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Abstract

Background: In recent years there has been a growing interest in the role of copy number variations (CNV) in
genetic diseases. Though there has been rapid development of technologies and statistical methods devoted to
detection in CNVs from array data, the inherent challenges in data quality associated with most hybridization
techniques remains a challenging problem in CNV association studies.

Results: To help address these data quality issues in the context of family-based association studies, we introduce a
statistical framework for the intensity-based array data that takes into account the family information for copy-number
assignment. The method is an adaptation of traditional methods for modeling SNP genotype data that assume
Gaussian mixture model, whereby CNV calling is performed for all family members simultaneously and leveraging
within family-data to reduce CNV calls that are incompatible with Mendelian inheritance while still allowing de-novo
CNVs. Applying this method to simulation studies and a genome-wide association study in asthma, we find that our
approach significantly improves CNV calls accuracy, and reduces the Mendelian inconsistency rates and false positive
genotype calls. The results were validated using qPCR experiments.

Conclusions: In conclusion, we have demonstrated that the use of family information can improve the quality of
CNV calling and hopefully give more powerful association test of CNVs.

Background
Copy Number Variants (CNV) are DNA segments whose
copy-number deviates from the expected two copies
observed in diploid genomes [1,2]. CNVs represent the
most common form of structural genetic variation and
their importance in genetic disease has been established
[3]. A large number of common polymorphic CNVs that
segregate at fixed frequencies in human populations have
been discovered, several of which have demonstrated
reproducible associations with complex genetic diseases,
including susceptibility to autoimmune and neuropsy-
chiatric diseases, cancer and asthma [2,4-7]. There is
therefore great interest in developing high-throughput
CNV genotyping arrays and statistical methods to enable
genome-wide screens for CNV association with disease.
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Technologies have been developed for both CNV
discovery and genotyping, the majority of which are
array based, including comparative genomic hybridization
(CGH) or SNP genotyping arrays [8]. In contrast to CNV
discovery arrays, association (i.e. genotyping) arrays are
designed to target specific genome segments known to
harbor previously identified CNVs, often with substan-
tially fewer probes spaced at much lower density. As such,
standard statistical methods for CNV discovery arrays,
such as segmentation based methods [9] and Hidden
Markov models (HMM) [10-12], may not be appropriate
for CNV association arrays, as these models rely on the
associations between closely-spaced adjacent probes. For
CNV association assays, Barnes et al [13] developed a sta-
tistical framework for CNV calling in case-control asso-
ciation studies, which has been applied in a large-scale
genome wide association study of 8 diseases, the Well-
come Trust Case Control Consortium (WTCCC) study
[14]. However, the WTCCC study did not identify any
disease-relevant CNVs that had not been previously iden-
tified in SNP-based studies. Evidently one of the most
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challenging problems in CNV studies is the data quality.
The CGH array used for the WTCCC study contained
105,000 probes targeting 12,000 CNV regions, and after
thorough QC filtering only 3,432 regions were considered
for association analysis, as themajority of the regions were
either not variable or could not be called with sufficient
confidence. The data quality problem is not limited to
CGH array but an issue for SNP genotyping array as well
[15,16].
One way to help overcome such data quality issue

is to use the family-based design for genetic associa-
tions. When available, family data can be incorporated to
improve copy-number assignment of genotyped CNVs. In
this paper we introduce a statistical framework for family-
based CNV studies based on the Gaussian mixture model
described in [13,17]. Our method assigns copy-number
for all members of a nuclear family simultaneously, lever-
aging the familial relationships to reduce copy-number
calls that are incompatible with Mendelian inheritance
while still allowing for the presence of occasional de-novo
CNVs. We demonstrate our method with an applica-
tion to a CNV genome-wide association study in asthma.
Using experimentally validated data, we found that our
method not only can significantly reduce the Mendelian
inconsistency, but also improve the copy-number assign-
ment accuracy compared to existing methods. This extra
step of “data cleaning” can be crucial to the downstream
association tests [18,19].

