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Abstract

Background: In any gene regulatory network (GRN), the complex interactions occurring amongst transcription
factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches
currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all
these approaches cannot detect important interactions of the other type. S-System model, a differential equation
based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all
S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and
are unable to infer time-delayed interactions.

Results: In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential
equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed
S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore,
the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but
can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse
and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation

time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min
in-degrees and also systematically balances the effect of network accuracy and complexity during optimization.

Conclusion: The four well-known performance measures applied to the experimental studies on synthetic networks
with various time-delayed regulations clearly demonstrate that the proposed method can capture both
instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known
real-life networks, namely IRMA and SOS DNA repair network in Escherichia coli show a significant improvement
compared with other state-of-the-art approaches for GRN modeling.

Introduction

The availability of genome wide expression data has signif-
icantly increased interest in systems biology, in particular,
reverse-engineering gene regulatory networks (GRNs).
While static expression data allows the learning of only
the network structure, i.e., transcription factors (TF) and
target genes interactions, time-course data allows the
modeling of detailed system dynamics over time. In our
view, amongst different ways for classification [1-5], meth-
ods for reverse-engineering GRNs can be broadly cate-
gorized into six major groups, namely (i) co-expression
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network, (ii) Bayesian network, (iii) differential equation
based approach, (iv) regression based approach, (v) meta
approaches combining two or more different methods,
and (vi) approaches that are based on other principles.
Co-expression networks [6,7] are coarse-scale, simplistic
models that employ pairwise association measures, such
as the partial correlation or conditional mutual informa-
tion, for inferring the interactions between genes. These
methods have low computational complexity and thus
can easily scale up to very large networks of thousands
of genes [8], but lack a mechanism for modeling system
dynamics. Bayesian networks (BN) are more sophisticated
models based on the strong foundation of probability and
statistics, in which the dependencies between nodes are
represented using directed edges and conditional proba-
bility distributions. A temporal form of BN, i.e., dynamic
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Bayesian network (DBN), allows the modeling of system
dynamics in discrete time.

In this paper, we focus on differential equation (DE)
based approaches, which belong to a sophisticated and
well established class of methods for modeling biochemi-
cal phenomena, including GRNs [9-13]. A salient feature
of all DE-based approaches is their ability to accurately
model system dynamics in continuous time. Of the sev-
eral linear and non-linear types of DE models employed
for reconstructing GRNS, the S-System model has gained
popularity recently [14-19]. Originating from the pioneer-
ing work of Savageau [20], the S-System has been consid-
ered as an excellent balance between model complexity
and mathematical tractability: it is complex enough to
represent a wide range of dynamics, yet is simple enough
to allow certain analytical studies.

In GRNs, almost all genetic interactions are invari-
ably delayed. Furthermore, these delayed interactions may
have different time lags [21]. Time delays in regulatory
interactions are due to the time required for the reg-
ulator gene to express its protein product and for the
transcription of the target genes to be affected by these
regulatory proteins. More specifically, this is the time
required for the translation, folding, nuclear transloca-
tion, turnover for the regulatory protein, and elongation
of the target gene mRNA. For example, in mammals, the
transcriptional regulatory time-delays can be from sev-
eral minutes to several tens of minutes, and are composed
of two components: the TF translation/post-translational
processing/translocation time (~10.5 + 4 mins), and the
target gene transcription and post-transcription process-
ing time (~ 20 — 40 mins) [22]. The instantaneous and
time-delayed interactions among genes in a toy 3-gene
network are illustrated in Figure 1. As we can see, gene G3
instantaneously regulates genes G; and G, while G; has a
1-unit-time delayed regulation on Go.

