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Abstract

Background: In the past decade, bioinformatics tools have matured enough to reliably perform sophisticated
primary data analysis on Next Generation Sequencing (NGS) data, such as mapping, assemblies and variant calling,
however, there is still a dire need for improvements in the higher level analysis such as NGS data organization, analysis
of mutation patterns and Genome Wide Association Studies (GWAS).

Results: We present a high throughput pipeline for identifying cancer mutation targets, capable of processing
billions of variations across thousands of samples. This pipeline is coupled with our Human Variation Database to
provide more complex down stream analysis on the variations hosted in the database. Most notably, these analysis
include finding significantly mutated regions across multiple genomes and regions with mutational preferences
within certain types of cancers. The results of the analysis is presented in HTML summary reports that incorporate
gene annotations from various resources for the reported regions.

Conclusion: MuteProc is available for download through the Vancouver Short Read Analysis Package on Sourceforge:
http://vancouvershortr.sourceforge.net. Instructions for use and a tutorial are provided on the accompanying wiki
pages at https://sourceforge.net/apps/mediawiki/vancouvershortr/index php?title=Pipeline_introduction.

Background
As Next (Second) Generation Sequencing (NGS)
technologies advance, researchers are continually

overwhelmed by the massive volume of genomic and
transcriptomic sequence data generated. This has signifi-
cantly shifted the focus of the research from the physical
aspects of generating the data toward the analytical
aspects of the generated data. Furthermore, while the
field is generally at an acceptable point with regards to
the primary analysis of the NGS data, such as mapping,
assemblies and variant calling, the higher level analysis
such as NGS data organization, analysis of mutation pat-
terns and Genome Wide Association Studies (GWAS) are
at early stages of development.

As an effort to fill this gap, we proposed an open
source variation database [1] template that provides a
novel method for collating and searching across the
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reported results from thousands of NGS samples, as
well as rapidly accessing vital information on the ori-
gin of the samples. This database package was primarily
accompanied with a set of Java application programming
interface (API) to perform common functions, such as
generation of standard experimental reports and graph-
ical summaries of modifications to genes. In this note
we extend our database package with a high through-
put mutation analysis pipeline, called MuteProc, to
provide more complex analysis on the vast number of
variations in the database using a reasonable amount of
resources. The most important question that the analysis
using this pipeline aims to answer is: “Are there genomic
regions that are significantly mutated across certain
cancer types?"”

A fundamental design decision underlying the construc-
tion of our human variation database template was to
make it independent from any annotation set. This allows
for efficient scalability and better performance as well
as annotation free data storage. However, the mutation
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analysis pipeline is heavily dependent on genome anno-
tations. This led us to design and implement a stand
alone annotation database that ensures the annotation
independence requirement of the variation database while
providing an efficient way to organize and process var-
ious genome annotation resources used by the pipeline.
Similar to the human variation database, the annota-
tion database is implemented in PostgreSQL, accompa-
nied by Java API’s to provide necessary interactions with
the database.

The human variation database currently stores Sin-
gle Nucleotide Variations (SNV) and short inser-
tions/deletions (indels) of various NGS protocols. The
samples are marked as cancer or normal and the database
keeps track of the matching cancer/normal pairs for anno-
tating somatic status of the variations.

Comparison to existing tools

While many tools are currently available for primary anal-
ysis of the sequencing data, there is a shortage of solu-
tions for tertiary analysis, that is the process of extracting
insights from the data produced by the upstream anal-
ysis steps. Although, one can argue that the wide range
of high level analysis does not allow the development
of a general purpose tertiary analysis tool, a major ter-
tiary analysis component, that is the identification of
common group of variations that affect certain pheno-
types in a given population, has yet to be addressed
properly.

