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Abstract

databases.

Background: ChIPx (i.e, ChIP-seq and ChIP-chip) is increasingly used to map genome-wide transcription factor (TF)
binding sites. A single ChIPx experiment can identify thousands of TF bound genes, but typically only a fraction of
these genes are functional targets that respond transcriptionally to perturbations of TF expression. To identify
promising functional target genes for follow-up studies, researchers usually collect gene expression data from TF
perturbation experiments to determine which of the TF targets respond transcriptionally to binding. Unfortunately,
approximately 40% of ChIPx studies do not have accompanying gene expression data from TF perturbation
experiments. For these studies, genes are often prioritized solely based on the binding strengths of ChIPx signals in
order to choose follow-up candidates. ChIPXpress is a novel method that improves upon this ChiPx-only ranking
approach by integrating ChIPx data with large amounts of Publicly available gene Expression Data (PED).

Results: We demonstrate that PED does contain useful information to identify functional TF target genes despite its
inherent heterogeneity. A truncated absolute correlation measure is developed to better capture the regulatory
relationships between TFs and their target genes in PED. By integrating the information from ChIPx and PED,
ChIPXpress can significantly increase the chance of finding functional target genes responsive to TF perturbation
among the top ranked genes. ChIPXpress is implemented as an easy-to-use R/Bioconductor package. We evaluate
ChIPXpress using 10 different ChIPx datasets in mouse and human and find that ChIPXpress rankings are more
accurate than rankings based solely on ChIPx data and may result in substantial improvement in prediction
accuracy, irrespective of which peak calling algorithm is used to analyze the ChIPx data.

Conclusions: ChIPXpress provides a new tool to better prioritize TF bound genes from ChIPx experiments for
follow-up studies when investigators do not have their own gene expression data. It demonstrates that the
regulatory information from PED can be used to boost ChIPx data analyses. It also represents an important step
towards more fully utilizing the valuable, but highly heterogeneous data contained in public gene expression
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Background

ChIPx, including ChIP-seq [1,2] and ChIP-chip [3,4], is a
powerful technology for mapping transcription factor
binding sites (TFBSs). Biologists often use it as a
genome-wide screen to identify promising TF target
genes to design follow-up studies or develop mechanistic
hypotheses. A typical ChIPx experiment can identify
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thousands of TF bound genes. However, a large fraction
of the bound genes are usually non-functional, in the
sense that they do not respond transcriptionally to TF
binding [5]. To help with identifying promising targets
for functional studies, many researchers combine ChIPx
data with gene expression data from TF perturbation ex-
periments (i.e., experiments in which the TF is knocked
down, knocked out, or over-expressed, etc.) to search for
genes that are both bound by the TF and differentially
expressed in the TF perturbation experiments. In this
article, genes bound by the TF of interest are called TF
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“binding” targets, whereas genes that are both bound by
the TF and transcriptionally respond to TF perturbation
are defined as “functional” TF target genes. Since
changes in TF binding at the functional targets are asso-
ciated with changes in transcription, it is very likely that
the binding changes at these genes will result in observ-
able phenotype changes. For this reason, biologists often
want to identify the functional targets among the bind-
ing targets to design follow-up studies because studying
the functional genes is more likely to produce clearly in-
terpretable results and may increase the success rate of
the follow-up studies. Unfortunately, a large fraction of
ChIPx studies do not have corresponding TF perturb-
ation gene expression data. For instance, a survey of 58
published ChIPx studies randomly chosen from the
Gene Expression Omnibus (GEO) [6] shows that around
40% (24/58) of the existing ChIPx studies do not have
accompanying gene expression data. In these cases, in-
vestigators usually prioritize TF bound genes according
to the strength of the ChIPx binding signals and then
choose follow-up candidates from the top ranked genes,
based on the assumption that the top ranked binding
targets are more likely to be functional target genes than
the lower ranked binding targets [7]. In order to improve
upon this ChIPx-only based approach, we developed
ChIPXpress to better identify functional TF target genes
among TF binding targets when corresponding TF per-
turbation data is unavailable.

ChIPXpress is a novel method that relies on integrat-
ing large amounts of Publicly available gene Expression
Data (PED) with ChIPx data to better identify functional
TF target genes. It is motivated by the observation that
over 600,000 gene expression samples containing valu-
able biological information are currently deposited in
the GEO, but remain relatively underutilized. The value
of PED has been demonstrated by several groups for
data mining in various applications such as tissue origin
prediction and microarray sample phenotype identifica-
tion [8-10]. However, using PED to improve other gen-
omic analyses, such as ChIPx data analyses, particularly
in complex genomes like human and mouse represents a
novel research area that has yet to be extensively ex-
plored. Two complications that may arise when dealing
with PED are its large heterogeneity, which may give rise
to substantial lab and batch effects [11], and the over-
whelming amount of data. Given its heterogeneity and
size, much remains to be learned as to whether and how
the wealth of information in PED can be effectively used
to boost the analysis of other high-throughput genomic
data. Moreover, the lack of tools to conveniently handle
PED has also prevented many researchers from benefit-
ing from these data in their daily research. Therefore,
there is a need for easy-to-use but effective tools that
can extract meaningful information from PED to
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enhance common genomic analyses. ChIPXpress helps
to fill this role by providing a simple, fast and scalable
algorithm that uses regulatory information from the di-
verse cell types, tissues, and diseases in PED to enhance
functional TF target gene prediction from ChIPx data.
By doing so, ChIPXpress also helps to increase the over-
all value of PED by providing a beneficial tool for re-
searchers to more fully utilize the publicly available and
useful gene expression data.

