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Modelling and visualizing fine-scale linkage
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Abstract

Background: Detailed study of genetic variation at the population level in humans and other species is now possible
due to the availability of large sets of single nucleotide polymorphism data. Alleles at two or more loci are said to be in
linkage disequilibrium (LD) when they are correlated or statistically dependent. Current efforts to understand the
genetic basis of complex phenotypes are based on the existence of such associations, making study of the extent and
distribution of linkage disequilibrium central to this endeavour. The objective of this paper is to develop methods to
study fine-scale patterns of allelic association using probabilistic graphical models.

Results: An efficient, linear-time forward-backward algorithm is developed to estimate chromosome-wide LD
models by optimizing a penalized likelihood criterion, and a convenient way to display these models is described. To
illustrate the methods they are applied to data obtained by genotyping 8341 pigs. It is found that roughly 20% of the
porcine genome exhibits complex LD patterns, forming islands of relatively high genetic diversity.

Conclusions: The proposed algorithm is efficient and makes it feasible to estimate and visualize chromosome-wide
LD models on a routine basis.

Background
Alleles at two loci are said to be in linkage disequilibrium
(LD) when they are correlated or statistically dependent.
The term refers to the idea that in a large homoge-
neous population subject to random mating, recombina-
tion between two loci will cause any initial association
between them to vanish over time. In observed data,
however, non-zero allelic associations are pervasive, par-
ticularly at short distances, but also at long distances and
even between chromosomes. These associations arise in
a complex interplay between processes such as mutation,
selection, genetic drift and population admixture, and are
broken down by recombination. The patterns of associ-
ation are of interest, partly because they underpin the
relation of genotype to phenotype at the population level,
and partly because they reflect population history.
Patterns of LD may be represented in different ways. A

common method is to display pairwise measures of LD
as triangular heatmaps [1,2]: in these displays, LD blocks
(genomic intervals within which all loci are in high LD)
stand out clearly. Early work in the HapMap project led
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researchers to hypothesize that the human genome con-
sists of a series of disjoint blocks, within which there is
high LD, low haplotype diversity and little recombination,
and that are punctuated by short regions with high recom-
bination (recombination hotspots) [3-6]. Subsequently
various authors [7,8] reported that genetic variation fol-
lows more complex patterns, for which richer models are
required.
Discrete graphical models [9] (also known as discrete

Markov networks) provide a rich family of statistical mod-
els to describe the distribution of multivariate discrete
data. They may be represented as undirected graphs in
which the nodes represent variables (here, SNPs) and
absent edges represent conditional independence rela-
tions, in the sense that two variables that are not con-
nected by an edge are conditionally independent given
some other variables. To motivate this focus on condi-
tional rather than marginal associations, consider three
loci s1, . . . s3, and suppose that initially s2 is polymor-
phic and s1 and s2 monomorphic, so that two haplotypes
(1, 1, 1) and (1, 2, 1) are initially present. Suppose further
that a mutation subsequently occurs at s1 in the haplo-
type (1, 1, 1), and another at s3 in the haplotype (1, 2, 1),
so that the population now contains the four haplotypes
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(1, 1, 1), (1, 2, 1), (2, 1, 1) and (1, 2, 2). Observe that in gen-
eral s1 and s3 are marginally associated (are in LD), but in
the subpopulations corresponding to s2 = 1 and s2 = 2
they are unassociated: in other words, they are condi-
tionally independent given s2. More complex mutation
histories give rise to more complex patterns of condi-
tional independences that can be represented as graphical
models [8].
Other authors have used graphical models for the

joint distributions of allele frequencies. Usually, in high-
dimensional applications, attention is restricted to a
tractable subclass, the decomposable graphical models
[10]. In the first use of decomposable models in this con-
text [11], models were selected using a greedy algorithm
based on significance tests. In [8,12] methods and pro-
grams for selecting decomposable graphical models using
Monte Carlo Markov Chain (MCMC) sampling were
described. Thesemethods are computationally feasible for
modest numbers of markers (say, several hundreds), but
not for modern SNP arrays with hundreds of thousands of
SNPs per chromosome. To improve efficiency, the search
space may be restricted to graphical models whose depen-
dence graphs are interval graphs [13,14]. These are graphs
for which each vertex may be associated with an interval
of the real line such that two vertices are connected by an
edge if and only if their intervals overlap. In this context
the ordering of SNPs along the real line is their phys-
ical ordering along the chromosome. MCMC sampling
from this model class may be performed more efficiently
[13,14]. This work was extended in [15] to a more general
subclass of decomposable models, namely those in which
distant marker pairs (i.e., with more than a given num-
ber of intervening markers) are conditionally independent
given the intervening markers.
In an alternative approach [16-18] latent mixtures of