There are integrated tools designed to provide a
cohesive platform for the analysis of next generation
sequencing data. These packages include various tools for
primary, secondary and tertiary analysis. Here we com-
pare our tool against some of the most widely used tools,
that is the Genome Analysis Toolkit (GATK) [2] and the
Genome MusSiC [3] with the main focus being on their ter-
tiary analysis functions. The most prominent advantage
of MuteProc over these tools is its efficient integration of
variation and annotation databases that makes the man-
agement of multiple large scale projects as convenient
and efficient as possible. This is extremely challenging to
achieve using the existing tools since they rely on pro-
cessing large data files. The GATK package consists of
various groups of analytical utilities that mostly deals with
primary analysis and Quality Control (QC) steps. In par-
ticular, we only one found utility within the GATK that
processes the cancer specific variations, i.e. Somaticln-
delDetector, and yet this utility can only predict somatic
indels in one target sample at a time. Other variation anal-
ysis utilities, such as VariantAnnotator, Variant Discovery
and Evaluation and Manipulation, either provide primary
analysis over individual variants or are limited to analysis
over a single sample rather than a cohort of samples which
is the prominent feature of MuteProc.
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The MuSiC package on the other hand enables col-
lective analysis of mutations across a group of samples,
so in this sense MuSiC is a more appropriate bench-
mark to compare against MuteProc. The MuSiC pack-
age consists of a collection of downstream analysis tools
designed to (1) apply statistical methods to identify signif-
icantly mutated genes, (2) highlight significantly altered
pathways, (3) investigate the proximity of amino acid
mutations in the same gene, (4) search for gene-based
or site-based correlations to mutations and relationships
between mutations themselves, (5) correlate mutations
to clinical features, and (6) cross-reference findings with
relevant databases such as Pfam, COSMIC, and OMIM.
Aside from the pathway analysis and the clinical correla-
tion utility, which we aim to include in the later versions,
the MuteProc provides all the analytical power of MuSiC
with three major advantages:

1. While the input variations to the MuSiC package are
validated or predicted somatic mutations, the
MuteProc predicts the somatic mutations from raw
mutations generated by variant callers. This is by
itself a very challenging task as the mutation set
detected by the current variant callers has significant
amount of noise. MuteProc predicts somatic
variations by filtering tumor mutations against the
mutations in matched normal samples, other normal
samples in the database and the datasets of known
polymorphisms such as DBSNP. The remaining
mutations following this stringent filtering stage are
then validated by high throughput analysis of the
mapped reads in tumor and matching normal
samples. Additionally, the mutation frequencies in
cancer and normal samples are calculated and the
mutations are determined to be synonymous,
non-synonymous or non-coding.

2. MuteProc allows mutation analysis over a wide range
of annotated genomic regions such as microRNA
targets, promoters, enhancers, transcription factor
binding sites, regulatory loci and more. In fact any
given annotation set can be easily incorporated into
the analysis by importing them into the annotation
database.

3. MuteProc provides an efficient QC utility for the
identified somatic mutations. The QC is carried out
by processing the mapped reads at each somatic
variation location in tumor and matched normal
BAM files and determines whether the variation is
likely to be somatic, germline or the result of an
artifact. Note that the germline mutations are not
excluded from the analysis, instead they are reported
separately as in many studies causative predisposing
mutations might be of interest. The results of the QC
are generated in HTML files that contain the
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alignment profile of the variations in tumor and
matched normal samples placed side by side for
easier comparison. These results are incorporated in
the final HTML report with provided hyperlink for
easy access.

We believe that our mutation analysis package pro-
vides some advantages over the existing tools in managing
large scale projects involving thousands of samples across
multiple cohorts.

Methods

While the utilities in the MuteProc pipeline can be used
individually for purposes such as identifying somatic
mutation, calculating mutation frequency across a cohort
of samples or annotating variations, the main purpose
of the pipeline as a whole is to identify genomic regions
that are highly mutated across a group of samples (e.g.
samples of certain cancer types). These hotspot regions
are sorted based on their significant values computed
using the multiple test adjusted Fisher’s method that
takes into account the mutation rate at each region
and the background mutation rate. The mutation anal-
ysis is accomplished through the following five phases
(See Figure 1.):

Phase one (extraction of cancer exclusive
variations): In the first phase, the cancer exclusive
variations (i.e. the variations that only occur in the
cancer samples in the database) in the target cohort
samples are exported from the variation database.
The API provides and option to exclude variations
that exist in the DBSNP [4] variation set (or any
variation set) if they are already imported in the
variation database. The efficient organization of the
large volume of variations in the HVDB allows this to
be performed reasonably quickly. In particular, the
cancer SNVs of over two thousand samples, which
includes more than 2.5 billion SNV, can be extracted
in 22 hours on an eight core Xeon(R) 3.00GHz
database server with 64 Gigabytes of main memory.
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While this is the most time consuming step of the
pipeline, the majority of time spent in this phase is
utilized for labeling the variations as being
synonymous, non-synonymous or non-coding. The
output of this phase is a collapsed list of annotated
(i.e. silent vs non-synonymous) somatic putative
variations. Each variation lists the identifier of the
samples that include the variation, thus even at this
phase it is easy to find highly recurrent mutations.
Indels and SNVs are reported in separate files at this
stage, to be merged in the next phase.