Ideally, researchers interested in using PED to improve
functional target gene identification would extract only
the relevant gene expression data in PED that applies to
their ChIPx experiment. However, this approach has a
number of limitations. First, it requires non-trivial and
tedious manual work, which currently is a major barrier
that discourages many researchers from using PED. For
instance, researchers will need to collect data that
matches the cell types and conditions of interest in their
ChIPx experiment and then correctly analyze the data to
identify differentially expressed genes. This requires
careful reading of the database annotations to under-
stand the sample origins and associated experimental de-
sign, as well as the biological and technical expertise to
choose the most relevant samples and the most appro-
priate data analysis methods. If multiple TFs need to be
analyzed and each TF has many matching gene expres-
sion datasets in PED, this process would need to be re-
peated multiple times, which may take a significant
amount of effort and time. An alternative solution would
be to automate the manual approach, but currently this
is also very difficult and is not amenable to scale-up.
The main issue with automation is it depends on the
availability of high-quality and computer-friendly sample
and experiment annotations, and requires effective tools
for automatically extracting, accurately interpreting and
analyzing the annotations. Maintaining high-quality an-
notations is non-trivial, as a lot of manual work needs to
be invested during data storage, especially for a database
that is currently growing at an exponential rate. On the
other hand, tools for automatically parsing the annota-
tions to accurately identify the samples, experiment de-
sign information, and the analysis methods are still far
from mature. Thus, it remains difficult to automate this
manual approach. Finally, this approach requires the
availability of matching gene expression samples in PED.
In many cases, especially if the investigator is the first to
study the regulation of a set of TFs in a cell type of
interest, corresponding gene expression data is simply
unavailable since no one has yet to perform the relevant
experiments.

Based on the reasons above, the goal of this article is
to develop a method that can be easily used by re-
searchers to explore the large and highly heterogeneous
data in PED to extract useful biological information for
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identifying functional TF targets among the binding tar-
get genes detected in ChIPx experiments. We wish to
develop an automated method that does not depend on
sample and experiment annotations, so that it can be
easily scaled up to accommodate the rapidly growing
data in PED. Our solution, ChIPXpress, is constructed
based on observing that the global correlation between a
TF and its target genes across a large number of prop-
erly normalized PED samples from diverse cell types and
biological conditions contains valuable information for
identifying functional targets, in spite of the inherent
heterogeneity of PED. We develop a simple ranking al-
gorithm, based on a novel truncated absolute correlation
measure, to combine ChIPx data and PED to more ac-
curately predict functional TF target genes. The algo-
rithm ranks genes predicted to be bound by the TF in
ChIPx data by incorporating the TF binding information
from ChIPx data and correlation in expression between
TF and binding target genes from PED. The main pur-
pose of ChIPXpress is to improve upon the TF-bound
gene rankings generated from existing ChIPx peak call-
ing tools to help identify the most promising functional
target genes for follow-up studies. To evaluate this
method, we applied it to 10 different mouse and human
ChIPx data sets and found that ChIPXpress rankings
consistently performed better than ChIPx-only rankings
and may substantially increase the probability of finding
functional TF targets in the top ranked genes, when re-
searchers do not have their own TF perturbation gene
expression data to accompany their ChIPx data. We also
show that by using PED in its entirety, ChIPXpress
makes it possible to improve functional target gene identi-
fication even when the gene expression data from the
matching cell types and biological conditions are unavail-
able in public gene expression databases. ChIPXpress is
implemented as an R/Bioconductor package which is
freely available at the ChIPXpress website [12].

Methods

Data collection

We developed ChIPXpress using two large compen-
diums of human and mouse gene expression profiles
collected from GEO. The human compendium consists
of 18,257 gene expression samples from the Affymetrix
Human U133 Plus 2.0 (GPL570) array, and the mouse
compendium contains 9,634 samples from the Mouse
430 2.0 (GPL1261) array. Both these compendiums were
compiled by McCall et al. [13,14]. Within each compen-
dium, samples were consistently normalized using frozen
RMA (fRMA) [13], and the normalized expression
values of each gene across all samples were then stan-
dardized to have zero mean and unit standard deviation.
For each gene with multiple probesets, only the probeset

Page 3 of 16

with the highest variance prior to standardization was
retained.

fRMA is a new algorithm that can normalize tens of
thousands of microarray samples collected by different
labs from the same Affymetrix microarray platform. The
algorithm normalizes all samples to a fixed (thus “frozen”)
reference distribution. Since the reference distribution is
frozen, one can process new array samples one-by-one
without renormalizing the old samples. The normalized
values from the new and old samples are directly compar-
able. In this way, one can easily expand the microarray
compendium without incurring significant computational
burden. fRMA can also more effectively reduce probe-
related batch effects [13]. Using the fRMA normalized ex-
pression values, McCall et al. [14] have shown that within
each microarray platform, the biological variation across
the compendium samples from different cell types is larger
than the lab or batch effects. As a result, the normalized
expression values of the same gene can be meaningfully
compared across samples in spite of their heterogeneous
origins [14]. This is consistent with similar observations
made by others [15].

Our exploration of these two PED compendiums fur-
ther confirmed these observations, as we found that TFs
and their known functional target genes (TG) are often
highly correlated across compendium samples despite
their diverse lab and cell type origins. For instance, the
scatter plot in Figure 1A shows the fRMA normalized
gene expression values for the TF Oct4 and its known
target DppaSa across 9,634 mouse expression samples.
The Pearson correlation coefficient between these two
genes is strong, r = 0.892, especially given the heteroge-
neous lab and cell type origins of the compendium sam-
ples. In comparison, the correlation between Oct4 and a
randomly chosen gene is much weaker (r=-0.101) as
shown in the bottom-right corner of the same plot.
Using the Pearson correlation coefficients between Oct4
and all genes as an empirical null distribution, the one-
sided p-value for the observed Oct4-DppaSa correlation
(r=0.892) is less than 0.001. Figure 1B provides another
example where the expression of Jarid2, a known tran-
scriptional repressor, and its repressed target gene
Slc48al, is shown across the same 9,634 mouse expres-
sion samples. Again, the Pearson correlation between
these two genes is strong despite the heterogeneous lab
and cell type origins of the compendium samples
(r=-0.386, empirical p-value less than 0.003). In compari-
son, the correlation between Jarid2 and a random gene is
much weaker (r=0.015) as shown in the bottom-right
corner of the same plot. These examples suggest that the
global correlation between a TF and a gene across the
fRMA normalized PED samples from a diverse collection
of cell types and conditions may correlate with the poten-
tial of a TF bound gene to become a functional target.
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Figure 1 Motivating examples of the value of PED. (A) The TF Oct4 shows strong correlation with its functional target gene Dppa5a, even
though expression is measured from a diverse collection of tissues, diseases, and cell types by different labs. In contrast, a random gene only
shows weak to zero correlation with the TF (bottom-right corner). (B) The transcriptional repressor Jarid2 shows strong negative correlation with
its functional target gene Slc48al. Again, the correlation between the TF and a random gene is weak (bottom-right corner). The plots are based
on 9,634 samples in a compendium of GPL1261 Affymetrix Mouse 430 2.0 arrays, where each dot corresponds to measurements from a single
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This observation motivated the development of
ChIPXpress which attempts to use the global TE-TG
correlation across diverse PED samples to improve
functional target gene prediction.