forests have been applied, in order to accommodate
short-, medium- and long-range LD patterns. Also
directed graphs (Bayesian networks) have been applied,
selecting edges and their directions using causal discovery
algorithms [19]. There are close links between decompos-
able models and Bayesian networks ([10], Sect. 4.5.1).
A rather different approach to modelling the joint dis-

tribution of allele frequencies [20,21] is implemented
in the software package BEAGLE [22], which is widely
used to process data from SNP arrays. The approach is
based on a class of models arising in the machine learn-
ing literature called acyclic probabilistic finite automata
(APFA) [23]. These are related to time-variant variable
length Markov chains. For phase estimation and impu-
tation BEAGLE uses an iterative scheme analogous to
the EM algorithm, alternating between sampling from a
haplotype-level model given the observed genotype data
(the E-step) and selecting a haplotype-level model given
the samples (theM-step). A similar computational scheme

for decomposable graphical models has been described
and implemented in the FitGMLD program [15].
Characterization of genetic variation at the population

level is of fundamental importance to understanding how
phenotypes relate to genotypes. Some specific uses to
which joint models for allele frequencies have been put
include

1. Insight into the population history of different
genomic intervals. Under simplifying assumptions,
the ancestral history of a short genomic interval can
be reconstructed from a decomposable graphical
model for the SNPs in the interval [8].

2. Quality control of genome assembly, in that some
motifs may suggest errors in SNP positioning.

3. Phase estimation and imputation as described above
[15,21].

4. Derivation of more informative covariates involving
multiple loci to plug into genomic prediction models
[20].

5. Use in pedigree simulation to model LD in founders,
for example in connection with gene drop simulation
[14] and assessment of SNP streak statistics [24].

In this paper decomposable graphical models are used
to model fine-scale, local LD patterns. By local is meant
that the proposed methods are designed to capture short-
range associations between loci, but not long range ones.
The same is true of other approaches [13-15] men-
tioned above. Here, an efficient, linear-time algorithm is
developed to select a model using a penalized likelihood
criterion, and it is shown how such a model may conve-
niently be displayed, allowing fine-scale LD structure to
be visualized.

Methods
Graphs and graphical models
The following notation and terminology is mainly based
on [9]. A graph is defined as a pair G = (V ,E), where V
is a set of vertices or nodes and E is a set of edges. Each
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Figure 1 Running times of the two algorithms. The running times
(in minutes) of the forward step of the standard and fast algorithms
for the different chromosomes and breeds are shown in (a) and (b),
respectively.
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Table 1 The performance of the two algorithms

