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Abstract

Background: A large-scale, highly accurate, machine-understandable drug-disease treatment relationship
knowledge base is important for computational approaches to drug repurposing. The large body of published
biomedical research articles and clinical case reports available on MEDLINE is a rich source of FDA-approved
drug-disease indication as well as drug-repurposing knowledge that is crucial for applying FDA-approved drugs for
new diseases. However, much of this information is buried in free text and not captured in any existing databases. The
goal of this study is to extract a large number of accurate drug-disease treatment pairs from published literature.

Results: In this study, we developed a simple but highly accurate pattern-learning approach to extract
treatment-specific drug-disease pairs from 20 million biomedical abstracts available on MEDLINE. We extracted a total
of 34,305 unique drug-disease treatment pairs, the majority of which are not included in existing structured
databases. Our algorithm achieved a precision of 0.904 and a recall of 0.131 in extracting all pairs, and a precision of
0.904 and a recall of 0.842 in extracting frequent pairs. In addition, we have shown that the extracted pairs strongly
correlate with both drug target genes and therapeutic classes, therefore may have high potential in drug discovery.

Conclusions: We demonstrated that our simple pattern-learning relationship extraction algorithm is able to
accurately extract many drug-disease pairs from the free text of biomedical literature that are not captured in
structured databases. The large-scale, accurate, machine-understandable drug-disease treatment knowledge base
that is resultant of our study, in combination with pairs from structured databases, will have high potential in
computational drug repurposing tasks.

Background
Computational drug repurposing approaches
Drug repurposing, the use of known drugs to treat new
diseases, has been growing in importance in the last few
years [1,2] because of the prohibitively high cost of drug
development, as well as its increasing failure rate. Many
computational strategies for drug repurposing have been
published [3]. These approaches include repositioning
based on chemical similarity [4,5], molecular activity sim-
ilarity [6,7], molecular docking [8], gene expression simi-
larity [9,10], and drug side effect similarity [11]. Recently,
Chiang et al proposed a data-driven approach to using
FDA-approved drug-disease treatment associations for
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drug repurposing [12]. Even though Chiang’s study used
only FDA-approved drug-disease pairs, the researchers
were able to infer novel drug uses based on shared treat-
ment profile using a network-based, guilt-by-association
method.
A vast amount of drug-disease treatment information

exists in the large corpus of published biomedical litera-
ture, especially in published clinical trial studies and case
reports. Currently, there are 591,623 clinical trial reports
and 1,554,544 clinical case reports available on MED-
LINE. The drug-disease relationships in biomedical lit-
erature include FDA-approved, experimental, and unsuc-
cessful or failed associations. In the USA, and many other
countries, off-label use of prescribed drugs are common
[13] and many of these off-label new drug usage results
have published in clinical case reports. Consider the fol-
lowing sentence from a clinical case report: “Imatinib
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in the treatment of follicular dendritic sarcoma: a case
report and review of literature." (PMID 17596748). This
sentence contains drug repurposing information of using
imatinib to treat follicular dendritic sarcoma, for which
surgery and radiotherapy are considered as the main-
stay treatment options. Another clinical case study exam-
ple is the repurposing of gabapentin, an FDA-approved
drug for controlling seizures in patients with epilepsy,
to treat patients with tinnitus, as shown in sentence:
“Gabapentin for the treatment of tinnitus: a case report”
(PMID 11233342). In this study, we develop a large-scale,
pattern-based relationship extraction algorithm to extract
drug-disease treatment pairs from published biomedical
literature. These pairs include FDA-approved, experimen-
tal, and even failed drug-disease associations (the reasons
behind failed drug indications are important for drug
repurposing). Currently, there exists no knowledge base
for failed drug-disease associations.
A large-scale and accurate list of drug-disease treat-

ment pairs derived from published biomedical literature
can be used for drug repurposing in two ways: first,
the extracted pairs themselves contain many interesting
drug-disease repurposing pairs with evidence from case
studies or small-scale clinical studies (as shown above).
Second, these pairs can be used in network-based sys-
tems approaches for drug repurposing. For example, if
drug 1 is similar to drug 2 (similarity can be measured
based on shared genes, pathways, gene expression pro-
files, chemical structures or phenotypes), and disease 1
can be treated by drug 1 (based on drug-disease relation-
ship), then we can hypothesize that disease 1 can also be
treated by drug 2. This is a very simple example andwe can
add more constraints to the repurposing algorithms, but
drug-disease relationships will be important to connect
drugs to diseases.