Methods
Gaussian mixture model
We model the log2 ratios distribution with the Gaussian
mixture model (GMM) described in [20] and [13]. We
assume that the data (log2 ratios) {y1, .., yn} are generated
from a mixture model with G components

f (y) =
n∏

i=1

G∑
k=1

τkfk(yi|θk),

where fk(yi|θk) is normal distributions with mean μk and
variance σ 2

k

fk(yi|θk) = (2πσ 2
k )1/2 exp

{
− (yi − μk)

2

2σ 2
k

}
,

with θk = (μk , σk). The components 1,..G correspond
to discrete copy numbers (0,1,2...). The parameters of
the model {τk ,μk , σk} can be estimated using the E-
M (Expectation-Maximization) algorithm, described in
[17,20]. The E-M is a general approach to maximum
likelihood estimation for missing data problems. In our
case the “missing data” is the unobserved assignment of

clusters for the samples zik :

zik =
{
1 if sample i belongs to cluster k
0 otherwise.

Then the “complete data” log likelihood becomes:

L(θ , τ |z, y) =
n∑

i=1

G∑
k=1

zik log{τkfk(yi|θk)}.

The E-step (Expectation): Computing the conditional
probability of sample i belongs to cluster k

ẑik = τkfk(yi|θk)∑G
j=1 τjfj(yi|θj).

The M-step (Maximization): The parameters are esti-
mated given the conditional probability zik .

μ̂k = ȳk , σ̂k2 =
∑n

j=1 zjk(yi − ȳk)2

nk
, τ̂k = nk

n
,

with nk = ∑n
j=1 zjk and ȳk = ∑n

j=1(zjkyj/nk).
The E-step and M-step are iterated until convergence.
We use the R package mclust [17] for implementation

of the E-M algorithm. We fit each region level summary
with up to 5 clusters and assign each cluster with dis-
crete copy numbers, with the largest cluster assumed to be
the normal (two-copy) group in most cases. The clusters
below 0 copy and above 4 copies are merged into adjacent
groups.

Incorporating family data
To appropriately model the probabilities of specific
parent-child copy-number configurations, we use the fol-
lowing probabilistic model from [21] and introduce two
additional parameters: a is the probability of the rare
chromosome-specific copy number configuration (See
Table 1), and e is the probability of de-novo mutation.
Both probabilities should be small, but greater than zero,
to support all possible configurations of copy numbers
in a trio. In other words, any combination of copy num-
bers from 0 to 4 copies will have a non-zero probability a
priori, even though some probabilities will be very small.
The CNV inheritance matrix, i.e. the conditional distribu-
tion of the children’s copy numbers given the parents’, can
be specified with these two parameters (Additional file 1:
Table S1).
Let zf , zm and zo represent the copy number distribu-

tion for the father, mother and offspring, respectively. The
posterior probability of the trio

P(zo, zf , zm|y, τ , θ) =
∏

g∈{o,f ,m}
p(yg |zg , τ , θ)P(zo|zf , zm)

p(zf |τ , θ)p(zm|τ , θ)

where P(zo|zf , zm) is the inheritance probability in
the CNV inheritance matrix. Therefore, in the E-M
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Table 1 Probabilistic model specifying
chromosome-specific copy number at a single marker
given the total copy number [21]

Total Chromosome-specific Probability

copy number copy number

0 0/0 1

1 0/1 1

2 1/1(common form) 1 − a

0/2 (rare form) a

3 1/2 (common form) 1 − a

0/3 (rare form) a

4 2/2 0.5

1/3 0.5

algorithm we can simply reweight the E-step for the
offsprings:

(ẑoik|zfik , zmik ) = τkP(zoik|zfik , zmik )fk(yi|θk)∑G
j=1 τjP(zoij|zfij, zmij )fj(yi|θj).

to obtain the conditional probability distribution of the
offspring. The parents’ probability distribution will not be
affected in this step. When we perform the M-step the
joint conditional probability of the trio P(zo, zf , zm|y, τ , θ)

is maximized. Therefore it should converge to a model
that is more consistent with Mendelian inheritance, but
still allowing errors and de-novo events.

Applied dataset
The study population has been described previously [22-
24]. In total, 1211 subjects, including 385 asthmatic chil-
dren of self-described white ethnicity and their available
parents, were genotyped using a custom-designed Agilent
180k probe CGH array for a genome-wide CNV associa-
tion study of asthma. Regions were selected based on data
on CNV location and breakpoints from multiple datasets,
in a tiered approach, favoring high-resolution data. We
incorporated CNV regions identified by the Structural
Genomic Variation Consortium based on data from 42
million CGH probes [25], data from the June 2009 release
of the 1000 genomes project [26], deep sequencing of an
individual genome [27] and a list of segmental duplica-
tions [28] and novel insertions [29]. Finally, we incorpo-
rated variants identified in the Database of Genomic Vari-
ants (DGV) that were > 500bp and < 2MB in size and did
not overlap any other regions [26,30]. In total, the arrays
interrogate 20,092 highly confident and distinct CNV
regions in a single assay, with each CNV region surveyed
by 6-9 probes. The raw signal intensities of each probe
were normalized across the entire array to limit potential
bias due to dye normalization and technical errors. Log2