While the current implementation of ChIPXpress is
based on the two pre-built PED compendiums described
above, the ChIPXpress package also provides the users
with tools to construct their own compendium of expres-
sion profiles from other Affymetrix platforms and species.
The same processing procedure will be used to compile
the new compendium; the gene expression data will be
first consistently normalized and processed with fRMA
and then standardized to have zero mean and unit stand-
ard deviation. Usage of these tools is described in full de-
tail in the vignette manual of the R/Bioconductor package
ChIPXpress.

Truncated absolute correlation

One simple way to measure the global TF-TG correl-
ation is the Pearson correlation coefficient, . One may
compute r between the TF-of-interest and each gene in
the compendium to measure the regulatory potential.
Genes with larger absolute values of » may have higher
probability to be true functional targets. However, this
simple correlation measure has a limitation; namely, it ig-
nores the context-dependency of gene regulation. For ex-
ample, we often observed that when the TF-of-interest is
not expressed, its target genes could still be activated or
repressed by other transcriptional regulators. Figure 2A
shows the expression of Oct4 and its known target Rrn3
across all 9,634 mouse samples in the McCall compen-
dium, where Oct4 and Rrn3 are positively correlated
among samples with medium to high level of Oct4 ex-
pression, but this correlation decreases substantially
when Oct4 expression is low. Among samples with low
Oct4 expression, many still have high Rrn3 expression,

possibly due to existence of other transcriptional regula-
tors that can activate Rrn3. Thus, context-dependency
of gene regulation may decrease the global correlation
between TF and TG. When one uses all compendium
samples to compute the Pearson correlation between
Oct4 and Rrn3, the correlation is r=0.314. Using the
Pearson correlation coefficients between Oct4 and all
genes to construct a null distribution, one can compute
a standardized z-score for the observed Oct4-Rrn3
correlation by subtracting the mean and dividing by the
standard deviation of the null distribution. The re-
sulting z-score is 1.70, which measures the separation
between the observed correlation and the null. In con-
trast, when one excludes samples with low Oct4 expres-
sion and only uses samples in which Oct4 is above the
average Oct4 expression in the compendium to com-
pute the Pearson correlation, the Oct4-Rrn3 correl-
ation increases to r=0.591. One can use the same
truncation approach to compute the correlation between
Oct4 and all other genes to obtain a null distribution and
calculate a z-score. The z-score increases to 2.34, rep-
resenting a better separation between the observed correl-
ation and the null. Figure 2B-D shows a few additional
examples for Gli3 in mouse and ESRI and TFAP2C in hu-
man, where the correlation between TF and TG increases
from 0.396 to 0.534, 0.086 to 0.34, and 0.327 to 0.362,
respectively, when excluding samples in which the expres-
sion of the TF is below the average expression. Figure 2E-F
shows an additional two examples for Jarid2 and Nanog in
mouse, in which the target gene expression is repressed by
the TFs. In both cases, the negative correlation between
the TF and TG became more negative when excluding the
samples with below average TF expression. In all of these
examples, the absolute value of the z-score increases irre-
spective of whether the TFs activate or repress their target
gene. Since similar phenomenon was observed for many
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Figure 2 Scatterplots of TF and target gene correlation and truncated correlation. Plots of the expression of mouse and human
transcription factors (TF) against the expression of one of their known target genes (TG): (A) Oct4, and the expression of its target gene, Rrn3,

(B) Gli3, and the expression of its target gene, £zh2, (C) ESRT, and the expression of its target gene, COPZ1, and (D) TFAP2C, and the expression of
its target gene, RAB3D, (E) Jarid2, and the expression of its target gene, Jund, and (F) Nanog, and the expression of its target gene, Fam168b. In
(A,B,E,F), each point is one of 9,634 samples in the GPL1261 mouse expression compendium and in (C,D), each point is one of 18,257 samples in
the GPL570 human expression compendium. (A-D) Oct4, Gli3, ESRT and TFAP2C are examples of target gene activation by the TF, while (E-F)
Jarid2 and Nanog are examples of target gene repression by the TF. The Pearson correlation () between each TF and TG increases for activated
target genes and decreases for repressed target genes when selecting only the subset of samples with higher than average TF expression (blue).
Furthermore, if one constructs a null correlation distribution for each TF by calculating the correlation between each gene in the compendium
with the TF, one can show that standardized Z-values obtained by subtracting the mean and dividing by the standard deviation of the null
correlation increase in magnitude when excluding samples in which the TF expression is below the average TF expression. This shows that there
is increased separation between the observed correlation and the null distribution.
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known TF-target gene pairs, we decided to use a new stat-
istic, truncated absolute correlation, in ChIPXpress to
more effectively measure the potential of a gene to be a
functional TF target by taking into account the aforemen-
tioned context-dependency.

