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Abstract

Background: Next-generation sequencing (NGS) has changed genomics significantly. More and more applications
strive for sequencing with different platforms. Now, in 2012, after a decade of development and evolution, NGS has
been accepted for a variety of research fields. Determination of sequencing errors is essential in order to follow
next-generation sequencing beyond research use only. This study describes the overall 454 system performance of
using multiple GS Junior runs with an in-house established and validated diagnostic assay for human leukocyte
antigen (HLA) exon sequencing. Based on this data, we extracted, evaluated and characterized errors and variants
of 60 HLA loci per run with respect to their adjacencies.

Results: We determined an overall error rate of 0.18% in a total of 118,484,408 bases. 31.3% of all reads analyzed
(n=349,503) contain one or more errors. The largest group are deletions that account for 50% of the errors.
Incorrect bases are not distributed equally along sequences and tend to be more frequent at sequence ends.
Certain sequence positions in the middle or at the beginning of the read accumulate errors. Typically, the
corresponding quality score at the actual error position is lower than the adjacent scores.

Conclusions: Here we present the first error assessment in a human next-generation sequencing diagnostics assay
in an amplicon sequencing approach. Improvements of sequence quality and error rate that have been made over
the years are evident and it is shown that both have now reached a level where diagnostic applications become
feasible. Our presented data are better than previously published error rates and we can confirm and quantify the
often described relation of homopolymers and errors. Nevertheless, a certain depth of coverage is needed, in
particular with challenging areas of the sequencing target. Furthermore, the usage of error correcting tools is not
essential but might contribute towards the capacity and efficiency of a sequencing run.
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Background
Next-generation sequencing systems have boosted genet-
ics in the last few years. The reduction of costs, wet-lab
workflow complexity and the gain of read length has led
to an enormous increase in sequencing projects and se-
quencing data [1]. Roche/454 Life Sciences is one of the
major players in the NGS field as their technology of
pyrosequencing allows for the longest possible reads of
all 2nd generation sequencing techniques with further
technological improvements proposed, moreover, two
different sized platforms allow for scalability [2]. This
technology is based on DNA templates immobilized on
beads which are loaded onto a PicoTiterPlate (PTP).
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Subsequently, nucleotides flow over this plate in periodic
cycles and get incorporated if complementary to the
template strand. An enzyme cascade is activated, leading
to the release of photons. These photons are detected by
an ultra-sensitive CCD camera. Lengths of homopoly-
mers (stretch of the same nucleotides) are determined
by the amount of emitted light [3], especially long ho-
mopolymers are a huge challenge of the 454 technology
itself, bioinformatics and analysis respectively interpret-
ation [4,5].
It is a logical consequence to follow NGS from the

basic research applications to routine diagnostic assays
[6-8]. Using NGS for human leukocyte antigen (HLA)
typing is one of the most evolving fields of application
and pushing forward for routine diagnostics [9-13]. Our
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Immunogenetics for HLA typing and has years of ex-
perience in HLA typing and next-generation sequencing
[14,15]. For transplantation of haematopoietic stem cells
DNA based, high-resolution typing of HLA is an absolute
necessity in order to gain a best possible histocompatibil-
ity to reduce the risk of a severe graft-versus-host-disease
[16]. Most recently, we have demonstrated NGS HLA typ-
ing as feasible for routine diagnostics [17].
For diagnostic applications it is essential to know pos-

sible errors in workflow and data analysis. There are
already implemented mechanisms controlling and deal-
ing with errors in a quality management controlled la-
boratory. Every next-generation sequencing platform
and technique has its own application dependent error
profile. Several groups have estimated errors for special
fields of genomics, including bacterial, viral and antibody
sequencing [4,18,19].
Here we present a detailed error assessment for se-

quences of NGS HLA typing on a 454 platform. We an-
alyzed multiple runs and point out the level of safety for
diagnostics NGS applications on the basis of error oc-
currences and if any of them are recurring and linked to
sequence motifs.