Breed chr N p |Es| under over |Esp| under over ts tf tsp tfp width

duroc 1 4249 2863 4762 0 0 4340 0 0 35084 1153 37 37 15

duroc 2 4249 2113 3676 0 3 3339 2 2 18450 920 26 27 10

duroc 3 4249 1535 2873 1 13 2643 4 15 8695 679 20 20 8

duroc 4 4249 2211 4392 0 0 4012 0 0 24005 1007 35 36 11

duroc 5 4249 1255 2357 7 2 2166 8 2 6030 559 16 16 10

duroc 6 4249 1937 3358 0 0 3069 0 0 15396 778 24 24 12

duroc 7 4249 1911 3978 0 3 3621 0 2 19112 966 36 36 12

duroc 8 4249 1694 3136 3 3 2871 3 3 12193 808 24 24 12

duroc 9 4249 1749 3399 3 14 3087 5 17 13904 841 26 27 14

duroc 10 4249 1078 2178 0 0 1980 0 0 3991 482 15 15 12

duroc 11 4249 1145 2493 0 2 2294 0 3 6206 680 19 19 16

duroc 12 4249 973 1857 0 0 1689 0 0 3138 399 13 13 10

duroc 13 4249 2365 3998 0 7 3634 0 2 23112 1019 29 29 9

duroc 14 4249 2252 4037 0 3 3731 0 2 23291 1016 29 29 14

duroc 15 4249 1605 2977 0 0 2717 0 0 10757 707 22 22 11

duroc 16 4249 1148 2249 0 0 2032 0 0 4936 549 16 16 10

duroc 17 4249 941 1856 1 3 1703 1 3 3034 427 12 12 10

duroc 18 4249 792 1402 0 0 1262 0 0 2032 341 9 10 9

landrace 1 1979 4071 7679 0 5 7020 0 4 87941 1295 63 64 12

landrace 2 1979 2153 4058 0 0 3690 0 0 14868 595 28 29 12

landrace 3 1979 1957 4036 1 5 3664 4 3 13841 605 30 31 17

landrace 4 1979 2210 4498 1 1 4111 3 2 16629 634 33 33 12

landrace 5 1979 1489 3368 0 7 3090 1 4 6511 447 24 25 16

landrace 6 1979 2163 4113 0 0 3753 0 0 14664 577 28 28 12

landrace 7 1979 2116 4634 0 0 4238 0 0 16385 666 36 37 13

landrace 8 1979 1836 3989 2 4 3682 4 4 11989 611 28 29 14

landrace 9 1979 2301 4897 0 4 4415 0 5 20077 758 40 40 13

landrace 10 1979 1077 2285 3 11 2074 9 9 2997 334 16 16 14

landrace 11 1979 999 2150 0 0 1954 0 0 2492 289 15 15 11

landrace 12 1979 1098 2573 0 0 2332 0 0 3420 376 21 21 11

landrace 13 1979 2734 5295 0 7 4868 3 6 30046 870 39 40 12

landrace 14 1979 2709 4819 1 4 4454 5 3 26602 673 33 33 17

landrace 15 1979 1666 3507 8 13 3202 10 12 9888 486 25 25 15

landrace 16 1979 1181 2403 0 0 2179 0 0 3747 339 15 16 10

landrace 17 1979 1025 2227 1 3 2017 3 3 2390 279 15 15 11

landrace 18 1979 934 1890 0 2 1721 3 3 1981 256 12 12 9

yorkshire 1 2123 3904 6700 1 3 6112 1 1 65538 1065 51 52 11

yorkshire 2 2123 2202 4311 1 8 3968 3 9 16548 644 32 33 11

yorkshire 3 2123 1994 4440 0 9 4016 1 10 17020 751 39 39 13

yorkshire 4 2123 2246 4359 3 3 3979 4 3 15429 550 32 32 12

yorkshire 5 2123 1525 3145 0 0 2864 0 0 6471 454 22 22 16

yorkshire 6 2123 2045 3876 2 2 3513 2 2 13313 556 27 27 11

yorkshire 7 2123 2363 5342 0 11 4894 4 10 27929 866 44 46 14

yorkshire 8 2123 1868 3887 1 5 3593 1 3 14254 662 27 28 11
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Table 1 The performance of the two algorithms (continued)

yorkshire 9 2123 2119 4174 0 3 3757 1 5 15108 653 31 31 11

yorkshire 10 2123 1193 2518 0 0 2268 0 0 3757 360 19 19 12

yorkshire 11 2123 1269 2851 0 0 2633 0 0 5501 483 20 20 12

yorkshire 12 2123 1061 2287 0 0 2068 0 0 2885 324 17 17 10

yorkshire 13 2123 2759 4935 0 0 4544 0 0 27100 785 35 35 13

yorkshire 14 2123 2482 4732 0 6 4353 1 4 22286 749 34 33 11

yorkshire 15 2123 1669 3321 0 4 3030 2 5 8385 501 24 24 12

yorkshire 16 2123 1207 2575 1 5 2345 2 5 3734 339 17 17 10

yorkshire 17 2123 1176 2446 2 7 2223 3 8 3621 339 16 17 14

yorkshire 18 2123 825 1618 2 6 1445 6 6 1434 215 10 11 9

The table shows the performance of the algorithms applied to the pig data. N and p denote the numbers of observations in the data and number of SNPs available
after filtering. The edge sets found in steps 1 and 2 of the standard algorithm are denoted Es and Esp , respectively: for the fast algorithm they are denoted Ef and Efp .
The numbers of undershoots and overshoots, i.e. |Es \ Ef | and |Ef \ Es| for step 1, and |Esp \ Efp| and |Efp \ Esp| for step 2, are also shown. The corresponding running
times in seconds are denoted ts , tf , tsp and tfp , respectively. The backward step is much faster than the forward step in both cases (tsp and tfp). Overall, the fast algorithm
is 23.4 times faster than the standard algorithm, and its inaccuracy, assessed as

∑
(|Es \ Ef | + |Ef \ Es|)/ ∑

(|Es|), is 0.0012. The last column shows the maximumwidth of
G = (V , Es). The computations were run under Redhat Fedora 10 Linux on a Intel i7 four-core 2.93GHz machine with 48 GB RAM.

edge is associated with a pair of nodes, its endpoints. Here
only undirected graphs are considered, that is, with graphs
undirected edges only. Two vertices α and β are said to
be adjacent, written α ∼ β , if there is an edge between
them. The neighbours of a vertex is the set of nodes that
are adjacent to it. A subset A ⊆ V is complete if all vertex
pairs in A are connected by an edge. A clique is a maximal
complete subset, that is to say, a complete subset that is
not contained in a larger complete subset.
A path (of length n) between vertices α and β in an

undirected graph is a set of vertices α = α0,α1, . . . ,αn =
β where αi−1 ∼ αi for i = 1, . . . , n. If a path α =
α0,α1, . . . ,αn = β has α = β then the path is said to be
a cycle of length n. If a cycle α = α0,α1, . . . ,αn = α has
adjacent elements αi ∼ αj with j �∈ {i − 1, i + 1} then it
is said to have a chord. If it has no chords it is said to be
chordless. A graph with no chordless cycles of length ≥ 4
is called triangulated or chordal.
A subset D ⊂ V in an undirected graph is said to sepa-