Most existing approaches for modeling GRNs attempt
to capture instantaneous (non-temporal) interactions
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Figure 1 Instantaneous and delayed interactions among genes
in an illustrative 3-gene network having a total of T’ data points.
G(t) represents the ith gene in TS; time interval, solid lines represent
instantaneous interactions (both activator and repressor) and dotted
lines represent time-delayed interaction.
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only. This is the case for all co-expression based
approaches and static Bayesian networks, which do not
differentiate between static and time-course expression
data. There have been previous attempts for modeling
time-delayed genetic interactions with dynamic Bayesian
network using time-course data, such as the method pro-
posed by Zou and Conzen [21], and also our recently
proposed method GlobalMIT [23] and [24] (which we call
BITGRN?2 throughout this paper, as [24] is the improved
version of BITGRN). The Recursive Neural Network
(RNN) based methods [25-29], capable of interpreting
complex temporal behavior of gene expression data, have
the ability to work with time-delays. However, this time-
delay issue is either not well-addressed [28,29] or the
delays are fixed for most of the existing approaches [25-27].
Further, so far RNN based methods are incapable of pre-
senting regulations in the degradation phase, which is an
inherent feature of S-System model. The ordinary differ-
ential equation (ODE) based methods [9-11] are limited
to work with instantaneous interactions and are incapable
of inferring time-delayed regulations. On the other hand,
a delay differential equations (DDE) based model was
employed in [12], that works with delay, but the time delay
parameters were set manually rather than via learning
from data. Kim et al. [13] proposed a DDE based method
that is capable of working with time-delays. However, the
method is limited to working with fixed delays, which are
either set to their a-priori known values, or otherwise ini-
tialized randomly then fixed during the optimization. To
the best of our knowledge, there is no differential equation
based approach available that can model time-delayed and
instantaneous interactions simultaneously, with the flexi-
bility to adapt the delay parameters through optimization.

The main contributions of this paper are two-fold. First,
it proposes a novel time-delayed S-System model based
on a set of delay differential equations (DDE) which is
capable of simultaneously capturing both — time-delayed
and instantaneous interactions. Further, it incorporates
time delay parameters which are not restricted to take
only integer values (corresponding to time stamps in
the data) as possible in other discrete-time approaches
(e.g., dynamic BN), but they can take fractional val-
ues. This allows the model to capture the time delays
in genetic interactions with higher accuracy, because in
reality, the amount of delay takes continuous value. Sec-
ond, to overcome the limitations of previous optimization
approaches, our new search algorithm is designed sys-
tematically exploiting the sparse and scale-free nature
of GRNs to effectively narrow down the search space.
Compared to the existing two S-System based model-
ing approaches [16,19], the proposed approach learns the
parameters more accurately despite an increase in the
number of model parameters to be learnt. Experimental
studies on two synthetic and two real genetic networks



Chowdhury et al. BMC Bioinformatics 2013, 14:196
http://www.biomedcentral.com/1471-2105/14/196

show a significant improvement over recently proposed
modeling techniques.

Background

Traditional S-System model

For a network of N genes, the existing S-System model
is given by the following set of ordinary differential
equations (ODEs):

dx N N P
i Lij g, ij .
v _al”X/‘ 'BlllXi’ i=1...N (1)
j=1 j=1

Here, for any i gene, X; is the expression level, {«;, B;}’s
are the rate constants, and {g;;, s;;}’s are the kinetic orders.
The term «; HX}g"" models the process of RNA synthe-

sis/production, while the term g; ]_[X;l"" models the pro-
cess of RNA degradation. To infer a GRN of N genes using
the S-System model, 2N(N+1) parameters must be esti-
mated. To reduce computational complexity, method of
[30] approximated the original problem as N decoupled
sub-problems, each having 2(N+1) parameters. In the i
sub-problem corresponding to the i gene, the parame-
ter set ; = {oy, B, {gij» hij}j=1..~N} is estimated by solving
the following decoupled S-System equation:

dx N N P
i Lij _ p. ij
o= [y -a]]Y (2)
j=1 j=1

For solving Eqn. (2), only Y; = X; is computed by numer-
ical integration, while Y, = ?j, Vj # i, where ?j is
obtained by a direct estimation based on the observed
expression data of the j gene [15]. For direct estimation,
the commonly used technique of linear spline interpola-
tion [31] can be applied. Although this approximation may
decrease the accuracy slightly, the significantly reduced
computational burden allows the optimization process to
converge to better solutions in much shorter time.