Assume there are [ samples in the gene expression com-
pendium. Let x; be the expression value of the TF-
of-interest ¢ in sample i, and y,; be the expression of gene
g in sample i. Given a cutoff value, ¢, let C={i: x,;>c}
denote the collection of samples in which the TF expres-
sion is bigger than or equal to c. The truncated Pearson

correlation between the TF ¢ and gene g is defined to be
equal to the Pearson correlation coefficient calculated only
using the samples in C:

Yiecc(®s — X )(ygi - yg)

\/Ztec(xn' - %t)zziec@gi - yg)z

g =

Here, X and y are averages taken across samples in C,
and truncation refers to the exclusion of samples with
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low levels of TF expression (i.e., x; < c). This truncation
can help with excluding samples in which a target gene
is activated or repressed by other transcriptional regula-
tors instead of the TF-of-interest, thus reducing the
amount of noise by removing samples which are not
likely to be informative for inferring the relationship be-
tween the TF-of-interest and its target genes. The trun-
cated absolute correlation, a,,=| r,, | (i.e., the absolute
value of r,,), can then be used to measure the regulatory
strength between the TF-of-interest and each gene in
the compendium. Based on this definition, it is easy to
see that the absolute value of the Pearson correlation co-
efficient is equivalent to a non-truncated absolute correl-
ation, i.e. a,, where ¢ = —co. We will show later that the
truncated absolute correlation performs better than the
non-truncated absolute correlation.

ChIPXpress ranking algorithm

Without gene expression data, one can prioritize TF
bound genes based on the ChIPx signal alone. Using the
PED compendiums, one can also rank the genes based
on the truncated absolute correlation alone. ChIPXpress
generalizes these two methods by combining ChIPx and
PED information together in order to improve upon the
ranking of TF bound genes identified from ChIPx
experiments.

Suppose users have a list of TF bound genes ranked
based on ChIPx data alone. The genes are ranked from
the most to least likely to be regulated by a TF as deter-
mined by the ChIPx signal strength. Since most ChIPx
peak calling algorithms rank their reported peaks, one
can easily generate this list by ranking TF bound genes
according to the highest-ranking peak associated with
each gene. Let P, ({1, ..., G}) denote the ChIPx-only
rank of gene g. For the TF-of-interest ¢ and each TF
bound gene g, one can also calculate the truncated abso-
lute correlation a,, between t and g in the gene expres-
sion compendium using a set cutoff ¢. TF bound genes
can then be ranked based on a,,. Let A, (€{1, ..., G}) be
the rank of the TF bound gene g based on the truncated
absolute correlation calculated from the gene expression
compendium.

ChIPXpress combines the ChIPx-based rank P, and
the PED-based rank A, through a linear combination
Ry=w*Py + (1-w)*A, to produce a new ranking. If a TF
bound gene does not have a corresponding expression
measurement in the gene expression compendium, then
the gene is not ranked by ChIPXpress. We note that,
since the final ChIPXpress score R, is a linear combin-
ation of ranks, a smaller R, score will correspond to a
higher ranked gene.

ChIPXpress has two parameters: the truncation cutoff ¢
for computing the absolute correlation and the weight w
for combining ChIPx and PED information. By default,
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ChIPXpress uses ¢ =0 and w=0.1. This is based on our
systematic tests below which show that irrespective of the
(¢, w) values, the rankings based on R, are able to provide
better or comparable overall performance compared to
rankings based on ChIPx or PED data alone, and the opti-
mal performance was achieved when ¢=0 and w=0.1.
Note that since expression values of each gene are stan-
dardized to have zero mean, ¢ =0 amounts to using the
samples in which the TF expression is above the average
TF expression to compute the correlation.

ChIPXpress implementation

ChIPXpress is currently offered as an R/Bioconductor
package that can be used by any operating system that
supports R. It can be downloaded and installed following
the instructions at the ChIPXpress website [12]. Users will
also need to download the accompanying ChIPXpressData
package, which contains the pre-built mouse and human
gene expression compendiums. If users would like to build
their own gene expression compendium for a different
platform or for a different species, the ChIPXpress pack-
age also provides the necessary functions to do so as
explained in the software manual. To lower the loading
time of the large amount of gene expression data, both
compendiums are stored in big.matrix format using the
bigmemory R package, which requires at least 64-bit of
RAM for large databases (>2GB). Thus, users will be re-
quired to install the 64-bit version of R in order to have
enough memory to load the compendiums.

Results

ChIPXpress is able to improve upon the ChiPx-only
rankings

In order to evaluate ChIPXpress, we analyzed 10 ChIP-
seq, ChIP-chip promoter array, and ChIP-chip whole-
genome tiling array datasets for 9 different TFs — Oct4,
Jarid2, Gli3, Esrrb, and Nanog in mice and MYC, TFAP2C,
HIFIA, and ESRI in human (Table 1). We paired each
dataset with a corresponding TF perturbation microarray
or exon array dataset (i.e. gene expression profiles before
and after alteration of TF expression) (Table 1). For each
pair of ChIPx and TF perturbation data, we constructed
gold standard functional TF target genes by intersecting
the genes that were predicted to be bound by the TF in
ChIPx data and differentially expressed in corresponding
TF perturbation data. To determine TF bound genes, we
processed ChIP-chip data using TileProbe [16] and the
ChIP-seq data using CisGenome [17], and detected ChIPx
peaks at the 10% false discovery rate (FDR) level. A gene is
defined to be bound if there was at least one peak within
10 kb upstream and 5 kb downstream of the gene’s tran-
scription start site. To determine the differentially
expressed genes, we processed the TF perturbation data
with RMA [18] for gene expression microarrays or
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Table 1 Data used to evaluate ChIPXpress

TF Cell type Species Experiment type Source # of GS target genes
Oct4 ESC Mouse ChlIP-seq GSE11724