rate A ⊂ V from B ⊂ V if every path between a vertex in
A and a vertex in B contains a vertex from D. The graph
G0 = (V0,E0) is said to be a subgraph of G = (V ,E) if
V0 ⊆ V and E0 ⊆ E. For A ⊆ V , let EA denote the set of
edges in E between vertices in A. Then GA = (A,EA) is the
subgraph induced by A.
The boundary bd(A) of a vertex set A ⊆ V is the set of

vertices adjacent to a vertex in A but not in A, that is

bd(A) = {v ∈ V : v ∼ w for some w ∈ A} \ A.
Let G = (V ,E) be an undirected graph with cliques

C1, . . .Ck . Consider a joint density f () of the variables in
V. If this admits a factorization of the form

f (xV ) =
k∏

i=1
gi(xCi)

for some functions g1() . . . gk() where gj() depends on x
only through xCj then f () is said to factorize according to
G. If all the densities in a model factorize according to G,
then the model is said to be G-Markov. When this is true
G encodes the conditional independence structure of the
model, through the following result (the global Markov
property): whenever sets A and B are separated by a set
C in G, A and B are conditionally independent given C
under the model. This is written as A⊥⊥B |C. A decom-
posable graphical model is one whose dependence graph
is triangulated.

Selecting graphical models for chromosome-wide LD
Suppose that N observations of p SNPs from the same
chromosome are sampled from some population. The
variable set is written V = (v1, . . . vp), and it is assumed
that these are ordered by physical position on the chro-
mosome. The variables may be either observed genotypes
or inferred haplotypes, if these have been imputed: the
former are trichotomous and the latter binary. Here an
algorithm to use these data to select a graphical model
for the distribution of V is described. It is based on a
penalized likelihood criterion

IC(G) = −2�̂G + α dim(G) (1)

where �̂G is themaximized log-likelihood under G, dim(G)

is the number of free parameters under G, and α is a penal-
ization constant. For the AIC, α = 2 and for the BIC,
α = log(N). The latter penalizes complex models more
heavily and so selects simpler models. Under suitable reg-
ularity conditions, the BIC is consistent in the sense that
for largeN it will select the simplest model consistent with
the data ([25], Sect. 2.6).
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A technical but nonetheless important point is that
calculation of the correct model dimension is not straight-
forward for high-dimensional models, since not all
parameters may be estimable. A simple expression exists
however for the difference in model dimension between
two decomposable models that differ by a single edge
([10], pp. 37-40). This is useful when the search space is
restricted to decomposable models and the search algo-
rithm only involves comparison of models differing by
single edges (as here).
A forward-backward approach to estimate the graphi-

cal model for V is used. The first (forward) step is based
on a greedy forward search algorithm. To take account
of the physical ordering of the SNPs, the algorithm starts
from a model G0 = (V ,E0) where E0 is the set of edges

between physically adjacent SNPs: this model is called
the skeleton. To seek the minimum BIC (or AIC) model,
the algorithm repeatedly adds the edge associated with the
greatest reduction in BIC (AIC): only edges whose inclu-
sion results in a decomposable model are considered.
The process continues until no more edges improve the
criterion. The search space in this step is the class of
decomposable models that include the skeleton. Note that
this algorithm – as with almost all greedy algorithms — is
not guaranteed to find the global optimum.
There are several advantages to initially constraining the

search space to include the skeleton. An unconstrained
search starting off from the null model (with no edges)
would not take the physical ordering into account. Since
the graphs considered are consistent with this ordering,
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Figure 2 The LDgraph for Duroc chromosome 1. The estimated LD graph for chromosome, constructed using the unphased genotypes, is shown.
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Figure 3 Entropy versus height and width for Duroc
chromosome 1. In (a) a plot of median entropy, a measure of
haplotype diversity, versus width for Duroc chromosome 1 is shown.
In (b), a corresponding plot of median entropy versus height is
shown. The entropy was calculated for each interval of 7 adjacent
SNPs using the phased data.

they are conveniently displayed as LD maps, as illustrated
below. Because decomposable models contain no chord-
less cycles of length ≥ 4, two distal loci cannot be linked
by an edge unless there are sufficiently many interme-
diate (chordal) edges to prevent the occurrence of such
cycles. Thus the algorithm proceeds by filling out around
the skeleton by incrementally adding edges. The effect of
this is that only local LD is modelled. Since both asso-
ciation and (implicitly) proximity are required, the edges
included are more likely to be for real (that is, less likely
to be due to chance), so in this sense the model selection
process is more reliable. In addition, restricting the search
space in this way improves computational efficiency. The
linear-time algorithm described in the following section
also builds on the physical vertex ordering.
In the second (backward) step the graph found in the

first step is pruned, again using a greedy algorithm that
seeks to minimize the BIC (AIC) criterion by remov-
ing edges, without requiring that the skeletal edges are
retained. Keeping these in themodel would be appropriate
if adjacent SNPs are in high LD, but this is not always the
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Figure 4 The subgraphs of typical low and high complexity
intervals. The subgraphs of a typical low complexity interval (SNPs
1800-1825) and high complexity interval (SNPs numbered 2470-2495)
are shown in (a) and (b), respectively.