ratios of each probe were calculated using the normalized
intensities of the Cy5 (sample) and Cy3 (reference) chan-
nels. We then assessed all probes for variability using the
Bioconductor package CNVTools, and eliminated probes
without variability. Amean log2 ratio for each CNV region
was then calculated, and is directly analyzed (total N after
QC = 17,957 autosomal CNV regions). CNV frequency
calls were based on CNVTools, with the largest bin
assumed to be the 2-copy version. For validation, a small
subset of regions were genotyped for copy number by
real-time PCR with the Applied Biosystems Taqman copy
number assay on a 7900HT instrument [31], which gives
continuous copy number values. The Institutional Review
Boards of the Brigham and Women’s Hospital and of the
other CAMP study centers approved this study. Informed
assent and consent were obtained from the study par-
ticipants and their parents to collect DNA for genetic
studies.

Results
Simulation study
To assess the performance of the family-adjustment algo-
rithm under various scenarios, we performed a simulation
study. We generated intensity data based on similar sce-
narios in [13]. Only copy number losses were considered.
The parental genotypes (0,1, or 2 copies) were generated
from the distributions under Hardy-Weinberg Equilib-
rium for minor allele frequency ranged from 0.1-0.3. The
offspring genotypes were generated conditional on the
parental genotypes as in the inheritance matrix (Addi-
tional file 1: Table S1) with fixed parameters a = 0.0009
and e = 0.01 (as in [11,21]). Gaussian noises were added
for various signal-to-noise ratios. For each scenario 1,000
trios (3,000 samples) were simulated for 1,200 indepen-
dent CNV regions.
Table 2 shows the sensitivity, specificity and overall

accuracy rate for all scenarios considered. In most cases,
the two methods performed similarly in terms of over-
all accuracy, though the family adjustment gave slight
improvement in majority of the scenarios, including all
the low-noise cases (SNR≥ 5). The family adjustment
algorithm also gave more conservative CNV calls, which
resulted in slightly lower sensitivities and higher specifici-
ties. The exception was the high-noise low MAF group
(SNR=3 and MAF=0.1), where the family adjustment
showed significant improvement. In this nosier situation,
which is observed often in real data sets, the GMM some-
times gave extra clusters and the family adjustment can
collapse them down to the correct number of clusters.
For example, Figure 1 shows an example where the GMM
chose 5 clusters as the one with highest likelihood (one of
which did not have any sample assigned to it), and after
family adjustment, the model collapsed down to 3 clusters
and gave more accurate CNV calls (See Figure 2).
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Table 2 Sensitivity and specificity before and after family adjustment in simulation study