Oct4 ESC Mouse TFP - knockdown GSE4189

Oct4 ESC Mouse 3010, 1303, 1224
Jarid2 ESC Mouse ChlP-chip (T) GSE19167

Jarid2 ESC Mouse TFP - knockout GSE19165

Jarid2 ESC Mouse 1199, 370, 872
Gli3 Limbbud Mouse ChlP-chip (P) GSE11062

Gli3 Limbbud Mouse TFP - knockdown GSE11062

Gli3 Limbbud Mouse 826,712,676
Esrrb ESC Mouse ChiP-seq GSE11431

Esrrb ESC Mouse TFP - knockdown GSE13212

Esrrb ESC Mouse 4826, 1591, 1377
Nanog ESC Mouse ChlP-seq GSE11431

Nanog ESC Mouse TFP - knockdown GSE4189

Nanog ESC Mouse 701, 560, 712
HIF1A ua7 Human ChlIP-chip (P) GSE18499

HIFTA U251 Human TFP - knockdown GSE7835

HIFTA U251 Human 794, 1192, 725
ESR1 MCF7 Human ChlIP-chip (T) GSE10800

ESR1 MCF7 Human TFP - overexpress GSE11324

ESR1 MCF7 Human 153, 564, 91
MYC Helas3 Human TFP - knockdown GSE5823

MYC Helas3 Human ChlP-seq ENCODE-UTA

MYC Helas3 Human 768, 879, 1055
MYC MCF7 Human TFP - knockdown GSE11791

MYC MCF7 Human ChlIP-seq ENCODE-UTA

MYC MCF7 Human 836, 305, 901
TFAP2C MCF7 Human TFP - knockout GSE8640

TFAP2C MCF7 Human ChlP-seq GSE21234

TFAP2C MCF7 Human 3289, 2302, 3504

TFP TF perturbation gene expression data, P Affymetrix Promoter array, T Affymetrix Tiling array, GS gold standard constructed by intersecting TF bound genes in
ChIPx data with differentially expressed genes in TF perturbation experiments. For each TF, three sets of GS were constructed using three different peak callers.
The table shows the number of GS target genes corresponding to TileProbe, MAT, TileMap for ChIP-chip data (left to right) and CisGenome, MACS, and Original

for ChiIP-seq data (left to right).

GeneBASE implemented in JETTA [19] for exon
microarrays to obtain normalized expression values. We
then analyzed them with limma [20] to detect differen-
tially expressed genes at a 10% FDR cutoff. Genes that
are both bound in the ChIPx data and differentially
expressed in the TF perturbation data are then labeled
as gold standard functional targets. The gold standard
target genes are listed in Additional file 1 and the num-
ber of gold standard target genes for each TF is listed in
Table 1.

For each ChIPx dataset, we then pretended that the
gene expression data from the TF perturbation experi-
ments were not available, and used different methods to
rank genes. The methods we tested include:

(1)ChIPXpress ranking, which ranks TF bound genes
using the default parameter values ¢ =0 and w=0.1.

(2) ChIPx-only ranking, which ranks TF bound genes by
peak strength only using ChIPx data (i.e., peak ranks
provided by the ChIPx peak caller).

(3)GEO-only ranking, which ranks genes by their
truncated absolute correlation, obtained only using
the PED from GEO.

If the TF perturbation experiments used to construct
the gold standard genes were also contained in the PED
compendium, the corresponding samples were removed
from our PED compendium prior to the ChIPXpress
analysis.
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For each test dataset, we compared different ranking
methods based on their ability to identify gold standard
functional TF target genes among the top ranked genes.
In this regard, we computed the percentage of top
ranked targets that were true functional targets, or the
positive predictive value (PPV), for each method. The
PPVs of different methods were then compared. The re-
sults from the ten test datasets were largely consistent,
and Figure 3A shows four representative examples. For
each dataset, the figure shows three curves, correspond-
ing to the PPVs for ChIPXpress, ChIPx-only and GEO-
only rankings, respectively, versus increasing predicted
target gene list size. ChIPXpress outperformed both the
ChIPx-only ranking and the GEO-only ranking, and
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provided the highest percentage of true functional target
genes among the top ranked genes. The level of im-
provement varied across datasets and was substantial in
some cases (e.g. MYC and Jarid2). These analyses show
that incorporating PED can improve upon the ChIPx-
only ranking when an investigator does not have his/her
own TF perturbation gene expression data.

Prediction improvement is not tied to a specific ChIPx
platform or peak calling algorithm

Next, we asked whether the observed improvement
brought by ChIPXpress was tied to a specific ChIPx peak
calling algorithm. To answer this question, we re-defined
TF bound genes with several other peak calling algorithms
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cells, Oct4 target genes in embryonic stem cells (ESCs), Jarid2 target genes in ESCs, and Gli3 target genes in limbbud. The positive predictive value
(PPV) is depicted for the top 50, 100, ..., 1000 predictions. Three different peak technologies are evaluated for each TF: (left-right) ChiP-seq,
(column 1-2), ChiIP-chip whole genome tiling arrays (column 3), and ChIP-chip promoter arrays (column 4). Three different sets of peak callers are
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by detecting ChIPx peaks using their default parameter
settings, and reevaluated ChIPXpress prediction perform-
ance. These additional algorithms include MAT [21] and
TileMap [22] for ChIP-chip data, and MACS [7] and
Original (ie, the peak ranking reported by the original
paper that generated the ChIPx data) for ChIP-seq data.
For each test dataset and peak calling algorithm, we evalu-
ated the ChIPXpress, ChIPx-only and GEO-only rankings.
In each evaluation, the same peak calling algorithm and
parameters were used to obtain the ChIPXpress rankings,
the ChIPx-only rankings, and the TF bound genes used to
construct the gold standard. We found that ChIPXpress
was able to improve upon the ChIPx-only ranking irre-
spective of which ChIPx peak caller was used. For in-
stance, Figure 3B,C shows the results for the same four
datasets in Figure 3A. In all cases, ChIPXpress provided
the best ranking performance. The four datasets in
Figure 3 represented three different platforms for ChIPx
experiments (ChIP-seq, ChIP-chip promoter arrays, and
ChIP-chip whole genome tiling arrays). Altogether, our re-
sults suggest that ChIPXpress is able to improve func-
tional target gene identification irrespective of the ChIPx
platform and peak caller.

ChIPXpress robustly improves ranking for a wide range of
parameter values

The comparisons so far were based on the default pa-
rameters of ChIPXpress. We also studied the perform-
ance of ChIPXpress using a wide range of other
parameter values. To facilitate the comparison, we sum-
marized the ranking performance of each method in
each dataset into a normalized AUC score, calculated
using the Area Under the PPV Curve divided by the
total plot area for the top # (=100, 500 and 1000) predic-
tions. For instance, for each curve in Figure 3 and each
n in {100, 500, 1000}, this amounts to computing the
average of the positive prediction values across the top n
predictions (i.e., adding the positive predictive value at
each possible prediction list size from 1 to # and then
dividing by ). Since 10 datasets were analyzed, 10
normalized AUC (nAUC) scores were obtained for each
n and each ranking method (ChIPx-only, GEO-only, or
ChIPXpress using different parameter values).