Phase two (annotating the cancer exclusive
variations): In this phase, each cancer exclusive
variation is annotated to determine in what region it
is located. The set of target annotations are organized
in a stand alone annotation database, to ensure fast
and effective annotation process. Similar to the
HVDB, the annotation database is a PostgreSQL
based platform with a set of Java APIs that provides
interaction with the database. In addition to ensuring
a fast and efficient way of annotating the variations,
this database also provides a convenient way to
include/exclude the annotation sets of choice. Our
annotation database currently stores close to 3
million annotation entries, which include genes,
introns, exons, UTRs, transcription factor binding
sites, regulatory regions, promoters, enhancers,
microRNA targets and Cosmic variations. The
software package provides the schema for the
database, as well as various APIs for populating the
database and retrieving the annotations in a given
region. In our case study the annotation process of
over 28 million cancer exclusive variations took less
than 20 minutes on the same database server
platform as the variation database.

Phase three (clustering the variations): Clustering
of variations is performed in two levels: by proximity
and by function. In the first level the variations are
cluster based on their proximity in the genome. This
means that the variations that are closely located in

Export cancer Annotate cancer Cluster cancer
exclusive variations exclusive variations exclusive variations

Validate somatic
putative variations

Sort and report
hotspot regions

Figure 1 Validation report. The major phases of the MuteProc mutation analysis pipeline.
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the genome (defined by a user specified threshold)
are grouped together. Thus, the regions (annotated
or novel) that harbor a high rate of variations are
identified in this level. In the second level, variation
clusters (from level one) that are within the same
annotated region are group together. Therefore,
mutational hotspots that are functionally related will
be identified through the second level clustering. This
two-level clustering provides a more informative
notion of variation patterns. For instance, one can
easily locate regions within a gene that have a high
concentration of somatic variations. At the same time
novel (unannotated) regions that are significantly
mutated can be identified, providing a basis for
investigating regions with novel functionality.

In addition to identifying mutational hotspos, regions
that are significantly mutated in some types of cancer
but not others will be identified in this phase as well.
In particular, for each cluster, the number of mutated
samples in each group (eg. cancer types) is calculated.
Thus, regions that have significantly higher mutation
rate in one type of cancer compared to other types
can be easily identified. Note that this type of analysis
is only viable through processing multiple sample
cohorts at the same time and to the best of our
knowledge none of the existing GWAS tools provide
that.

Phase four (validating the somatic variations): In
many cases a variant caller may fail to detect a
germline variation in the matched normal sample
mainly due to the lack of enough high quality reads
covering the variation. Thus, a germline mutation
can be incorrectly observed as a somatic mutation.
This happens in particular in cases where variations
are called on tumor and matched normal samples
independently where the reads mapped to the
variation allele do not pass the quality thresholds in
the normal sample or simply there is no coverage.
These incorrectly identified somatic mutations can
be detected by processing the mapped reads at the
variation location jointly in tumor and normal
samples. The validation phase of the MuteProc
provides a utility to identify germline or artifact
mutations and treat them accordingly (artifacts are
removed and germline mutations are processed
separately from the somatic mutations). The artifact
mutations are detected from the mapping quality of
the reads covering the mutation and the quality of
the bases of the variation. The minimum quality
thresholds are set manually when executing the
validation process. The results of this step are
reported in HTML files that contain the alignment
profile of the variations in tumor and matched
normal samples placed side by side for easier
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comparison (See Figure 2). These results are linked in
the final HTML report for easy access. This phase
can also be executed in a parallel mode on a
computation cluster where a job is dispatched for
validating mutations in each region.

Phase five (sorting and reporting): Once the
clusters of variations have been identified, they are
assigned a p-value that reflects the statistical
significance of the mutations in the region. Briefly,
the p-values are calculated by incorporating the rate
of the observed mutation in the region and the
expected mutation rate on a random basis using a
Binomial statistical test function. The resulting
p-values are then corrected for multiple testing using
the Benjamini Multiple Testing Correction approach.
The clusters are sorted by the computed significance
values, and the results are presented in a hyper-linked
HTML formatted table (See Figure 3). Each hotspot
region in the final report is augmented by a summary
of functional annotations from various resources,
including AceView [5], Biomart [6] and Ensembl [7].
The HTML report also includes hyper-links to the
variation location in the form of UCSC browser
custom tracks that can be easily viewed in the UCSC
browser. This provides a convenient way to zoom in
on the mutated regions and, view further annotations
for the affected regions.

The details of each API including the input param-
eters, input and output formats and, how to run
them is fully explained in the wiki pages at https://
sourceforge.net/apps/mediawiki/vancouvershortr/index.
php?title=Pipeline_introduction. We have also pro-
vided a self-contained tutorial that explains all the
steps from setting up and populating the variation
and the annotation databases to running the muta-
tion analysis pipeline. This tutorial comes with a small
set of RNA-seq variations for 10 prostate samples and
their matched normal samples along with shell scripts
that perform each step of the pipeline for the sample
dataset.