Model evaluation criteria

In order to assess the goodness of S-System models, previ-
ous works commonly employed the squared relative error
(SRE) as criterion for model evaluation. As the parameters
for each gene in the decoupled systems are learned inde-
pendently of the others, the SRE for i gene is given as:

T cal exp 2

Xty — X5 (1)

SRE=)_ (w)
t=1 1

Here ¢ denotes a specific time-stamp (TS) in the observed
time series of T' sample points. Xl-“’l () and Xie P (t) denote
the calculated and observed expression value of gene i
at time-stamp ¢ respectively. It is to be noted that if the
data set consists of several separate time series, then the
SRE criterion can simply be extended by summing over

3)
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all the available time series. Due to decoupling, this SRE
criterion for each gene can be minimized independently.
The solution for this optimization problem is normally
dense, i.e., it has many non-zero parameter values corre-
sponding to many regulators for each gene. However, it
is widely reported that GRNs are sparse in nature, and
in fact follow a scale-free topology [32,33]. Thus, a reg-
ularization term, similar to LASSO regression, is often
added. Authors of [15] were the first to propose a penalty
term for model complexity (Eqn. (1) of the supplementary
document (Additional file 1)), which was subsequently
improved by Noman and Iba [17,34] as follows:

T cal exp 2 2N-I
RSRE=" (W) T Z (KD (4)
t=1 12 j=1

with Kj; being the kinetic orders of gene-i sorted in
ascending absolute values, I being the maximum num-
ber of regulators allowed for each gene, and ¢ being the
penalty constant. In this paper, we are referring to Eqn.
(4) as regularized squared relative error (RSRE) as it is
essentially a regularized version of Eqn. (3). The limita-
tions of the RSRE criterion are: i) although promoting
sparse solutions, it still encourages every gene to take on
several regulators, since up to I regulators can be taken,
free of any penalty, ii) [ is a global parameter applied to
all genes. Since the number of potential regulators for
different genes are different, it is preferable to have the
maximum in-degree parameter being set adaptively and
specifically for each gene, and iii) the penalty weight c is
fixed, and thus there is no mechanism for dynamically
prioritizing its two objectives (i.e., the two RHS terms)
during the optimization. This prioritization is important
because, for example, during initial stages of optimization,
it is necessary to have emphasis on reducing error, i.e.,
improving model accuracy (first term), while in the later
stages, the emphasis shifts towards reducing model com-
plexity (second term). Our recently proposed evolutionary
search [19], unlike previous methods with fixed I, was able
to continuously adjust both the value of I (max in-degree)
and J (min in-degree) for every gene based on population
statistics:

T 1 exp 2
X6%(t) — X0 () 2N
RSRE; = 4t - C; 5
2 ; ( Xfxp(t) + lZCount ©)

Here, Zcoun: is the total number of non-regulations for
the i gene (= 2N- total regulations) and, C; is the scaling
factor for the i gene defined as:

1 ifI>r,>Jorr;=0
%2(]_”) ifri <J (6)

Lot if ry > T
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Here, r; is the number of transcription factors (total reg-
ulations) for gene-i. Details about this fitness function
are available in [19] and a brief discussion is included in
Section 1.2 of the supplementary document (Additional
file 1). Although, the penalty graph generated by the
model complexity part resembles the property of power-
law formalism, the addition of another fractional term
in the prefixes of the exponential term (J/r; and r;/I)
makes the penalty term asymmetric. While a prelimi-
nary study [19] on this fitness criteria showed improve-
ment, the applied penalty function being adhoc is not
well justified.