Results
Performance, accuracy and errors
Taking all six runs together, 373,792 reads passed built
in quality filtering [20], with a total of 146,860,970 bases
sequenced and average read length of 393 base pairs.
Raw run performances (before trimming and further

analysis) of the six runs are shown in Table 1, together
with filter metrics and read statistics.
93.5% of the generated raw reads could be aligned to

HLA reference sequences and were used for further ana-
lysis. After trimming primers and reducing reads to exon
information, 118,484,408 bases (81% of the original out-
put) were taken into account when calling variants and
Table 1 Overall run performances

Run 1 2

Passed Filter [reads] 58,303 58,230

Short [%] 48.97% 51.79%

Qual 98% 400 bp [%] 82.68 80.61

Control [wells] 5,688 4,626

Raw [wells] 169,261 187,287

Key pass [wells] 161,395 180,717

Median Read length [bp] 417 418

Avg Read length [bp] 408.94 410.24

mixed [%] 10.89% 11.36%

dot [%] 3.82% 4.43%

Bases [Mb] 24.31 24.34

Raw run performance of six runs is shown.
determining errors. 563 variants in the exon regions
were defined as true variants, known by Sanger sequence
based typing (SBT) and additional pseudogen analysis.
Besides, 13,505 variants were detected and categorized
as errors.
109,473 reads had at least one error, therefore 31.3%

of all reads contain errors in their coding region and on
average one read had 2.08 errors. After applying the
error correction tool Acacia, errors still remained in
25.1% of all reads [21].
The number of reads containing one error was multi-

plied with the corresponding length of the error
resulting in 212,415 bases being erroneous. The total
error rate of 0.18% was defined by the percentage of
wrong bases in the number of total exon bases, where
insertions account for 0.09%, deletions for 0.04% and
substitutions for 0.05%. Insertions had an average length
of 1.12 bases, deletions 1.07 bases and substitutions one
base; summarized, errors had a length of 1.06 bases.
38.15% of these errors were detected in all six runs,

meaning 0.07% reproducible errors (0.03% insertions,
0.03% deletions and 0.008% substitutions) associated
with 81,026 bases.

Quality scores
Average quality score (phred equivalent quality scores,
Q = -10 * log10(error rate), estimated by the GS Junior
software [20,22]) of all sequenced bases (taken the six
runs together) is 35.39; counting only bases used for
HLA typing average quality score is 35.46. Average qual-
ity score of error positions was 16.08, meaning an accur-
acy (calculated from GS quality values) of 97.53%,
quality score is less than or equal to 25 at 73.1% of in-
correct bases. The adjacent base quality scores of a
neighborhood of 5 bases averaged was precisely higher
at 17.00 (98.00% as base accuracy, calculated from GS
quality values). Boxplot of quality scores in Figure 1
3 4 5 6

59,991 70,988 70,477 55,803

45.68% 44.29% 42.92% 54.74%

85.18 76.49 82.37 75.84

5,701 5,117 7,471 6,084

163,378 167,569 180,379 187,583

155,583 160,344 170,507 178,334

424 414 316 406

411.66 402.70 349.29 379.03

10.49% 7.73% 10.85% 10.80%

5.04% 3.53% 4.69% 2.87%

25.44 29.39 22.27 22.66
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Figure 1 Base quality scores at error positions. Quality scores of bases were collected at error positions and plotted in boxplot format
(quartiles) per run, compared with the quality scores of a five base neighborhood surrounding the error position. Base quality scores of the
neighborhood show a tendency of higher values than the actual error position. Runs 1–3 were performed with the same bead pool, the quality
scores of these three runs show no significant differences, runs 5 and 6 were enriched manually and differ significantly. The asterisks mark the
overall quality of the particular sequencing run.
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compares the six runs on error position and five base
average, quality scores of runs 4 and 5 have slightly bet-
ter quality scores on both parts.
Homopolymers
50.4% of errors were outside of a homopolymer region,
29.8% were adjacent to a n-mer of length 3 or longer.
Figure 2 displays portion of homopolymer lengths asso-
ciated with errors compared to the percentages of ho-
mopolymers in analyzed sequences with given length.
Correlation of homopolymer’s length and quality values
is -0.195 which is highly significant (p<0.001), Figure 3
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Figure 2 Homopolymer associated errors. Error positions were tested as
homopolymer: length = 1) and to which percent different lengths are affec
occurrences and percentages of hompolymer lengths were plotted next to
than five were combined. Percent values are rounded.
illustrates correlation with boxplots where base quality
scores decrease with the length of homopolymers.
Read position
Taking into account errors adjacent to homopolymeric
regions, there is no significant peak in the distribution
along the read distance. The distributions along the read
positions regarding specific amplicons corresponding to
HLA exons are given in Additional file 1. Homopoly-
meric associated errors have no significant effect on
these positions. Figure 4 shows the distribution of errors
over the read length. Base quality over the read lengths
occurence in sequences
associated with error

rence [%]