Drug-disease relationship extraction from biomedical
literature
Currently, more than 20 million biomedical abstracts
are available on MEDLINE, making it a rich source
of biomedical information, including drug-disease treat-
ment associations. However, despite the sheer volume
of published articles, most of the available knowledge
is buried in free text with limited machine understand-
ability. Common approaches for relation extraction use
rule-based, statistical approaches, machine learning or
natural language processing (NLP) techniques [14-18].
Automatically extracting drug-disease treatment relation-
ships from free text is an active research area. Cimino
et al. used MeSH descriptors and co-occurrence statis-
tics to generate semantic relation extraction rules in
order to detect relations in MEDLINE article titles [19].
Lee et al. and Abacha et al. applied manually built patterns
to identify treatment specific relations between drugs and

diseases [20,21]. Rosario et al. classified seven relation
types, including drug-disease treatment type, using gen-
erative and neural network models [22]. Chen et al. used
co-occurrence statistics to rank the association between
eight disease and relevant drugs[23]. Rindflesch et al.
developed the SemRep system to identify semantic rela-
tions in the biomedical literature based on linguistic
analysis of text and domain knowledge [24]. Recently,
Neveol et al. automatically extracted and integrated drug
indication information from multiple resources [25]. To
extract drug-disease relationships from biomedical text,
the researchers use MeSH terms to retrieve related arti-
cles from which drug-disease treatment pairs are then
extracted. Many of the above studies leveraged MeSH
terms in order to extract treatment-specific drug-disease
pairs. However, not all drug-disease treatment pairs were
captured by MeSH terms. For the two drug repurpos-
ing case studiesmentioned previously: “imatinib-follicular
dendritic sarcoma” and “gabapentin-tinitus”, neither of the
pairs are specified in MeSH headings. Machine-learning
approaches have been applied to extract drug-disease
treatment pairs from free text. Bundschus et al. developed
a conditional random fields method to identify the seman-
tic relations between diseases and treatments [26]. The
researchers trained and tested the model on a manually
annotated text corpus consisting of 3570 sentences gener-
ated fromMEDLINE 2001 abstracts and reported a 79.5%
accuracy in identifying treatment semantic relationship.
Similarly Islamaj Dogan et al. developed a context-blocks
model for identifying clinical relationships, including
treatment semantic relationship, in patient records. The
model was trained and tested on a set of 826 patient
records and achieved a F-score of 0.704 in identifying
drug-disease treatment relationship. Even though both
studies reported high performance in identifying treat-
ment semantic relationship from manually annotated test
dataset, it is still unknown if these models are generaliz-
able and if they can achieve the same high performance
when tested on all MEDLINE abstracts using all known
drug-disease treatment pairs (eg., pairs extracted from
FDA drug labels or pairs from ClinicalTrials.gov) as test
data.
In this study, we develop a large-scale pattern-based

approach to extracting drug-disease treatment associa-
tions from 20 million MEDLINE articles. Unlike previ-
ous studies, our study does not rely on MeSH terms or
manually annotated training datasets to classify extracted
drug-disease pairs and requires minimal human effort.
While most relationship extraction methods put equal
emphases on precision and recall, our study focuses on
building a large scale and accurate drug-disease treat-
ment relationship knowledge base for the purpose of
‘in silico; drug target discovery and drug-repurposing;
therefore high precision, large-scale (not necessary high
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recall) and unbiasedness are important. The assumption
underlying our pattern-learning approach is that even
though treatment-specific semantic relationship between
a drug and a disease can be expressed in many differ-
ent ways due to the flexibility and expressive nature of
human natural language, these patterns are not randomly
distributed. There exist predominant patterns that peo-
ple are commonly used to describe treatment-specific
drug-disease associations, such as “DRUG in the treat-
ment of DISEASE” and “DRUG for the treatment of DIS-
EASE.” In fact, searching MEDLINE for the phrase “in the
treatment of,” we retrieved more than 250,000 sentences.
Searching for a more specific phrase “in the treatment of
breast cancer,” we retrieved more than 1500 sentences.
The drugs used to treat breast cancer include tamoxifen,
dibromodulcitol , trastuzumab, lapatinib, vindesine, letro-
zole among many others. Of these drugs, only a few are
FDA-approved. In this study, we first automatically learn
treatment-specific textual patterns using known drug-
disease pairs. We then extract additional drug-disease
pairs from published biomedical literature using these
learned patterns.