We first fixed the weight parameter w to its default
value 0.1 and asked how changing the truncation cutoff
¢ may change the nAUC scores. Six different cutoff
values were tested: ¢ = -0, -2, -1, 0, 1 and 2. Figure 4
shows the results when the ChIP-seq and ChIP-chip
peaks were called using CisGenome and TileProbe re-
spectively. For each ranking method, including ChIPx-
only, GEO-only, and ChIPXpress using different values of
¢, the distribution of the 10 nAUC scores is shown as a
box plot. In the figure, “All” corresponds to ChIPXpress
with ¢=-eo, which is equivalent to computing the
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traditional Pearson correlation coefficients using all the
samples in the compendium and then using their absolute
values to rank genes. Comparing the nAUC scores of dif-
ferent ranking methods, one can see that regardless of
which parameter values were used for the truncation cut-
off ¢, ChIPXpress robustly performed better than or com-
parable to the ChIPx-only and GEO-only rankings. The
figure also shows that ¢ = 0 produced the best overall per-
formance among all the tested methods. This can be seen
by tracking the average nAUC score across different values
of c. Comparing the results for ¢ = —c and the results for
¢=0, one can also see that using the truncated absolute
correlation can improve ranking compared to using the
non-truncated absolute correlation (e.g., the mean and
minimal nAUC scores for ¢ = 0 were bigger than the mean
and minimal nAUC scores for ¢ = —c0),

Next, we fixed the truncation cutoff ¢ to its default
value 0 and asked how changing the weight parameter w
may change the nAUC scores. Eleven different w values
were tested: w=0, 0.1, 0.2, ..., 1. Figure 5 shows the
nAUC scores of ChIPXpress obtained using different w
values. Here, peaks were also called using CisGenome
and TileProbe. Based on the figure, w = 0.1 produced the
best overall performance among all the tested methods.
w=0.1 had the highest mean and median nAUC for
n =500, 1000, and w =0 had the highest mean and me-
dian nAUC for # =100. Similar to before, we found that
ChIPXpress rankings were better (or no worse) than both
the GEO-only rankings and the ChIPx-only rankings irre-
spective of which weight w was used to combine the
ChIPx and PED information. It is important to note that
when w=1, the ChIPXpress ranking is the same as
the ChIPx-only ranking. However, when w=0, the
ChIPXpress ranking is not the same as the GEO-only
ranking (Figure 5). This is because in the GEO-only rank-
ing, no information from ChIPx data, namely whether a
gene is TF bound or not, is incorporated, thus all genes in
the compendium are ranked by the absolute correlation
age In contrast, the ChIPXpress ranking with w=0 first
extracts the subset of genes that are TF bound, and then
ranks the TF bound genes by a,,. Therefore, ChIPx in-
formation is still used for determining which genes are
TF bound. This means that even though the default
weight w = 0.1 for the ChIPx data seems to be small, the
actual contribution of the ChIPx data to the final gene
ranking is more than the 10% represented by the weight
parameter w.

Figures 4 and 5 only show the prediction performance
across the 10 test ChIPx datasets marginally (e.g. either
w or ¢ must be fixed, while the other parameter is
allowed to vary). To visualize the prediction perform-
ance when both w and ¢ are jointly allowed to vary, we
constructed heat maps showing the average nAUC score
of the 10 tested datasets for each w and c pair (Figure 6).
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Figure 6 also shows the results obtained using other
peak calling algorithms to determine TF bound genes.
Since the 10 test datasets contained both ChIP-chip and
ChIP-seq data, we paired the possible peak callers into 3
different ChIPx analysis methods: CisGenome (ChIP-seq)
with TileProbe (ChIP-chip), MACS (ChIP-seq) with MAT
(ChIP-chip), and Original (ChIP-seq) with TileMap (ChIP-
chip). Figure 6 shows that overall, ChIPXpress performed
better than both the GEO-only ranking and the ChIPx-
only ranking irrespective of which ChIPx analysis method
and parameter values (w, ¢) were used. When w =0.1 and
¢ =0, ChIPXpress achieved its best overall prediction per-
formance. Specifically, out of the 9 possible combinations
between =100, 500, 1000 and the 3 ChIPx analysis
methods, w=0.1 and ¢ = 0 offered the highest (or tied for
the highest) mean nAUC among the tested (w, ¢) param-
eter values for 6 out of the 9 combinations. Based on these
results, we set the ChIPXpress default procedure to first
rank the predicted TF-bound genes by calculating a,, by
using only the samples in which the TF expression is
above the average TF expression (c = 0) and then calculate
a final ChIPXpress ranking by combining the ChIPx rank-
ing and a,, ranking with weights 0.1 and 0.9, respectively
(w=0.1).

ChIPXpress is scalable, efficient, and fast

Since ChIPXpress does not depend on sample annota-
tions and is automated, it can be easily applied in a
high-throughput fashion. For instance, ChIPXpress was
recently adopted by hmChIP [23], a database for publicly
available ChIP-seq and ChIP-chip data in human and
mouse, to provide improved target gene rankings for
400+ TF ChIPx datasets. These data can be downloaded
from the hmChIP website [24]. Processing these 400+
datasets using ChIPXpress only took 1 hour on an
800 MHz Quad-core AMD Opteron™ Processor 2384
computer with 4GB of memory. A similar manual ana-
lysis of the 400+ TF ChIPx datasets would be more diffi-
cult and much more time consuming. Thus, ChIPXpress
can dramatically increase efficiency, which is essential
for scale-up.

ChIPXpress may be applied when no matching expression
data are available in PED

Our analyses above show that the global TF-TG correl-
ation, a,q, which reflects the potential of a gene to co-
express (correlate or anti-correlate) with the TF, provides
useful information to help identify a truly functional TF
target gene. This global correlation is supported by large
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1. The TF expression

amount of data from a diverse collection of cell types
and biological conditions. Therefore, removing one or
two cell types from the PED compendium usually has
little effect on a,,. In this sense, the global TF-TG cor-
relation is a general characteristic of a gene that is not
contingent on the availability of one specific cell type in
PED. In ChIPXpress, this global expression correlation is
combined with the cell type and condition dependent
binding information in the ChIPx data to improve target
gene prediction. Genes with large expression correlation
but no binding in the experimental condition of interest
or genes with strong binding but weak expression correl-
ation will not be picked up by ChIPXpress.