40 60 80

50.4%
74.9%

to whether or not they are located at a homopolymer position (no
ted (dark gray). Reference sequences were scanned for homopolymer
error association (light gray). Homopolymers with lengths greater
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Figure 3 Base quality scores of erroneous homopolymers. Base quality scores of homopolymers showing erroneous bases as boxplots
(quartiles) allowing the comparison of accuracy of homopolymers with different lengths. Homopolymers with lengths greater than six
were summarized.
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respectively the progress of a run is plotted in Figure 5, a
characteristic development over sequence length is apparent.
Discussion
Run performances
Several publications analyze accuracy and errors in 454 se-
quencing data. Huse et al. [4] analyzed bacterial 16S
rDNA with the older GS20 platform and affirmed their
basic foundings for Standard chemistry [23], Prabakaran
et al. [19] characterized errors in a small portion of 3,467
antibody sequences and Gilles et al. [24] used control
DNA fragments of the 454 workflow for error assessment.
As stated previously [24], error characteristics is sequence
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Figure 4 Number of errors at read position. Frequency of errors occurri
(white) and without homopolymer association (gray). Bars are unstacked, h
displays the quartiles of errors across read positions (total). Errors at the firs
located outside the analyzed exon.
motive dependant, hence every application needs its own
error profile.
Run performance of the GS Junior platform is stated

to be approximately 136,760 reads per run for shotgun
sequencing [2]. 70,000 reads are expected from amplicon
experiments [25], most of our runs in this study do not
reach this number of sequences, resulting in average
62,299 reads, however, being sufficient for HLA genotyp-
ing of 10 samples (six loci per sample).
Per base error rates
The used enzyme for amplification has an error rate of
8.3×10-6 [26]. Accordingly, approximately 25,052 erroneous
240 267 294 321 348 375 402 429 456 483

n in read [bp]

ng at a specified read position (in relation to the coverage) in total
omopolymer proportions plotted to the front. The boxplot below
t positions are very infrequent, furthermore, this section of sequence is
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Figure 5 Average base quality scores. A. The estimated quality values produced by the GS Junior were compared to the empirical quality
values calculated by error frequencies. The thin red line marks the ideal line if the system would estimate all values correctly. B. Development of
base quality scores (averaged per position) over the reads’ lengths (and run progress). Comparison of six runs (thin red lines) and their average
(bold dark red line). The quality drop at the first 20 bases is no application specific phenomenon but explained by the mathematical calculation
of the quality scores and their dependence on previous flows and bases.
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bases in our experiment are due to PCR artifacts. These
bases contribute 11.8% to our total error rate. Our error
rate of 0.18% differs significantly from already published
error rates: 0.49% Standard chemistry [4], 0.4% and 1.07%
for Titanium chemistry [24,27]. The high error rate of
1.07% can be explained through the use of the 454 control
fragments for error analysis. Considering (long) homopoly-
mers being the weak point of 454 systems, they are over-
represented in the control fragments in contrast to natural
DNA sequences. In Lind et al. an error rate of 1.1% for
a shotgun HLA sequencing approach is given, se-
quenced with Standard chemistry [28]. Since GS20
many improvements in protocol, reagents and software
have been made to the 454 technology. Additionally,
reads tend to become error prone towards their end
[24], the (intron) trimmed analysis furthermore re-
duces possible errors due to errors being rather located
at the reads’ ends. Due to this analysis strategy, 19% of
the produced output is not analyzed.
Insertions (50%) are the most frequent errors followed