Data andmethods
The entire experimental process consistes the following
steps: (1) obtain and parse entire MEDLINE corpus; (2)
create disease and drug lexicons; (3) tag MEDLINE sen-
tences with drug and disease entities; (4) Find treatment
specific patterns; (5) extract additional pairs from MED-
LINE with selected patterns; and (6) perform semantic
analysis of extracted drug-disease pairs (Figure 1).

Obtain MEDLINE data
We have used 20 million MEDLINE abstracts (roughly
100 million sentences) published from 1965 to
2010 as the text corpus for our task of treatment-
specific drug-disease relationship extraction. The 2010

MEDLINE/PubMed baseline XML files was down-
loaded from NLM’s anonymous FTP server at
ftp://ftp.nlm.nih.gov/nlmdata/.medleasebaseline/. The
MEDLINE XML files were then parsed. Abstracts and
titles were extracted and split into sentences.

Create drug and disease lexicons
Clean and MEDLINE-specific disease lexicon: Highly
accurate and comprehensive lexicons are prerequisites for
many biomedical relationship extraction tasks, including
our task of extracting drug-disease pairs from MEDLINE.
In this study, we created a clean and MEDLINE-specific
disease lexicon by combining an automatic approach
and manual curation (Figure 2). The disease lexicon is
based on the UMLS (Unified Medical Language Sys-
tem) Metathesaurus (2009 AB version) and Human Dis-
ease Ontology (HDO). We first created a disease lexicon
of 528,198 distinct terms by combining UMLS terms
with following semantic types: “Disease Or Syndrome,”
“Neoplastic Process,” “Sign Or Symptom,” “Congenital
Abnormality,” “Mental or Behavioral Dysfunction,” and
“Anatomical Abnormality.” We then added 32,414 dis-
tinct terms from HDO (http://bioportal.bioontology.org/
ontologies/1009) . The initial disease lexicon consisted
of 529,179 distinct terms. Since our task in this study is
to extract drug-disease relationship from MEDLINE, we
are only interested in disease terms that have appeared
in MEDLINE at least once. One of our previous studies
has shown that many UMLS terms have never appeared
in MEDLINE [27]. In order to build a MEDLINE-specific
disease lexicon as well as to reduce our manual cura-
tion effort, we tagged all 20 million MEDLINE abstracts
with terms from the initial disease lexicon. We then fil-
tered out terms with MEDLINE frequency of zero. After
this MEDLINE filtering, the disease lexicon consisted of
95,762 terms, a 82% reduction from original lexicon. We
then manually curated the disease lexicon by removing

Figure 1 Flow chart of the overall pattern learning, pair extraction and semantic analysis process. The entire process consisted of the
following steps: (1) obtain entire MEDLINE corpus, (2) create a clean and MEDLINE-specific disease lexicon, (3) tag MEDLINE sentences with drug and
disease entities, (4) extract treatment-specific patterns from tagged MEDLINE sentences using known drug-disease pairs, (5) extract new
drug-disease pairs from tagged MEDLINE using selected patterns, (6) semantic analysis of extracted drug-disease pairs.
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Figure 2 The process in creating a clean andMEDLINE specific disease lexicon.

non-disease terms (ie, brain, liver etc), ambiguous disease
terms (ie consumption, weak etc) and terms that were
too general (ie disorder, disease, deficiency etc). The final
curated disease lexicon consisted of 70,247 terms.
Drug lexicon: The drug lexicon was downloaded from

(http://www.drugbank.ca/) and consisted of 6,516 drugs,
including both FDA-approved drugs and experimental
drugs. The decision of using drug names from DrugBank
instead of RxNORM or other sources is that DrugBank
contains both experimental and FDA-approved clinical
drugs.

Extract known drug-disease pairs from Clinicaltrials.gov
ClinicalTrials.gov is a registry of federally and privately
supported clinical trials conducted in the United States
and around the world. For each of the trials listed
at ClinicalTrials.gov, there is associated medical condi-
tion and drug treatment information. We downloaded
a total of 115,026 clinical trial XML files from Clini-
caltrials.gov (data accessed in 04/2011). A total 196,002
drug-disease pairs were extracted from the downloaded
XML files. Many of the disease and drug names in the
drug-disease pairs were in free text form. In addition,
drug names are often mixtures of drug brand names and
trade names. We performed named entity recognition for
both drug and disease terms. We then mapped drug trade
names to their generic names. Drug generic names as
well as trade names were downloaded from DrugBank.
After these steps, total 52,000 drug-disease pairs were
obtained. These pairs were subsequently used as input
(or seeds) to learn treatment-specific patterns, which then
were used to extract additional drug-disease pairs from
MEDLINE.