Results

As a proof of concept, using MuteProc, we performed
a Genome Wide Analysis on 40 whole genome Diffuse
Large B-Cell Lymphoma tumour/normal sample pairs
aiming to identify regulatory regions that are significantly
mutated in our cohort. While detecting non-synonymous
driver mutations has been the focus of the majority of can-
cer genome studies, recent studies show that non-coding
mutations may drive cancer as well [8]. The reason that
non-coding mutations have been left out from most of
the cancer genome analysis is the challenge of discovering
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Figure 2 Validation report. A snapshot of the report generated by the validation step for the variations in a hotspot region. The alignment profiles
of the reads mapped at each variation location is presented in the report. The alignment profile of the matched samples are placed on the side of
the tumor samples for a convenient comparison. The two columns beside the aligned reads are the mapping and base calling quality scores,
respectively. These reports are accessible through the links provided in the final HTML report for each hotspot region.

their role in cancer. However, if a large cohort of whole = Somatic hypermutation (SHM) in the variable region of
genome samples is available to derive statistically signifi- immunoglobulin genes (IGV) naturally occurs in a nar-
cant conclusions, it is possible to identify candidate non-  row window of B cell development to provide high-affinity
coding regions that may influence cancer development. antibodies. However, SHM can also aberrantly target

The results of MuteProc analysis on our DLBCL proto-oncogenes and, cause genome instability [9]. Sev-
cohort showed that the promoters and UTRs of sev- eral studies in the past decade collectively reported twelve
eral genes are mutated at rates dramatically higher genes that are targets of aSHM in Lymphoma [9-11], how-
(~1000-fold) than other mutated regions. Further anal-  ever it was speculated that far more genes undergo aSHM
ysis of the mutations in these regions revealed that in Lymphoma [9]. Intriguingly, all of these known aSHM
they have similar characteristics to those of aberrant targets appeared at the of the top of our list, indicating
aberrant somatic hypermutations (aSHM) in DLBCL. the accuracy of our analysis. Through the results of this
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Figure 3 Final report. A snap shot of the final report generated by the pipeline. The links in the “rank” column point to the variation QC report for
the corresponding region. The three links on the top of the report, that is “All SNVs track”, “Target regions track” and “Verified Variations in target
regions”, uploads the variation locations as custom tracks in the UCSC genome browser. Once these tracks are uploaded, clicking on the links in the
“Coordinate” column browse to the associated region in the UCSC genome browser where the variations are visible in the loaded variation tracks.
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analysis we were able to discover over 30 novel targets of
aSHM in DLBCL. For further details of this study please
refer to our manuscript in Oncotarget [12].

Discussion

In this section we discuss the limiting aspects of MuteProc
and put forward our plan to make improvements in later
versions.

While SNVs and Indels comprise most of the genomic
variations, structural variations, copy number variation
as well as more complex rearrangements have signifi-
cant source of biological and clinical relevance in diseases
in particular cancer. Thus, we are in the process of
including these variations in our high throughput analysis
pipeline. The design and implementation of a consortium
of databases of genomic data, including copy number vari-
ation, LOH events, structural variations and expression
data has been completed at the BC Genome Sciences Cen-
tre and we are now in the process of populating these
databases [13]. The next step will be to integrate these
databases in the MuteProc pipeline. While this is a chal-
lenging task especially with respect to performance given
the vast amount of data to be processed, the results will
be rewarding. It will enable us to discover meaningful
correlations between statistically significant mutations of
various types and the biological phenotypes.

Identifying altered pathways and correlating clinical
outcomes with variations are other components that are
currently missing in the pipeline. Although, the current
database schema stores the clinical outcome data and the
software package has a stand alone utility for processing
this information, this analysis is yet to be incorporated in
the pipeline.

Conclusions

We described MuteProc, a high throughput pipeline for
collective analysis of mutations in cohorts of NGS sam-
ples. A key advantage of MuteProc is its integration with a
variation database that makes the management of multiple
projects involving thousands of NGS samples as conve-
nient as possible. The variation database that MuteProc
is tied to at the BC Genome Sciences Centre currently
holds over 2.5 billion SNVs and Indels in over 4000 NGS
samples. MuteProc is able to efficiently process this vast
volume of variations and identify mutational hotspots
across hundreds of samples. We believe that the research
community will benefit from this open source package in
analyzing the ever increasing NGS data.
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