(a) (b)
Figure 5 The sample tree for the low and high complexity
intervals. Sample trees for the low and high complexity intervals are
shown in (a) and (b), respectively. The trees are based on the phased
haplotype data. The root node is drawn on the left. Edge widths are
proportional to the numbers of observations passing through the
edges. The colour of the edges signifies the allele: red is 1 and blue 2.
It is seen that the interval shown in (a) has low haplotype diversity,
dominated by a single common haplotype, whereas that shown in
(b) has high haplotype diversity, with one or two relatively common
haplotypes.

case. For example, there may be recombination hotspots,
or genome assembly errors may have led to errors in posi-
tioning the SNPs. The graphs may be used to examine
whether this has occurred.
To display the resulting graph, a suitable graph lay-

out is needed. After some experimentation, one such
was obtained by modifying the horizontal dot layout
in Rgraphviz [26], by exponentially smoothing the y-
coordinates and replacing the x-coordinates with the

Pairwise LD

Physical Length:1597.3kb

R2 Color Key

0 0.2 0.4 0.6 0.8 1

Figure 6 A triangular heatmap for the low complexity interval.
A heatmap of the pairwise LD values in the low complexity interval is
shown. All associations are high.
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SNP-number. In this way the y-coordinates are chosen so
as to clarify the graphical structure: a consequence of this
is that nodes with large absolute y-coordinates tend to
signal genomic regions of high structural complexity.
For some purposes it is helpful to use more objective

measures of complexity, and two such measures are used
here. Consider a chromosome with p SNPs. For each i =
1, . . . p−1, the height hi of the interval between SNPs i and
i+1 is defined to be the number of edges of the form (j, k),
where j ≤ i and i+1 ≤ k, and the width wi is defined to be
the maximum value of |k − j| of such edges. Note that by
the global Markov property, when hi = 0 or equivalently
wi = 0, the SNPs V≤i = {vj : j ≤ i} are independent of
V>i = {vj : j > i}. Similarly, when hi = 1 or equivalently
wi = 1, V<i ⊥⊥V>i|vi.
As a measure of haplotype diversity, the entropy [27] is

used here. Suppose that in some genomic interval there
are k distinct haplotypes with relative frequencies f1, . . . fk .
Then the entropy is defined as H = − ∑

i=1...k fi log fi. It
is large when there are many distinct haplotypes that are
equally frequent.
A useful way to display marker data over short genomic

intervals is the sample tree [23]. This summarizes a set of
discrete longitudinal data of the form x(v) = (x(v)

1 , . . . x(v)
q )

for v = 1 . . .N . A rooted tree is constructed in which the
non-root nodes represent partial outcomes of the form
(x1, . . . xk) for k ≤ q present in the sample data. Edges
may be coloured with the marker value and labelled with
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Figure 7 A triangular heatmap for the high complexity interval.
A heatmap of the pairwise LD values in the high complexity interval is
shown. The LD values form a mosaic of mostly low associations.

the corresponding sample counts, or drawn with width
proportional to the sample counts.

A fast selection algorithm
For high-dimensional models, the first step of the algo-
rithm described above can be computationally demand-
ing. To address this a much faster algorithm for the same
task is now described. This involves combining a series
of overlapping marginal models of lower dimension. Call
the block length (model dimension) L and the overlap K.
Thus the first block is V1 = {v1, . . . vL}, the second is
V2 = {vL−K+1 . . . v2L−K } and so on. In the applications
described here L = 100 and K = 20 are used.
Suppose that the true model for V = (v1, . . . vp) is G,

and that Ĝ is the estimate of G obtained by performing
the first step of the algorithm described in the previous
section. The goal is to construct an approximation G̃ to Ĝ
by combining models Ĝi = (Vi, Êi) obtained by applying
that same algorithm to blocks Vi for i = 1, 2 . . . .
A way to construct amodel G̃12 forV1∪V2 by combining

Ĝ1 and Ĝ2 is now described. Let m∗ = max{w : ∃ (v,w) ∈
Ê1 with v ≤ L − K}. Then G̃12 is defined as G̃12 = (V1 ∪
V2, Ê01 ∪ Ê02), where Ê01 = {(v,w) ∈ Ê1 : w ≤ m∗} and
Ê02 = {(v,w) ∈ Ê2 : w > m∗}.
The rationale for this is that marginal models may

include spurious associations on the boundaries. For
example, let G1 and G2 be the subgraphs of G induced by
V1 and V2, respectively. Then the marginal distribution
of V2 will not in general be G2-Markov, but it will be G∗