Tag MEDLINE sentences and extract patterns
We taggedMEDLINE sentences with disease entities from
the clean disease lexicon and drug entities from the drug
list we extracted from DrugBank. The tagging was based
on case-insensitive extact string matching for high pre-
cision an d efficiency. For each sentence tagged with

both drug and disease entities, we extracted the textual
patterns between each pair. The pattern could be “DRUG
pattern DISEASE” if the drug entity precedes the dis-
ease entity or “DISEASE pattern DRUG” vice versa. For
example, from the phrase: “Role of irinotecan in the treat-
ment of small cell carcinoma” (PMID: 11995707), we
extracted the pattern “DRUG in the treatment of DIS-
EASE.” From the sentence: “Seventeen womenwith breast
cancer were treated with tamoxifen (20 mg, twice a day)”
(PMID 06798066), the pattern “DISEASE were treated
with DRUG” was extracted.

Find treatment-specific patterns
Drug-disease pairs from ClinicalTrials.gov were first used
as input to learn drug-disease treatment-specific patterns.
Then the learned patterns were used to extract additional
pairs from MEDLINE. For example, using the pairs from
ClinicalTrial.gov, we learned a treatment-specific pattern
“DRUG in the treatment of DISEASE”. We then used
this learned pattern to extract additional drug-disease
pairs from MEDLINE, which were not included in Clin-
icalTrials.gov. If the pattern “DRUG in the treatment of
DISEASE” is associated with 1,000 pairs from Clinical-
Trials.gov and 10,000 pairs in MEDLINE, then we will
extract an additional 9,000 pairs from MEDLINE using
this pattern.
The patterns between drug entities and disease enti-

ties are often highly complicated. The patterns can be
very general such as “DRUG and DISEASE” or very spe-
cific such as “DRUG in combination with 5-FU/leucovorin
(LV) was subsequently evaluated as first-line therapy for
DISEASE” as shown in the sentence “Irinotecan in combi-
nation with 5-FU/leucovorin (LV) was subsequently evalu-
ated as first-line therapy formetastatic colorectal cancer
in two randomized, phase III studies” (PMID 11585970).
In addition, the patterns between a drug entity and a DIS-
EASE entity are often unrelated to drug treatment. For
instance, the pattern “DRUG-induced DISEASE” in sen-
tence “Tamoxifen-induced endometrial cancer” (PMID
12701962) is related to drug side effect. In order to find

http://www.drugbank.ca/
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drug treatment specific patterns, we extracted the tex-
tual patterns between known drug-disease pairs from
Clinicaltrials.gov. We then ranked the patterns by the
number of associated known drug-disease pairs. Finally,
we manually examined the top patterns and selected drug
treatment specific ones. After the ranking step, the time
required to examine the top ranked patterns was minimal
(less than 10 minutes).

Extract additional pairs fromMEDLINE with selected
patterns
For each of the manually selected treatment-specific pat-
terns, we extracted its associated drug-disease pairs from
tagged MEDLINE sentences. These patterns were learned
using known drug-disease pairs. Here, we used them to
extract additional drug-disease pairs fromMEDLINE.

Evaluate extracted drug-disease pairs
In order to evaluate drug-disease pairs extracted from
MEDLINE, which include FDA-approved as well as exper-
imental drug-disease pairs, we manually created two
MEDLINE-specific datasets to evaluate the precision and
recall of the extraction algorithm. The first evaluation set
consisted of drug-disease treatment pairs for the drug
“irinotecan”. The second set consisted of drug-disease
pairs for the disease “thrombocytopenia”. To create the
“Irinotecan-Disease” evaluation set, we first retrieved
all MEDLINE sentences (not just sentences containing
the patterns) tagged with the term “irinotecan” and at