by substitutions (28%) and deletions (22%), the substitu-
tion rate is even lower than for Illumina’s MiSeq system
stated in Loman et al. [2]. Both publications mention in-
sertions as the most frequent errors. In contrast to pre-
viously published error data substitutions account for
the second frequent errors, including PCR or application
specific errors. Gilles et al. reported a seven times lower
substitution rate than deletions originating from the
overrepresented homopolymers.
68.7% of all reads were free from errors, consistent
with Huse et al. [4]. Hence, without denoising [21] or
smoothing [18] a loss of one third of data must be taken
into account. With error correction additional 6.2% of
reads (of total reads generated) could be recovered,
resulting in a quarter of sequences still exhibiting errors.
We use a conservative approach without additional
modifications of the data to prevent introduction of false
positive mutations. The majority of reads containing er-
rors (77.2%) has less than three wrong bases. The re-
duced error rate in our setting is the reason for the
satisfying average error per read rate of 2.08 errors and
the average length of 1.06 bases per error.
For 1,743 variants (13%) there was evidence (in at least

one of the six runs) supporting the mutation in both se-
quencing directions, in accordance with Challis et al. [29].

Read position and motifs
The occurrence of erroneous bases was highly connected
to read respectively reference position, 38.15% of them
occurred at the same positions when resequencing.
There is strong evidence that errors are also highly
linked to special sequence positions and DNA patterns.
As a result the individual error rates of the six runs only
slightly differ from each other respectively the given
average values. Vandenbroucke et al. indicated that every
amplicon has its own error profile [30].
Based on our examination we can state that more er-

rors are located in the second half of the read than in
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Figure 6 Experimental setup. One library was created and used for all six runs, for run 1–3 beads emPCR and enrichment was performed
together, hence they use the same bead pool. Beads for run 4 were prepared separately. Runs 1–4 use automatic enrichment on a liquid
handling robot together with the REM e. Beads for run 5 and 6 were generated independently and enrichment was performed manually.
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the other half, indicated by a median error position of
236 with an average read length of 393.

Quality scores
Quality values calculated from the averaged error rates
were compared to the average quality values estimated
by the GS Junior at the same positions (Figure 5A).
Below values of 30, the empirical rate is higher than the
estimated value; above 30 the GS Junior overestimates
its own performance (Q30 = accuracy of 99.9%).
The distribution of quality scores along the read dis-

tance (Figure 5B) of all runs exhibits a very equal pat-
tern, showing that some regions have valleys (lower
quality scores) while others have peaks (high quality
scores). The overall pattern with a considerable decrease
at around 300 bp is typical for all GS Junior runs; posi-
tions and power of peaks are library specific and highly
reproducible. The quality scores of surrounding error
positions correspond to the overall run performance that
was slightly better in run 4 and 5 and below expectations
for run 6 due to variations of the complex workflow and
chemistry.
Comparing the quality values of the actual error pos-

ition to their neighborhood (see Figure 1) reveals that
the erroneous base is represented by a quality valley.
Figure 1 reveals that quality values of areas of errors
are below other positions, the actual error position is
even lower.
Homopolymers
Homopolymers form a major challenge in base calling
algorithms in the 454 sequencing systems, thus, errors
turning up are highly connected to homopolymer re-
gions [4,24]. On a first glance 50.4% of errors outside
homopolymeric regions may seem contrary. Considering
the distribution of homopolymers with given lengths in
the reference sequences for HLA, it is significant
(p<0.01) that homopolymers are more attractive to form
errors than single bases (proportions are plotted in
Figure 2). The length of homopolymers correlates with
a decrease of accuracy drops in general, with the ex-
ception of 2-mers having the best quality scores at
error positions, displayed in Figure 3.

Conclusions
In this study we present a detailed error characterization
of 454 sequencing using data from a diagnostic assay. In
our amplicon sequencing approach exactly 0.18% of total
bases used for HLA typing are erroneous. This error rate
supports and allows the benefit of typing HLA with 454
next generation sequencing. Although amplicon sequen-
cing is considered as more sophisticated than shotgun
from a bioinformatics perspective [27], the presented
data are even better than previously published shotgun
approaches [28].
Several software products are able to correct errors,

however most of them are specialized on a specific
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application and sequence context. Moreover, if error
models are already known, many tools are able to
simulate sequencing data with a reference sequence
but without taking neighboring sequence motifs into
account [31-33].
Additionally, knowing error rates allows for the reduc-

tion of sequence depth needed for a certain accuracy
[34], furthermore allowing diagnostics to be more cost-
effective. The given data outperforms previous publications
using test fragments, non human samples or outdated soft-
ware or reagents.