Since adding or removing a cell type or condition from
the PED compendium usually has little effect on the global
TE-TG correlation, we speculate that it might be possible
to apply ChIPXpress even when no gene expression data
matching the cell type and condition used for the ChIPx
experiment are available in PED. To test whether this is
the case, we analyzed two ChIPx datasets in Table 1
— human MYC in MCF7 cells and mouse G/i3 in limb
bud — but only after removing all related samples to the
experimental cell type or tissue (i.e., MCF7 and limb bud)
in the gene expression compendium. Removing these

samples was done by manually examining cell type anno-
tations of all samples in the compendium. Since this is a
time-consuming process, we only analyzed the two ChIPx
datasets above. Figure 7A-B shows the PED samples re-
moved (red) and retained (black) for the ChIPXpress ana-
lysis in two examples. This figure shows that the removed
samples are only a small fraction of all samples, and the
global TF-TG correlation pattern remains clear even when
the red dots are not considered. In Figure 7C-D, we
performed analyses similar to Figure 3 after removing the
MCF7 and limb bud samples. Comparing Figure 7C-D
and Figure 3, one can see that removing the samples with
matching cell types from PED had little to no effect on
ChIPXpress prediction performance. Most importantly,
ChIPXpress rankings still performed better than both the
ChIPx-only and the GEO-only rankings. These examples
demonstrate that even when no gene expression experi-
ments have been performed in the cell type or condition
corresponding to the ChIPx experiment, it is still possible
to use ChIPXpress to improve functional target gene rank-
ing compared to using only the ChIPx data.

We also note that while the global TF-TG correlation
computed using PED does not depend on a specific cell
type or condition, it is combined with cell type and
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condition dependent binding information to produce the
final ranking, and therefore the ChIPXpress ranking is
still cell type and condition dependent (e.g., genes with
large “potential” to globally co-express with the TF but
no binding in the experimental condition in question
will not be ranked by ChIPXpress). To demonstrate, the
top 100, 500, and 1000 genes identified by ChIPXpress

using CisGenome from the two MYC datasets in Table 1
— one from MCF7 and one from HelaS3 cells - had
32.0%, 27.2%, and 22.8% overlap, respectively. Thus, the
large majority of highly ranked MYC target genes in
HelaS3 and MCF7 cells are still cell-type specific, even
though the rankings utilize a common measure of TF-
TG correlation in PED.
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matching gene expression data in PED is available. Plot of MYC

ChIPXpress sample commands
ChIPXpress is implemented as an R/Bioconductor
package which can be easily used by researchers. As an
example, below we provide the commands to repro-
duce the Oct4 ChIPXpress analyses described in the
paper. Users will first need to download and install the
ChIPXpress and ChIPXpress data packages. The
ChIPXpress package contains the necessary ranking
functions and the ChIPXpress data package contains
the pre-built mouse gene expression compendium
(GPL1261) used in the paper.

Next, users will need to load the packages and the
mouse gene expression compendium.

library(ChIPXpress)

library(ChIPXpressData)

library(bigmemory)

path < — system.file(“extdata”, package = “ChIPXpress”)
DB < - attach.big.matrix(“DB_GPL1261.bigmemory.
desc”,path)

Then they will need to specify the Entrez Gene ID for
the TF-of-interest, Oct4, and a ranked list of predicted
TF bound genes from ChIPx data.

TFID < - “18999”
data(Oct4ESC_ChIPgenes)
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Finally, users will input the above information into the
ChIPXpress ranking function:

ChIPXpress(TFID,Oct4_ChIPgenes,DB)

The function will output two results. The first is a
ranked vector of Oct4 bound genes sorted from the
smallest to largest R,. The second contains the remaining
Oct4 bound genes that were not found in the compen-
dium. Full details and more examples, including how users
can build their own compendium for different platform or
species, can be found in the accompanying vignette and
help files in the R/Bioconductor package ChIPXpress.

Discussion

We have demonstrated that by using a simple algorithm,
ChIPXpress is able to produce more accurate functional
TF target gene rankings than ChIPx-only and GEO-only
rankings. The method is amenable to scale-up as it does
not require sample annotations. The R/Bioconductor
package makes ChIPXpress easy-to-use for individual in-
vestigators. In addition, our analyses show that it is pos-
sible to use ChIPXpress to improve target gene ranking
even when no related gene expression data is available
in PED. ChIPXpress can help to alleviate many draw-
backs that affect manual approaches to identify func-
tional target genes from ChIPx data. Therefore it
provides a valuable tool for TF target gene prioritization
when users want to analyze their own ChIPx data but do
not have accompanying gene expression data from TF
perturbation experiments. Since most ChIPx studies and
peak detection algorithms provide a list of TF-bound
genes ranked by binding strength, investigators can also
easily use ChIPXpress to quickly survey other ChIPx ex-
periments relevant to the TF and cell type of their
interest.

Although our results show that ChIPXpress is able to
improve functional target gene identification by combin-
ing publicly available gene expression data and ChIPx
data, it is important to mention a few caveats.

First, our truncated absolute correlation measure will
not be able to properly rank genes and transcription fac-
tors that are not measured reliably by microarrays. This
will be the case especially for lowly expressed genes or
transcription factors that are regulated primarily through
post-translational modifications. Fortunately, based on
our experience this does not affect the large majority of
genes and transcription factors, but users will still need
to be aware of this issue when analyzing their own
ChIPx data in case this issue affects their TF-of-interest.
In cases when the TF-of-interest is consistently
expressed at very low levels or shows little variation in
expression across all samples in the PED compendium,
the TF-TG expression correlation may not provide as
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much useful information. To alert users of this possibil-
ity, ChIPXpress reports the mean, variance, and coeffi-
cient of variation for the queried TF computed using
expression values before standardization. Then users will
be warned if any of the three statistics fall below the 5th
or 25th quantile of the distribution of the mean, vari-
ance, and coefficient of variation for all genes in the
compendium.