least one disease term. We then manually extracted 360
treatment-specific pairs from these sentences. For cre-
ating the evaluation set “Drug-Thrombocytopenia”, we
retrieved all MEDLINE sentences tagged with throm-
bocytopenia and at least one drug term. We manually
extracted 43 treatment specific pairs from those sen-
tences. The annotation task was performed by three
curators. Each curator independently annotated tagged
sentences and created two evaluation sets. Only the pairs
agreed upon by all three curators were used in the final
evaluation. The two sets were created independent of
the methods we used (evaluators did not know the pat-
terns we used). In this way, the final performance cap-
tured the effect of both the learned patterns and the
quality of the drug and disease lexicons. Standard pre-
cision, recall, and F1 measures were used to evaluate
extracted drug-disease pairs. One of the limitations is
that these two manually created evaluation datasets (one
drug and one disease only) may not be representative for
other diseases and drugs. However, due to the intensive
manual curation, we did not create evaluation datasets
for multiple drugs and multiple diseases. Since the aim
of this paper is to extract many additional pairs (pairs
that are not included in ClinicalTrials.gov) from MED-
LINE, we could not use pairs from ClincialTrials.gov
to evaluate these additional pairs extracted from MED-
LINE. But we did used pairs from ClinicalTrials.gov as
prior knowledge (or seeds) to learn treatment-specific
patterns.

Figure 3 Top 100 “DRUG Pattern DISEASE” patterns and associated pairs. The distribution of top 100 patterns along with the numbers of their
associated drug-disease pairs. The textual patterns are in the format of “DRUG pattern DISEASE” where the drug entity precedes the pattern and the
SE entity follows the pattern. Examples include “irinotecan in the treatment of colorectal cancer”.
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Semantic analysis of extracted drug-disease pairs
To demonstrate the potential of the drug-disease pairs
that we extracted from MEDLINE using the selected
patterns in drug repurposing, we studied the correla-
tions of our extracted drug-disease pairs with drug target
genes as well as drug therapeutic classes. We extracted
10,478 drug-target gene pairs fromDrugBank (accessed in
01/2012) and extracted 5,544 drug-ATC associations from
the World Health Organization Anatomical Therapeu-
tic Chemical (ATC) Classification System (http://www.
whocc.no/atc). Examples of these associations include
tamoxifen-anti-estrogens and trometamol-hemofiltrates.
For all drug-drug pairs that shared disease indications,
we calculated the average shared target genes as well as
shared ATC codes, then compared them to those of all
drug-drug pairs.

Results
Analyze patterns associatedwith known drug-disease pairs
Among 52,066 drug-disease pairs extracted from Clinical-
trials.gov XML files, 11,489 pairs co-occurred in MED-
LINE sentences. From these pairs, we extracted 339,746
unique textual patterns in the format “DRUG Pattern
DISEASE” and 173,738 patterns in the form “DISEASE
Pattern DRUG”. Among these patterns, 501,331 (97.6%)
were associated with only one drug-disease pair in the
entire MEDLINE data collection. The distributions of the
top 100 patterns are shown in Figure 3 and Figure 4. As
seen in these two figures, drug-disease pairs are more
often specified in the form of “DRUG pattern DISEASE”

than in “DISEASE pattern DRUG”. In addition, top pat-
terns in the form “DRUG pattern DISEASE” (e.g., “DRUG
in the treatment of DISEASE”) are more specific than
patterns in the form of “DISEASE pattern DRUG” (e.g.,
“DISEASE with DRUG”). This is largely due to the fact
that our algorithm only extracted text patterns between
drug and disease entities, and ignored patterns surround-
ing the pairs. For example, the pattern “treat DISEASE
with DRUG”, instead of “DISEASE with DRUG” is a
treatment-specific pattern. Extracting patterns surround
the drug-disease pairs will involve pattern structure deter-
mination and boundary detection. In the future, we will
incorporate phrase structures into the pattern extrac-
tion process. However, we do believe that simple textual
patterns coupled with the large amount of data (data
redundancy) will get us pretty far in extracting many
drug-disease pairs from MEDLINE. Among the top 100
ranked patterns, many are treatment-specific, such as
“DRUG in the treatment of DISEASE,” “DRUG treatment
of DISEASE,” “DRUG for the therapy for DISEASE” and
“DISEASE were treated with DRUG.” In addition, these
patterns are not randomly distributed as shown in Figure 3
and 4.

