding sites are

over-represented in the positive set. The JASPAR entry
E2F1 represents the binding pattern of the E2F family
members such as E2F-1 or E2F-4. The authors proved the
correctness of the predictions for some of the genes of the
positive set by conducting ChIP assays [15]. We wanted
to know if one can get comparable results using D-Light.
For this purpose we pasted the positive list to D-Light to
query the TF annotations in hg19 (p-value cutoff 10−4)
and downloaded the resulting data in a comma separated
values (csv) file format and did the same for the nega-
tive list. From the GSE1692 positive set 767 genes were
represented in D-Light, and 723 genes from the negativ
set.
We then counted the occurrences of all annotated TFs,

calculated the average occurrence per gene Pt and Nt ,
where t is one of the TFs provided by D-Light. For each
t we calculated the ratio r = Pt/Nt . The top ranking
over-represented TF is indeed E2F1 (r = 1.41) followed
by NFYA (r = 1.34) and USF1 (r = 1.26) which is in
accordance to the results of Cheung and coworkers. The

ratios delivered by our computational experiment, how-
ever, are rather low. We repeated this analysis for various
p-value cutoffs. The results are shown on Table 2. At
high p-value cutoffs no overrepresentation is observed.
The lower the cutoff, the higher are the ratios. Unfortu-
nately, the minimum reachable p-value of a certain PFM
is limited and the predicted hits disappear below a cer-
tain p-value cutoff. In order to obtain evidence for the
reliability of the ratios we applied the bootstrap func-
tion of R to calculate the 95% confidence intervals of
the Pt and Nt values. In any case the average values
are within the 95% CI.
We then performed queries with the same lists of genes,

but now using the D-Light feature to cross-check if a
certain binding site is also predicted in the homologous
mouse gene (mouse genome version mm10). By doing so,
the number of usable genes (i.e. genes where a homolo-
gous gene is defined by HomoloGene) reduces to 619 and
548 respectively. The ratio of over-representation increase
to 2.45 for E2F1, which demonstrates the value of incor-
porating orthologous information to improve the quality
of the predictions.
The TF occurrences counting in the csv formatted data

files was performed using a simple Python script (available
at http://biwww.che.sbg.ac.at/dlight/tools/overrep.py) but

Table 2 Overrepresentation of predicted TFBS in the
GSE1692 data set

p-value E2F1 NFYA USF1 MYC::MAX

1 ∗ 10−3 1.08 1.02 0.98 0.99

5 ∗ 10−4 1.10 1.08 1.07 0.99

1 ∗ 10−4 1.41 1.34 1.26 1.15

5 ∗ 10−5 1.39 1.45 n/a 1.37

1 ∗ 10−5 n/a n/a n/a 1.71

Ratios of predicted TBFSs per gene are shown for different p-value cutoffs and
four different top ranking TFs. n/a indicates, that the cutoff is below the minimal
reachable p-value for the respective PFM.
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using Excel should be also feasible for an experienced
Excel user. We extended the Python script to search
for over-represented pairs of the TFBS with a minimum
sequence separation of 10 and a maximum sequence sep-
aration of 100 base pairs. The five top ranking pairs
are E2F1-NFYA, Mycn-USF1, MYC::MAX-USF1, USF1-
USF1 and FOXC1-RREB1. Equipped with these results
one now could useD-Light to search for other genes which
have co-occurrences of e.g. E2F1-NFYA or query for other
partnering factors for E2F1.

Conclusions
D-Light is a platform independent client-server software
to integrate, store and query annotation data for promot-
ers for an arbitrary number of genomes. A major benefit
is the smooth integration of user supplied small scale data
with pre-assembled large scale data.D-Light complements
other computational tools in the context of predicting and
analyzing gene regulation.
Software components responsible for data import are

written in Python and thus can easily be adapted to han-
dle other annotation data than TFBS or other prediction
methods thereof. Both, client and server are open source.
The software can be installed locally in sensitive environ-
ments.
The analysis of a non redundant human promoter data

set has shown that on average up and downstream TSS
regions are equally covered with potential TFBS’s and that
on average a ±2 kB region the most densely annotated
one. However,D-Light is not restricted in this manner and
may be set up with any promoter sizes.
For the next version of D-Light we consider to include

the complete genome sequences which then should over-
come the currently narrow definition of a promoter
region. As shown in the array data use case exam-
ple, some external scripting is required to search for
over-represented TFBS in certain sets of genes. We will
investigate also other potential use-cases and include the
required procedures and statistical analyses directly into
D-Light. Then, import and export of annotations and
sequences in standard file formats such as gff3 will be
an issue. Finally, links to other useful databases such as
NCBI Nucleotide, NCBI Protein, PubMed or PDB will be
established.

Availability and requirements
Project name: D-Light
Project home page: http://biwww.che.sbg.ac.at/dlight
Operating system(s): Client platform independent,
server requires Linux
Programming languages: Java, Python, C++
Other requirements: The client requires Java 1.6 or
higher, for server see installation manual
Any restrictions to use by non-academics: none

Binaries and source is also provided in Additional files 3
and 4.

Additional files

Additional file 1: P-values for JASPAR PFMs. Table with the lowest
reachable p-value for the 130 JASPAR CORE Vertebrata PFMs.

Additional file 2: Comparison with similar tools. Short survey of how
the tools characterize themselves on their respective web page and the
corresponding web links.

Additional file 3: Installation package. Server and client software for
local installation.

Additional file 4: Source code package. Source code of server and client.
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