2 -
Markov for a graph G∗

2 derived from G2 by completing
the boundary of each connected component of GV\V2 in
G [28]. So Ĝ2 will tend to contain edges not in G2. To esti-
mate the boundary ofV1\V2 in G, Ĝ1 is used: the boundary
is estimated to be contained in the set L − K + 1, . . . ,m∗.
Hence by only including edges (v,w) ∈ Ê2 with w > m∗
edges in this boundary are omitted. Similarly, the bound-
ary of V2 \ V1 in G1 may contain spurious associations,
so Ê01 may contain unnecessary edges. To avoid this the
overlap length K is chosen to be sufficiently large so that
m∗ < min{v : ∃ (v,w) ∈ E2 with w ≥ L + 1}. If the
maximum width was known in advance this inequality
could be ensured by setting K to be twice the maximum
width, but so large a value appears to be unnecessary
in practice.
The algorithm proceeds in the obvious fashion com-

bining G̃12 with Ĝ3 and so on. Since the construction
may result in chordless cycles it is necessary to triangu-
late the resulting graph G̃. This can be done using the
maximum cardinality search algorithm [29] which can be
implemented in linear time.
Assuming that the time for deriving the estimates Ĝi for

fixed L is bounded, the algorithm described here is by con-
struction linear in p. But the proportionality constant can
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Figure 8 The LD graph for Duroc chromosome 1 based on phased data. The estimated LD graph for Duroc chromosome 1, constructed using
the phased haplotypes, is shown.

be expected to be depend on various factors, such as the
density of the minimum AIC/BIC model.

Implementation
The methods are implemented in a set of R functions
which are provided as Additional files 1 and 2 to the paper.
The selection algorithms build on the forward search algo-
rithm implemented in the stepw function in the gRapHD
package [30]. Currently this function requires that there
are no missing data. The backward search algorithm
was developed by the author in the course of prepar-
ing this paper, and has subsequently been implemented
in the gRapHD package. The functions to perform the

selection algorithms, and others to work with and display
the graphs, build on the following packages: igraph [31],
graph [32], Rgraphviz [26] and gRapHD. The triangular
heatmaps were produced using the LDheatmap package
[33]. Simulation from a fitted decomposable model was
carried out using the gRain package [34]. The package
rJPSGCS provides an interface between R and the Fit-
GMLD programwhich was used to perform the algorithm
of [15].

Results
To illustrate the methods described above, they were
applied to SNP data obtained from three commercial
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pig breeds. In all 4239, 1979 and 2123 pigs of the Duroc,
Landrace and Yorkshire breeds were genotyped using the
Illumina Porcine SNP60 BeadChip [35]. After prepro-
cessing on the basis of call rate, minimal allele frequency
and other quality criteria, missing values were imputed
using BEAGLE [22]. Using the methods described above,
decomposable graphical models were selected for each
chromosome and breed, using data at the genotype
level. The BIC penalizing constant α = log(N) was used
throughout.
Figure 1 compares the running times of the two algo-

rithms, and confirms that the fast algorithm is approxi-
mately linear in the number of SNPs. Table 1 gives more
detailed information. It is seen that the estimate G̃ is
indeed a good approximation to Ĝ, and that the algorithm
is considerably faster than the standard greedy algorithm.
Figure 2 shows the LD graph for one chromosome

(Duroc chromosome 1): the same graph is obtained with
both algorithms. It is a long thin graph with 2863 nodes
and 4340 edges. It has 32 connected components, of which
20 are isolated vertices — suggesting SNP positioning
errors — and four are long intervals with 997, 569, 786
and 452 SNPs. Curiously, the subgraph induced by the last
35 SNPs contains 7 connected components, which sug-
gests positioning errors in this region. The most striking
feature of the graph is that for about 80% of the chromo-
some, a simple serial or near-serial association structure
is found, but for the remaining 20% more complex pat-
terns of LD are observed. Similar results are found for all
chromosomes and breeds.
Genomic intervals with simple association structure

tend to be associated with low haplotype diversity, and

Table 2 Results from simulations

Skeleton LD graph

Undershoot Overshoot Undershoot Overshoot

81 0 117 73

84 0 146 82

82 0 138 81

84 0 122 94

83 0 161 84

76 1 141 77

88 2 127 70

81 0 133 92

79 3 138 79

85 1 133 90

The table summarizes the inaccuracy of the fast selection algorithm applied to
data sets simulated under two models for Duroc chromosome 1: the skeleton,
and the more complex LD graph shown in Figure 2. The columns labelled
undershoot and overshoot show |E \ Ej| and |Ej \ E|, where E and Ej are the edge
sets of the true model and the model found by the algorithm, respectively. For
the data sets simulated under the skeleton, the edgewise false negative rate
1

10|E|
∑

j |E \ Ej| is 0.029 and the false positive rate 1
10|E|

∑
j |Ej \ E| is 0.00024.