Extract additional pairs fromMEDLINE using selected
patterns
We manually examined the top 100 ranked patterns in
the format of “DRUG pattern DISEASE” and selected
17 treatment-specific patterns. This manual examination
took less than 10 minutes. These patterns are: DRUG

Figure 4 Top 100 “DISEASE Pattern DRUG” and associated pairs. The distribution of top 100 patterns along with the numbers of their associated
drug-disease pairs. The textual patterns are in the format of “DISEASE pattern DRUG” where the disease entity precedes the pattern and the drug
entity follows the pattern. Examples include “breast cancer was treated with tamoxifen”.

http://www.whocc.no/atc
http://www.whocc.no/atc
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(in, in the treatment of, for, in patients with, for the
treatment of, treatment of, therapy for, therapy in, for
treatment of, against, in the management of, therapy of,
treatment for, treatment in, in a patient with, in treat-
ment of, in children with) DISEASE. We ignored the
patters in the form of “DISEASE pattern DRUG” since
they are less specific and associated with fewer drug-
disease pairs. Using the selected patterns, we extracted
many additional drug-disease pairs from MEDLINE sen-
tences (Figure 5). For instance, using the pattern “DRUG
in DISEASE”, we extracted a total of 14,400 distinct
drug-disease pairs from MEDLINE. Among them, only
2,431 were pairs from ClinicalTrials.gov. Similar trends
were observed for all other patterns. In summary, from
the selected 17 patterns, we extracted 34,306 unique
drug-disease pairs from MEDLINE. This is a more than
six fold increase compared to their associated 4,535
known pairs extracted from ClinicalTrials.gov. Drug-
disease pairs extracted from MEDLINE combined with
known pairs from ClinicalTrials.gov provide a more com-
prehensive treatment-specific knowledge base for drug
repurposing. In this study, we only selected 17 pat-
terns in the form of “DRUG pattern DISEASE”. In order
to build a more comprehensive drug-disease relation-
ship knowledge base, we may need select more pat-
terns, including patterns in the form of “DISEASE pattern
DRUG”.

Precision and recall evaluation of the extracted
drug-disease pairs
We used two manually curated evaluation datasets to
measure precisions and recalls of extracted drug-disease
pairs. The first evaluation dataset consisted of 360 drug-
disease treatment pairs for the drug irinotecan. Among
these 360 irinotecan-disease goldstandard pairs, 132 pairs
(36.7%) appear in MEDLINE sentences only once. Exam-
ples of these uncommon pairs include irinotecan-uterine
cervical cancer, irinotecan-relapsed rhabdomyosarcoma
and irinotecan-thymic mucoepidermoid carcinoma. The
second evaluation dataset consisted of 43 pairs for dis-
ease thrombocytopenia, among which 9 pairs (20.9%)
appeared in MEDLINE sentences only once. Using the 17
selected treatment-specific patterns, we extracted a total
of 52 irinotecan-disease pairs from MEDLINE sentences.
When evaluated using the irinotecan-disease evaluation
dataset, we achieved a precision of 0.904 and a recall of
0.131. Similarly, we extracted 10 drug-thrombocytopenia
pairs using the selected patterns, with a precision of
0.800 and recall of 0.186 when evaluated using the drug-
thrombocytopenia evaluation dataset (Table 1). As is
the case for many pattern-based relationship extraction
approaches, our algorithm achieved high precisions but
relatively low recalls. If a drug-disease pair appeared in
MEDLINE only once, the chance of it being associated
with any of the selected patterns was small. We then

Figure 5 Drug-disease pairs associated with selected patterns (MEDLINE vs. Clinicaltrials.gov). Number of additional drug-disease pairs
extracted from MEDLINE using each selected pattern. For each pattern, the blue bars show the numbers of associated drug-disease pairs in
ClinicalTrials.gov. The red bars show the number of associated drug-disease pairs in MEDLINE. The difference shows the potentially additional pairs
associated with each pattern.
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Table 1 Precision, recall and F1 values at different
frequency cutoffs

GoldStandard MEDLINE Precision Recall F1

Frequency

Irinotecan-Disease

>= 1 0.904 0.131 0.228

>= 5 0.904 0.357 0.512

>= 10 0.904 0.509 0.651

>= 20 0.904 0.710 0.795

>= 30 0.904 0.842 0.872

Drug-Thrombocytopenia

>= 1 0.800 0.186 0.302

>= 5 0.800 0.333 0.471

>= 10 0.800 0.429 0.558

>= 20 0.800 0.500 0.615

>= 30 0.800 0.667 0.727

The precisions, recalls and F1 values of extracted drug-disease pairs at different
frequency cutoffs. Two evaluation datasets were used: Irinotecan-Disease and
Drug-Thrombocytopenia. The precision, recall and F1 for all extracted pairs
(frequency >= 1) evaluated using Irinotecan-Disease dataset is 0.904, 0.131 and
0.228, respectively.