Sensitivity

SNR 3 4 5 6 7

MAF=0.1
Unadjusted 0.9095 0.9240 0.9773 0.9942 0.9988

Family adjusted 0.7106 0.9114 0.9757 0.9937 0.9987

MAF=0.2
Unadjusted 0.9340 0.9777 0.9946 0.9990 0.9991

Family adjusted 0.8828 0.9698 0.9922 0.9984 0.9997

MAF=0.3
Unadjusted 0.9368 0.9796 0.9925 0.9852 0.9812

Family adjusted 0.8570 0.9733 0.9950 0.9990 0.9991

Specificity

SNR 3 4 5 6 7

MAF=0.1
Unadjusted 0.2867 0.9789 0.9946 0.9990 0.9999

Family adjusted 0.9411 0.9864 0.9961 0.9993 0.9999

MAF=0.2
Unadjusted 0.8975 0.9591 0.9776 0.8582 0.6295

Family adjusted 0.9468 0.9740 0.9917 0.9981 0.9997

MAF=0.3
Unadjusted 0.9353 0.9800 0.9919 0.9812 0.9760

Family adjusted 0.8991 0.9684 0.9927 0.9984 0.9990

Overall accuracy

SNR 3 4 5 6 7

MAF=0.1
Unadjusted 0.5253 0.9707 0.9838 0.9878 0.9888

Family adjusted 0.9274 0.9697 0.9838 0.9878 0.9888

MAF=0.2
Unadjusted 0.9244 0.9704 0.9620 0.8996 0.7848

Family adjusted 0.9152 0.9708 0.9915 0.9980 0.9997

MAF=0.3
Unadjusted 0.8761 0.9709 0.9895 0.9809 0.9761

Family adjusted 0.8282 0.9545 0.9896 0.9977 0.9987
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Figure 1 Simulation: Gaussian mixture models. Gaussian Mixture Model fit for one of the simulated CNV regions with MAF=0.1 and SNR=3. The
Gaussian mixture components are shown in different colors and overlaid the histogram.
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Figure 2 Simulation: Before and after family adjustment. The raw intensity values and CNV calls from the same simulated CNV regions in
Figure 1. The colors denote the clusters from Gaussian mixture models (Top) and Family adjustment algorithm (Middle). The bottom panel shows
the real copy numbers from which the intensity data were generated.

Application on real data
For the real data application, we refitted the Gaussian
mixture model to an aCGH dataset of a genome-wide
CNV association study of asthma. 14,234 polymorphic
(i.e. those with 2 or more clusters) CNV regions assayed
on the custom-designed array were evaluated. The GMM

was applied with same fixed parameters a and e as in the
simulation study for the weighted E-M algorithm. Family
adjustmentmarkedly reduced the number of copy number
gains (3-4 copies) and losses (0-1 copies) observed across
the cohort: when considering all loci, the total number of
gains and losses was reduced by 55.3%, decreasing from

Figure 3 The p-values shift after family adjustment. The log fold changes of p-values for association testing after family adjustment for all 14,234
regions (black) and 1,319 “high confidence” regions. CNV frequency is defined as the percentage of subjects in our population with copy number
gain or loss.
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Figure 4 The p-values shift after family adjustment. Boxplots of log p-values fold changes by CNV frequency.

5,385,285 (31.24% of all samples/regions) to 2,409,632
(14.15%). Despite this very substantial drop in copy num-
ber variability, the overwhelming majority of markers
remained polymorphic - only 177 of 14,234 (1.2%) were
reclassified as monomorphic – confirming that the pri-
mary effect of family-based adjustment is the reclassifi-
cation of individual alleles while retaining polymorphic
distributions, rather than simply constricting population
variability. This point is emphasized when analysis was
restricted to the subset of loci with of common CNV
(> 5% frequency) that clustered discretely with high

confidence (80% of the samples with calls of at least 99%
posterior probability at the final E-step). Among 1,319
regions fulfilling these stringent criteria, family adjust-
ment reduced the number of observed alleles by only 3.2%
(compared to 55.3% among all regions). Thus, our method
appears to operate appropriately, weeding out large pro-
portions of alleles in questionable regions, while making
much more subtle changes to high-confidence CNVs.
We next assessed the impact of family-based adjust-

ment on association testing. Using the genome-wide
aCGH data in 385 parent-child trios, we applied the

Figure 5 QQ-plot for asthma association test after family adjustment. The QQ-plots after family adjustment for 661 “high confidence” regions
with CNV frequency greater than 10%.
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Table 3 Rare CNVs in 50 regions overlapped or near
known asthma genes

Total CNV Offsprings CNV De novo

Gaussian mixture model 1157 398 227

Family-adjusted 749 205 73

CNV-FBAT algorithm [18] both before and after family
adjustment. Given that the adjustment procedure used
local family data which aims to reconcile differences
between parental and offspring copy number abundance,
and because the association test assesses for differences
between the observed offspring copy number and that
expected from parental data, there was concern about
the method possibly introducing systematic null bias and
reducing statistical power. We therefore examined the
effects of family-based adjustment on the distribution
of association p-values for the 1,319 “high confidence”
CNV regions. If bias were introduced, we would expect to

observe a general asymmetry in direction of change in the
magnitude of association p-values, with larger (less signif-
icant) association p-values observed post-adjustment. We
found no evidence of such an effect: though 357 regions
(27%) demonstrated increased (less significant) p-values
following adjustment, 538 regions (40.1%) had decreased
(more significant) p-values after family adjustment, and
424 (32%) remained unchanged. Using an arbitrary p-
value of 0.05 cut-off, 60 CNV regions demonstrated asso-
ciation with asthma prior to family-based adjustment,
while 104 regions were found with significant associa-
tion after adjustment. Of these, 41 regions were significant
both before and after adjustment. Figures 3 and 4 show
the p-value fold changes for regions with different CNV
frequency, and we can see that for the 1,319 high con-
fidence regions (shown in red) the majority of regions
with significant change in p-values were the relatively rare
ones (CNV frequency 5-10%). The instability of associ-
ation testing in rare CNVs resulted from the reduced