Under the more complex LD graph, the corresponding rates are 0.031 and 0.019.

intervals with complex structure with high diversity
(Figure 3). To further compare the low and high complex-
ity regions, two representative intervals of the same length
were selected: SNPs numbered 1800-1825 (low complex-
ity), and SNPs numbered 2470-2495 (high complexity).
These have sample entropies of 0.79 and 4.05, respectively.
Their subgraphs are shown in Figure 4, and their sam-
ple trees in Figure 5. These show the low diversity of the
low complexity interval, and the relatively high diversity
of the high complexity interval. Corresponding triangular
heatmaps are shown in Figures 6 and 7. The low com-
plexity interval has high LD whereas the high complexity
interval shows a more mosaic structure.
Thus low complexity regions tend to consist of series

of haplotype blocks with high LD and low haplotype
complexity, and may be dominated by a few common hap-
lotypes. In contrast, regions of high complexity tend to
have high haplotype diversity and little or no haplotype
block structure. It must be stressed that the SNPs in such
regions are not generally in linkage equilibrium: on the
contrary, complex patterns of association, not marginal
independences, are observed.
Figure 2 and Table 1 show the results of applying the

algorithms to unphased, genotype data, but as mentioned
above they may also be applied to phased haplotype-level
data. This implicitly regards the inferred haplotypes as a
random sample of size 2N from an underlying population
of haplotypes. Analyses based on inferred haplotypes may
be subject to a loss of efficiency [36]. For the current data
phase imputation was carried out using the BEAGLE soft-
ware [22]: applying the fast algorithm to the phased data
for Duroc chromosome 1 resulted in the graph shown in
Figure 8. This is slightly denser than the graph in Figure 2,
with 375 more edges. This may be ascribed to the reduced
model dimension due to the use of binary rather than tri-
chotomous variables, which leads to a weaker penalization
of complex models in (1). Haplotype- and genotype-level
graphical models are related but in general distinct: it
has been shown that they are identical only when the
haplotype-level graph is acyclic [37].
To assess the accuracy of the algorithm, twenty simu-

lated data sets each with the same number of observa-
tions as the data sets analyzed above (N = 4239) were
constructed. The first ten were generated by taking N
random samples from the skeleton, that is, the graphi-
cal model with edges between physically adjacent SNPs
only, fitted to the Duroc chromosome 1 genotype data.
The second ten were generated by taking N random sam-
ples from the model shown in Figure 2, fitted to the
same data. The results of applying the fast algorithm to
each data set are summarized in Table 2. For the skele-
ton, the edgewise false negative rate was 0.029 and the
edgewise false inclusion rate was 0.00024. For the model
in Figure 2 the corresponding rates were 0.031 and 0.019.
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To visually represent the latter results, Figure 9 shows
a graph G = (V ,∪jEj), in which the edge colours rep-
resent the frequency that the edge was found in the 10
models. The graph suggests that model uncertainty is pri-
marily restricted to the genomic intervals with complex
dependence structure.
Finally, for comparison purposes the algorithm of [15]

was applied to the Duroc chromosome 1 genotype data.
This algorithm automatically imputes phase and miss-
ing marker data, cycling between imputation and model
selection as sketched in the background section. The
selected graph is shown in Figure 10. Like the graphs

shown in Figures 2 and 8, it is long and stringy, but rather
more dense. This greater density may be explained by
the use in [15] of a Metropolis acceptance rule that is
based on the penalized likelihood (1), but with a smaller
penalizing constant α = (1/8) log(N). A detailed compar-
ison of the two algorithms would be valuable but is not
attempted here.

Discussion
This paper has introduced an efficient, linear-time
forward-backward algorithm to estimate chromosome-
wide probabilistic graphical models of fine-scale linkage
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Figure 9 The union of LD graphs for Duroc chromosome 1 derived from ten simulated data sets. The figure represents the results of applying
the fast algorithm to ten data sets simulated under the LD graph shown in Figure 1. The union of the ten selected graphs is shown. Edges present in
all ten graphs are black, and the colour of the others is interpolated between light blue (those found once) and blue (those found nine times).
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Figure 10 Haplotype-level graph found using the algorithm of [15]. The figure shows the result of applying the algorithm of [15] to the same
data set as used with Figure 2. The algorithm estimates a haplotype-level graph for the data.