investigated whether the algorithm had higher recalls for
common pairs. We calculated the recalls of the algo-
rithm with different MEDLINE frequency cutoffs (the
overall precisions did not change at different cufoffs). As
shown in Table 1, the algorithm had much better recalls
in extracting more frequent pairs. For irinotecan-disease
pairs appearing in MEDLINE five or more times, the algo-
rithm achieved a recall of 0.509. The recall increased to
0.842 in extracting pairs appearing in MEDLINE 30 or
more times. Similarly, the recall increased from 0.186
for all drug-thrombocytopenia pairs to 0.667 for pairs
appearing in MEDLINE 30 or more times. In summary,
the pattern-based relationship extraction algorithm yields
high precisions. The recalls of the algorithm depend upon
the pair frequency and increase as the MEDLINE fre-
quency increases. In summary, this pattern-based rela-
tionship extraction approach using a few selected patterns
is able to accurately extract most common drug-disease
pairs fromMEDLINE.

Semantic analysis of extracted drug-disease pairs
Next, we investigated the correlations between extracted
drug-disease pairs and drug target genes as well as with
drug therapeutic classes. We limited the drugs to those
appearing in both extracted drug-disease pairs and drug
target gene association pairs or drug-ATC code associa-
tions. For every drug-drug pair, we computed the number
of shared diseases and shared target genes or ATC codes.
The average number of shared target genes is 0.312 for all
drug-drug pairs. The number increased to 0.597 for drug-
drug pairs sharing at least one disease and to 1.691 for
pairs sharing 10 or more diseases (Figure 6). The average

number of shared ATC is 0.004 for all drug-drug pairs and
0.007 for pairs sharing at least one disease (Figure 7). The
number increased to 0.126 for drug-drug pairs sharing 10
or more diseases. In summary, the extracted drug-disease
pairs have strong associations with both drug targets and
drug treatment classes, and therefore have high potential
for drug repurposing.

Discussion
In this study, we developed a pattern-based relationship
extraction method to mine drug-disease treatment asso-
ciations from 20 million published MEDLINE abstracts.
We extract total of 34,305 unique drug-disease pairs, the
majority of which are not captured in any existing struc-
tured databases. The precision and recall are 0.904 and
0.131 respectively for all pairs, and 0.904 and 0.842 respec-
tively for frequent pairs.
Even though our algorithm has achieved high precisions

and extracted a large number of additional drug-disease
treatment pairs from MEDLINE abstracts, there are sev-
eral limitations to our study: (1) We only used the simple
patterns “DRUG pattern DISEASE”. The recall of such a
pattern critically depends on the coverage of the underly-
ing lexicon. In our future studies, we will experiment two
additional patterns: (a) “NP1 pattern NP2” where NP1
and NP2 are noun phrases; and (b) “NP1 pattern NP2”
where NP1 and NP2 are noun phrases. NP1 contains a
drug term and NP2 contains a disease term. Our current
approach does not use syntactic information, and its
precision and recall depend on the underlying lexicons.
Both patterns (a) and (b) rely on parser information to
reduce the number of patterns extracted and to increase
recall by extracting pairs whose substrings are contained
in the input lexicons. For example, in the sentence, “The
effect of irinotecan in the treatment of metastatic and
recurrent colorectal cancer,” the term “colorectal cancer”
instead of “metastatic and recurrent colorectal cancer” is
included in the disease lexicon. Using the pattern “in the
treatment of”, both pattern (a) and pattern (b) will extract
the correct drug-disease pair “irinotecan-metastatic and
recurrent colorectal cancer”, but our current method
will not, since the term “colorectal cancer” instead of
“metastatic and recurrent colorectal cancer” is included
in the lexicon. (2) This pattern-based method is limited to
extracting pairs from sentences only, not from abstracts.
Though important pairs often appear in sentences, some
drug-disease pairs may appear only in abstracts. In order
to extract drug-disease pairs from abstracts, other rela-
tionship extraction methods will be necessary. However,
as the size of text corpus increases, the likelihood that
drug-disease pairs will appear in a sentence will increase.
(3) Even though we extracted 34,305 unique drug-disease
pairs using only 17 selected top patterns, the top pat-
terns may only capture common drug-disease pairs. If a
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Figure 6 Average number of shared target genes for drug-drug pairs sharing diseases. The average shared target genes is 0.312 for all
drug-drug pairs (shared disease >= 0) and 1.691 for pairs sharing >= 10 diseases. The number of shared target genes increases as the number of
shared diseases increases.