Second, our target gene rankings assume that func-
tional TF binding will induce significant changes in the
expression of its target genes. This is not always true.
For example, housekeeping genes can be expressed at a
stable level across a variety of cell types and conditions.
This may be because many housekeeping genes are acti-
vated by multiple TFs in different cell types to ensure
consistent expression of the genes. As a result, binding
changes in one TF in a specific cell type may not induce
changes in the expression of these genes. If users are
more interested in all TF target genes irrelevant of
whether or not the target gene is transcriptionally af-
fected by TF binding, then ChIPXpress will not be use-
ful. However, since a large number of investigators —
especially, in initial functional studies to determine
which target genes of a TF should be selected for follow-
up - are interested in target genes that exhibit substan-
tial transcriptional response to TF binding, ChIPXpress
is still broadly applicable.

Third, our modified Pearson correlation coefficient is
not necessarily the best and only way to capture the TF-
TG regulatory information contained in PED. Although
we have shown that it does improve upon the naive
Pearson correlation coefficient by focusing on the sam-
ples in which the TF is likely to be expressed, other mea-
sures that are more robust or accurate may exist and are
worthwhile to explore in the future. For instance, the
global TF-TG correlation used to characterize the possi-
bility of a gene to become a functional target is based on
large amounts of data, and a strong correlation is often
supported by multiple cell types and conditions. If a TF
target gene is functional in only one cell type or condi-
tion and the gene does not respond to the TF binding in
all other cell types or conditions, then it is possible that
the global correlation between the TF and TG across all
PED samples is very weak. In such a scenario, when
ChIPx data is collected from the cell type/condition in
which the target gene is functional, ChIPXpress may not
rank that gene among the top due to its weak global cor-
relation with the TF. How to better identify these types
of genes is still under investigation.

Despite these limitations, it is important to remember
that only after having established the feasibility and con-
cept that the huge and heterogeneous PED can be used
to improve ChIPx data analysis, are we then able to pur-
sue the other avenues of improvement through more
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sophisticated models and measures. One major contri-
bution of the current work is establishing the feasibility
of our approach in complex vertebrate genomes.

In this article, the gold standard target genes used to
evaluate ChIPXpress were obtained by combining ex-
perimental ChIPx data with TF perturbation gene ex-
pression data. A method frequently used to assess ChIPx
peak callers [25] is to measure the motif occurrence rate
among the top ranked peaks. This method was not used
here for evaluation because our goal is to improve the
prediction of functional target genes among the TF-
bound genes rather than detecting the TF binding tar-
gets per se. Previous studies have shown that a signifi-
cant fraction of TF binding targets with motifs and
reliable ChIP-seq signals are not functional [5,26]. Thus,
while the motif occurrence rate is a natural measure to
evaluate quality of the binding peak calls, i.e. whether a
genomic locus is bound or not by the TF, it does not dir-
ectly provide information needed for evaluating the
functionality of the target genes, i.e., whether the TF
binding at a gene will result in transcriptional response.
Functional evidence would require a change in the ex-
pression of the gene in response to binding, which can
only be determined from additional TF perturbation
gene expression data rather than the presence or ab-
sence of TF motifs. This is the reason why TF perturb-
ation experiments are often performed in addition to
ChIPx experiments. It also explains why we relied on TF
perturbation gene expression data rather than motif oc-
currence rate to evaluate the effectiveness of the
ChIPXpress algorithm. Despite this potential limitation
of motif-based evaluation, we did perform a comparison
between ChIPXpress, ChIPx-only and GEO-only rank-
ings based on motif occurrence rates. This comparison
is presented in Additional file 2 for the reader’s refer-
ence. The analysis shows that for the majority of the
data analyzed here, ChIPXpress rankings are associated
with comparable or better motif occurrence rates com-
pared to the other ranking methods.

Currently, ChIPXpress is designed to use large com-
pendiums of gene expression microarray data, but the
same approach in principle can also be used with RNA-
Seq data [27]. This might improve the performance of
ChIPXpress since RNA-seq is known to be able to pro-
vide more accurate gene expression estimates than gene
expression microarrays. Although this is true, we first fo-
cused on gene expression microarray data because there
are over 600,000+ gene expression microarray samples
compared to 10,000+ RNA-seq samples currently depos-
ited in GEO. The significantly larger number of micro-
array samples provide a much wider variety of cell types,
tissues, and diseases that allows the truncated absolute
correlation measure to more accurately capture the regu-
latory potential between each gene and TF. Moreover,

Page 15 of 16

building a large compendium of RNA-seq samples is not
an easy or straightforward task. Publicly available RNA-
seq data is generated from many different platforms and
processed using a variety of algorithms. Current under-
standing of how to properly normalize the data to com-
bine them together and analyze them jointly is very
limited. Consistent methods to handle large RNA-seq
datasets still need to be developed and explored to even
begin utilizing the data to improve ChIPx analyses or
other functional analyses. Rather than waiting for RNA-
seq methodology to mature and more RNA-seq data to be
deposited in PED, ChIPXpress can be used immediately to
improve ChIPx analyses by taking advantage of the large
amounts of gene expression microarray data in PED cur-
rently available. This explains why the current implemen-
tation of ChIPXpress is based on gene expression
microarray data. In the future, as the RNA-seq data con-
tinue to grow and the methods for analyzing those data
become mature, it should be more straight-forward to ex-
tend ChIPXpress to also accommodate RNA-seq data.

Conclusions

In summary, ChIPXpress improves functional target gene
identification from ChIPx data using publicly available
gene expression data in a simple and straightforward man-
ner. Our results show that when an investigator does not
have his/her own TF perturbation data, ChIPXpress is able
to more accurately rank functional TF target genes com-
pared to rankings obtained using only ChIPx data, which
may significantly increase the chances of finding real func-
tional TF targets among the top ranked genes. ChIPXpress
demonstrates the value of PED and hopefully encourages
more research focused on improving ChIPx data analysis
by incorporating PED.
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