(A) Asthma Locus Rank #2 (D) Asthma Locus Rank #7

(B) Asthma Locus Rank #2 (E) Asthma Locus Rank #7

(C) Asthma #2, family adjusted (F) Asthma #7, family adjusted

Figure 6 Histograms and scatter plots for 2 asthma-associated CNV regions validated with qPCR. The histograms (panels A/D) are of all
samples in the two asthma CNV regions. The scatter plots (panels B/C/E/F) are of the 46 samples with both Agilent array and qPCR measurements.
(x-axis) represents the log2 ratios from CGH arrays and the y-axis represents the copy number estimates from qPCR. The scatter plots for unadjusted
GMM (panels B/E) and family adjusted (panels C/F) are the same but colored differently indicating CNV calls (clusters).
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power of the association testing resulting at small sample
sizes (i.e. small number of informative families) for these
rare regions, and did not suggest that the family-based
adjustment itself gave less accuracy at lower allele fre-
quencies. For the regions with CNV frequency > 10%
the results appeared to be more stable and the QQ plot
shows that the family adjustment did not introduce any
systematic bias in the association tests in either direction
(see Figure 5).
We also assessed the utility of our method in the anal-

ysis of rare variants. We focused on 50 CNV regions
overlapped or near known asthma candidate genes [32-
34] with frequency ≤ 5%. After adjustment for family
information, the total number of CNV went down 35%
(down 48% for the offsprings, see Table 3). In particular,
the total number of de novo CNVs dropped from 227 to
73 (down 68%). Though this adjusted de novo rate was
higher than that expect, our algorithm eliminated the a
substantial proportion of de novo CNV calls, reducing

their prevalence to a more reasonable model of the true
prevalence of de novo CNV.
Figure 6 provides an illustration of the effects of

family-based adjustment at two loci that initially demon-
strated strong association with asthma pre-adjustment,
but dropped out (were no longer significant) post-
adjustment: Asthma Locus Rank #2 (p = 0.0013 pre-
adjustment; p = 0.2635 post-adjustment), and Asthma
Locus Rank #7 (p = 0.0126 pre-adjustment; p = 0.7055
post-adjustment). Despite both markers demonstrating
distributions consistent with variable copy number (pan-
els A and D) that formed fairly discrete clusters, these
GGM-derived clusters were largely inconsistent with
Mendelian inheritance (Panels B and E). Following family-
based adjustment, many of the questionable calls were
dropped, substantially reducing the number of parent-
child genotype inconsistencies (Panels C and F). Indeed,
independent technical validation of bothmarkers in a sub-
set of subjects by quantitative PCR (qPCR) confirmed that

Figure 7 Histograms and scatter plots for 2 CNV regions validated with qPCR. The histograms (panels A/D) are of all samples in the two CNV
regions. The scatter plots (panels B/C/E/F) are of the 72 samples with both Agilent array and qPCR measurements. Agilent (x-axis) represents the
log2 ratios from CGH arrays and the y-axis represents the copy number estimates from qPCR. The scatter plots for unadjusted GMM (panels B/E) and
family adjusted (panels C/F) are the same but colored differently indicating CNV calls (clusters).
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neither region is likely truly copy-number variable, further
demonstrating the utility of family-based normalization
processes in reducing false positive results.
Although we can see that the family adjustment algo-

rithm generally reduce the number of CNV calls and
false-positives, it is important to know how the algorithm
performs when the CNVs are real. To demonstrate this
point, we performed qPCR on four CNV regions with fre-
quency ≥ 5% after family adjustment, where over 5% of
the samples were reassigned (Figure 7). Even though these
loci were selected based on the appearance of their array
based data, as observed in other datasets, we noticed that
our array-based data was noisier and not as well-clustered,
as compared to that generated by qPCR. Using qPCR
as gold-standard, we found that with family adjustment,
the overall accuracy of CNV calling, and the correlation
between array-based and qPCR copy number calls slightly
improved (Figure 7 and Table 4), suggesting that fam-
ily adjustment did not harm (and seemed to marginally
improve) calling, even for high-confidence CNV regions.