disequilibrium, and has described a convenient way to dis-
play these models. In illustration, the methods have been
applied to data obtained from three commercial breeds of
pigs using the Illumina Porcine SNP60 BeadChip.
The forward part of the algorithm proceeds by com-

bining a series of overlapping marginal decomposable
models of dimension L and overlap length K. This implic-
itly assumes that the maximum width of the true graph is
at most K. The resulting model is then triangulated and
backward selection performed. The search space closely
resembles that of [15], which samples from decomposable
models with a given maximum width, using sliding win-
dows. The difference in approaches lies primarily in the

search method: here greedy search to optimize a penal-
ized likelihood criterion is used, whereas in [15] MCMC
sampling methods are applied.
The R function used for greedy forward search currently

requires that the input data contain no missing values, so
it was necessary to impute missing values prior to per-
forming the algorithm, and the BEAGLE software [22] was
used for this. This raises the possibility of circularity, or
more precisely, that the model selection is influenced by
constraints or assumptions implicit in the models used
by BEAGLE. But given BEAGLE’s high imputation accu-
racy with such data it seems unlikely that this plays an
important role here.
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The algorithm was found to have high accuracy when
applied to simulated data sets of the dimensions con-
sidered here (N ∼ 4000; p ∼ 3000), with edgewise
false positive and negative rates of around 3%. That it is
good at reconstructing the model generating the data is
reassuring. Needless to say, the algorithm does not nec-
essarily identify the “true” model, which may not be in
the search space. As noted previously, the approach cap-
tures short range associations, but not long range ones.
Moreover, higher edgewise false negative rates may occur
when observed data are used if there are infinitesimal
departures from a model that are not detectable at the
given sample size, as these are filtered out when data are
simulated under a selected model.
A comparison of triangular heatmaps with LD graphs

is instructive. The former are compact graphical rep-
resentations of all pairwise marginal associations for a
set of SNPs. They are particularly well-suited to iden-
tify LD blocks, which stand out as highlighted triangles.
LD graphs supplement heatmaps by showing patterns of
association but not their strength. Since they are paramet-
ric models they can be put to a number of quantitative
uses as described in the background section. At one level,
heatmaps and LD graphs convey similar information,
since intervals with simple dependence structures tend to
appear as series of LD blocks in the heatmap, whereas
those with complex structures tend to occur in the inter-
block regions and have a more mosaic appearance. But
the graphs provide a more incisive characterisation of
genetic variation, building on the concept of conditional
rather than marginal dependence. In this regard, it may
be helpful to regard conditional independence statements
as expressing the notion of irrelevance, in the sense that
A⊥⊥B |C implies that if we know C, information about
A is irrelevant for knowledge of B. Thus the graphs say
something about connections between specific SNPs, for
example about which SNPs are required to predict a
specific SNP.
The graphs may also be useful in fine mapping.

Genome-wide association studies seek to find the genetic
basis of complex traits, typically using single locus meth-
ods - that is, by identifying SNPs with strong marginal
association with the complex trait. Due to LD, many SNPs
in a genomic region may exhibit strong association with
the trait, making it hard to identify the causal loci. A
way to address this is to assess the effect of a putative
causal SNP on the complex trait in a linear model that
also includes terms for the two flanking SNPs, in order to
adjust for confounding with nearby effects due to LD. This
implicitly assumes a simple serial dependence structure
between the SNPs, and when the dependence structure
is more complex such adjustment might be insufficient,
leading to false positives. This may be prevented by
including terms for the neighbours of the putative causal

SNP, not just for the flanking SNPs. Any SNP is separated
from the remaining SNPs by its neighbours, so by the
global Markov property it is independent of the remain-
ing SNPs given its neighbours. A similar method has been
proposed based on Bayesian networks [38].
Like graphical models, the APFA models that under-

lie BEAGLE may be represented as graphs that encode a
set of conditional independence relations, but in a very
different way. In the present context, for example, nodes
in APFA graphs represent haplotype clusters rather than
SNPs. Where the model classes intersect, APFA graphs
are much more complex than the corresponding depen-
dence graphs, and so less amenable to visualization.
A striking feature of the LD graphs for the pig data was

that for roughly 80% of the genome, simple serial or near-
serial LD patterns were found, but for the remaining 20%,
more complex patterns were observed. The regions with
the simple serial structure tend to have low haplotype
diversity, which is to be expected in livestock breeds with
small effective population sizes [39]. Perhaps more unex-
pected is that roughly 20% of the porcine genome exhibits
complex LD patterns, forming islands of relatively high
genetic diversity. This informationmay be useful in an ani-
mal breeding context, to identify regions with high genetic
variation. It will also be interesting to compare graphs
obtained using different SNP densities in a given breed
or species to examine whether and how their topologies
change with varying marker densities.

Conclusions
The proposed algorithm is efficient and makes it feasible
to estimate and visualize chromosome-wide LD models
on a routine basis.
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