Methods
Clinical setting and experimental design
Genomic DNA used for GS Junior sequencing originates
from routine HLA typing for haematopoietic stem cell
transplantations. Ten typical Caucasian samples were
randomly selected for a detailed analysis of sequencing
performance. Specimens were collected after signing a
written consent for sequence based HLA typing. For this
particular study an approval by an ethic committee was
not required. It was a technical study with no impact on
patients or their treatment. Genomic DNA was isolated
with an automated DNA isolation system (MagnaPure
Compact, Roche Diagnostics, Mannheim, Germany),
followed by amplification of 17 amplicons for six loci of
HLA typing with Expand High Fidelity PCR System
(Roche Diagnostics, Penzberg, Germany) and automated
purification and pooling with a Hamilton Microlab STAR
(Hamilton Robotics GmbH, Martinsried, Germany). The
created pool was independently sequenced six times.
Emulsion-PCR and bead recovery were performed
according to supplier’s instructions (Roche 454 Life Sci-
ences, Branford, USA). Automated enrichment with REM e
(Roche 454 Life Sciences, Branford, USA) was used for en-
richment of beads in runs 1 to 4, implemented on a
Hamilton Microlab STARlet (Hamilton Robotics GmbH,
Martinsried, Germany), magnet time 80 sec, 12 wash steps.
Enrichment for runs 5 and 6 was performed manually. Runs
1 to 3 were sequenced with beads from the same bead pool
(see Figure 6). Sequencing with GS Junior system, Titanium
chemistry (Roche 454 Life Sciences, Branford, USA) was
done following the manufacturer’s instructions without
modifications. So, we do not compare library preparation
but intrinsic 454 sequencing performance irrespective of
sample DNA quality, PCR amplification bias and gen-
eral library preparation issues.

Data analysis
Data processing was carried out on the GS Junior at-
tendant PC with default settings for Amplicon sequen-
cing without any modifications to processing pipeline
or filtering. HLA genotypes are routinely typed with
ATF software (Conexio Genomics, Perth, Australia).
For assessment of variations and errors the GS
Amplicon Variant Analyzer (AVA) (Roche 454 Life Sci-
ences, Branford, USA) was used for alignment and out-
put of sequences.

Variant and error detection
Genotypes of tested samples were determined before-
hand by Sanger SBT. Therefore expected variants could
be defined with an allele database (IMGT/HLA 3.7.0
2012–07) [35]. To overcome missing intron information
in the allele database only exon sequence was consid-
ered. In principle, AVA software does not output all
detected variants by default. Therefore variants were
generated by a Perl script (Roche 454 Life Sciences,
Branford, CT, USA) going through all multiple alignments
in AVA and reporting discrepancies from the reference se-
quences. Sequences A*01:01:01:01, B*07:02:01, C*01:02:01,
DQB1*02:01:01, DRB1*01:01:01 and DPB1*01:01:01 were
used as references.
Detected variants were compared to known variants.

For locus A, exon 2 the pseudogen HLA-Y is amplified
by approximately 25%, for locus DRB1 the loci DRB3,
DRB4 and DRB5 are amplified also. These known side-
products were not considered as errors. Alignments
were examined for pseudogene evaluation.
As an error correction tool Acacia [21] was used with

default parameters, the improved sequences were inves-
tigated with respect to the previous error results.

Statistics
A series of Perl 5.10.0 scripts (The Perl Foundation,
Walnut, CA, USA) was used for variant data extraction,
mapping of quality values to variant positions and as-
sessment of read qualities and homopolymer runs. R
2.14.2 (2012-02-29) [36] was used for graphics gener-
ation and statistical tests. For averaging quality scores
they were translated to error rates, then averaged and
transferred back to average quality scores.

Availability of supporting data
Sequence information is available at NCBI’s SRA data-
base, accession number SRP020222.
Additional file

Additional file 1: Error positions per amplicons. Additional
documentation is provided in portable document format (.pdf), including
plots of frequent error positions per amplicon.
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