Discussion
We have introduced a formal statistical framework to
CNVs in family-based designs, using Gaussian mixture
models. This method considers both the family relation-
ships and the log2 ratios for each individual, therefore
reducing the number of Mendelian inconsistencies while
allowing the detection of de novo events. Results from
analysis of CAMP CNV data shows that our method

improves CNV calls accuracy and reduces the number of
Mendelian errors and false positive CNV calls, for both
common and rare CNV regions and the results can be
validated with qPCR. Though we only included parent-
child trios in our study, the method can easily be extended
to larger pedigrees with multiple generations of families.
Our method works especially well for regions with mod-
erate data quality, as opposed to extremely well-clustered
or poor data. For well-clustered regions, the Gaussian
mixture models give extremely high confidence (close to
100% posterior probability) for CNV calls, therefore the
re-weighting with family data will not change the results
by much. On the other hand, a poorly-clustered region
often contains many mendelian-incompatible trios that
the algorithm cannot reconcile. Therefore, our method
is most useful for the “questionable” regions where the
family data can help identify the real CNV regions.
We also examined the effects of family-based adjust-

ment on association testing. Though it is possible to per-
form CNV association testing using either raw intensity
data or derived copy number, others and we note the later
is more preferable in most situations [18], motivating the
need for reliable CNV copy number calling algorithms.
Since our algorithm reduces the numberMendelian errors
and the number of CNV calls in general, one potential
concern is that our method may have removed some real
de novo events and introduced bias in the downstream
association tests. Even though we may not know if the
de novo events are really false positive, previous studies

Table 4 Confusionmatrix for copy number estimates using qPCR and GMM fromAgilent CGH arrays

Agilent CGH arrays GMM results

Region 1 (chr19:62166726-62167416)

2 3 4

qPCR results

2
Unadjusted 11 6 0

Family adjusted (12) (5) (0)

3
Unadjusted 0 26 11

Family adjusted (0) (34) (3)

4
Unadjusted 0 4 13

Family adjusted (0) (8) (9)

Region 2 (chr4:43446373-43446839)

0 1 2

qPCR results

0
Unadjusted 14 9 1

Family adjusted (15) (9) 0

1
Unadjusted 0 26 10

Family adjusted (0) (34) (2)

2
Unadjusted 0 0 11

Family adjusted (0) (2) (9)

The numbers in parenthesis show the estimates after family adjustments. The qPCR estimates are rounded off the nearest integer and shifted to correspond to the
CGH array estimates, which designate the cluster closest to zero as the two copy group. The overall accuracy goes from 70% to 77% for region 1
(chr19:62166726-62167416) and from 72% to 82% for region 2 (chr4:43446373-43446839).
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have suggested that de novo CNV mutation is likely rare
(about 1% in healthy controls) [35-37]. We use a prior de
novo rate e = 0.01, which is close to the estimated de
novo rate of 0.012 from an asthma study [37]. Even though
the study focused on large CNV region (> 100 Kb) and
the real de novo rate in our study may be higher, from
our CGH data we still observed de novo mutation rate
well above previously estimated (57% before family adjust-
ment, 36% after, see Table 3), including those estimated
using high-resolution arrays and including small CNVs.
Since the prior de novo rate is small, it would require
stronger evidence to claim true de novo events. Therefore,
the reduced de novo events after family adjustments sug-
gest the algorithm appropriately reduced the number of
false positive “de novo” events.
Compared to other current methods for family-based

CNV studies, such as PennCNV [11,21], our method is
more suitable for CGH arrays, where allele frequency
information is unavailable. Our method is also designed
for CNV association arrays, rather than CNV discov-
ery arrays, as we do not consider the spatial correlations
between adjacent probes like in the HMM methods. Our
method models the family inheritance based on most of
the same assumptions in [21], however, by considering
each region independently, our method is much less com-
putationally intensive, and the implementation is simply
a matter of calling R functions in the existing R pack-
ages mclust and cnvtools. Finally, we note that our
methodology is not influenced by the manner in which
CNV regions are defined, as it can be applied on probe
level data as well.

Conclusions
In conclusion, though our method does not completely
solve the data quality issue for CNV studies, we have
shown through our analysis that incorporation of fam-
ily data is a necessary step for better quality CNV calls
which hopefully lead to more powerful family-based CNV
association tests.
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