drug-disease pair appears in MEDLINE only once, the
likelihood of it being associated with one of the selected
top patterns is small. In order to increase the recall, we can
increase the number of selected patterns, develop other
algorithms to complement the pattern-based approach,
or increase the size of the text corpus to include full-text
articles, web pages or electronic patient medical records.
(4) Highly accurate and comprehensive lexicons are pre-
requisites for many biomedical relationship extraction
tasks, including our task of extracting drug-disease pairs
from MEDLINE. For drug-disease treatment relationship
extraction from MEDLINE, we can obtain a list of accu-
rate FDA-approved drugs with reasonable coverage from

DrugBank, or PharmGKB. However, obtaining a disease
list with both good accuracy and coverage for this specific
task is more challenging. The precisions and recalls of
using UMLS-based lexicons in extracting diseases from
biomedical text vary [28,29]. In this study, we manually
created a clean disease lexicon by combining a automatic
approach with manual curation. However, there is need
to increase the coverage of the underlying disease lexi-
con [30]. (5) Not all sentences in a document are equally
informative. Sentence type is important for assessing the
strength of extracted drug-disease associations. For exam-
ple, the strength of drug-disease treatment is strong if it
appears in background section sentences or in conclusion

Figure 7 Average number of shared ATC codes for drug-drug pairs sharing diseases. The average shared ATC codes is 0.004 for all drug-drug
pairs (shared disease >= 0) and 0.126 for pairs sharing >= 10 diseases. The number of shared ATC codes increases as the number of shared
diseases increases.
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sentences. On the other hand, drug-disease associations
in objective sections are weaker. We previously devel-
oped an algorithm by combining text classification and
hidden Markov modeling techniques to automatically
structure MEDLINE abstracts [31]. In the future, we plan
to assign a confidence score to each extracted associa-
tion by taking sentence type into account. (6) Negation
detection, or sentimental classification of drug-disease
treatment relationships into subtypes is important. Some
of the possible subtypes of drug-disease treatment rela-
tionships include “effective and safe,” “effective, not safe,”
“safe, not effective,” and “not effective.” Examples include
“Metronidazole proved to be effective and safe in the
treatment of perioral dermatitis in children.” (PMID
09407169) (“effective and safe”); “Anthracyclines are effec-
tive in the treatment of leukemia, but their use is limited
because of cardiotoxicity” (PMID 17043024 ) (“effective,
not safe”); “ Etanercept, at the dosage used, was well tol-
erated but not effective in the treatment of PSC.” (PMID
14992426) (“safe, not effective”); “Azithromycin was not as
effective for the treatment of rosacea.”(PMID 15370397)
(“not effective”). In addition, for repositioning strategies
based on drug-disease treatment similarity, it is necessary
to further differentiate palliative treatments from primary
treatments. (7) Patient population characteristics (e.g. age,
set) are important for better understanding drug-disease
treatment relationships. Consider the following sentence
“Forlax is safe and effective in the treatment of constipa-
tion in children over 8 years old” (PMID 17937851) and
“Lubiprostone (Amitiza), appears to be effective for the
treatment of chronic constipation for elderly patients”
(PMID 18053448).

Conclusions
We developed a pattern-based biomedical relationship
extraction method and extracted 34,305 unique drug-
disease pairs from 20 million MEDLINE abstracts. Our
algorithm achieved a precision of 0.904 and a recall
of 0.131 for all pairs, and a precision of 0.904 and a
recall of 0.842 for frequent pairs. We have shown that
the extracted drug-disease pairs positively correlate with
drug targets as well as therapeutic classes. We demon-
strate that the published articles available on MEDLINE
are a valuable source of drug-disease treatment informa-
tion. The pattern-based relationship extraction algorithm
is able to accurately extract many additional pairs from
MEDLINE. These accurate and machine-understandable
drug-disease pairs have high potential in computational
drug repurposing tasks.
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