Methods

The proposed time-delayed S-System model

Modeling time-delayed interactions

The traditional S-System described in Eqn. (1) is a set of
ordinary differential equations (ODE), in which the rate of
change of a gene expression at a specific time instant ¢ is
affected by its own and all other genes’ expression values
at that instant. In other words, the model is not versa-
tile to capture time delayed interactions which invariably
occur in all biological systems. To do this, it is necessary
to replace the system dynamics represented by ODE in
Eqn. (1) with delay differential equations (DDE). Let us
consider a DDE of the following form:

k= fe(t - 1) )

with the delay parameter t € [0, 00). However, as the rate
of change of system response is affected by its previous
values at time (¢ — 7), in practice, T € [0, £;4x), Where £,4x
is the time-span of the microarray time series experiment.
The Time-Delayed S-System (TDSS) model with a single
and fixed delay (7) can be represented as follows:

N N b

8ij i
=q Xj,t—r — Bi | | )(j,l‘—‘[’
j=1 j=1

dax;
—_ i=1...N (8
’r i (@)

In S-System models with N genes, there can be 2 x N x
N regulations, where any of them can be a time-delayed
regulation. Hence, we generalize Eqn. (8) in the following
form:

i=1...N (9

N i
- ﬂil |X. Y
],t—rl.j

j=1 j=1

Here, Xj;—r; denotes the value of gene X; at time ¢ — 7y,
with the delay parameter 7; € [0, Tjax], Where Ty, is
the maximum possible delay in the considered network.

Note that there are two time delay parameters: rg corre-

sponding to the production part and rl? corresponding to
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the degradation part of S-System. The delay matrices are
represented as follows:

g g g
1 G2 " UON
g g g
‘E f “« e ‘L’
€= | 21 T2 2N (10)
g g g
N1 N2 T INN
h
1 T2 0 TN
T T . Th
'L'h — 2,1 2,2 2,N (11)
ho_h h
N1 N2 T INN

For both these matrices, {0 < {tfl-, tlf;-} < Tmaxh Yij=1.N
and Ty, is the maximum allowed delay of the network.

At any time, the production and degradation rate of the
i gene is affected by its own and other genes’ concen-
tration level at their corresponding delays. If a delay 7y,
corresponding to an interaction (g;j/h;), is 0, we have an
instantaneous interaction (provided that there is a regula-
tion between genes i and j), whereas a non-zero value of
T; gives a delayed interaction. Thus, the proposed Time-
Delayed S-System (TDSS) model is capable of capturing
both time delayed and instantaneous genetic interaction
in GRNs.

Model parameters

For the traditional S-System model, in the i sub-problem
corresponding to the i gene, the 2N + 2-parameter
set ; = {aj, Bi, {8, Mij}j=1..N} needs to be estimated.
In the Time-Delayed S-System model, apart from these
parameters, we also have to estimate the 2N time-delay
parameters {r;.}g, ti?}jzl_,_N. Thus, a 4N + 2-parameter set
Q; = oy, Bi (gijy hijs 15, rlﬁ’}jzlmN} needs to be learned.
For learning the time-delay parameters, we follow a two-
stage approach. First, we employ the Pearson correlation
coefficient (PCC) technique to identify the most proba-
ble lag of the interaction between any pair of genes. For
doing this, we use linear spline interpolation to intrapolate
additional data points between any two actual measure-
ments. For a given data set, the maximum time delay
(tmax) permissible for the system is set by considering
common regulation time scale (ranging within tens of
minutes [22]) and the data sampling rate. Although the
proposed TDSS is capable of dealing with any resolution
of fractional delay, in this paper we have limited the mini-
mum time-delay step size to 1/10 of the time between two
time-stamps, provided that the data are regularly sampled.
Else, the time-delay step size is set to 1/10 of the time
between two closest time-stamp in non-regularly sampled
data. While using PCC, we fix the expression profile of a
regulator gene and shift the target gene’s expression pro-
file forward incrementally one step at a time (minimum
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time-delay step). The time lag maximizing PCC is con-
sidered as the most probable time lag between these two
genes. These most probable lag values are then used to
initialize the time delay parameters for the evolutionary
optimization phase.

Time responses

In the traditional S-System model, numerical integration
is normally performed with the well-known fourth order
Runge-Kutta method (RK4). For the Time-Delayed S-
System model, we adapt the traditional RK4 method for
DDE which takes into account the time delay parame-
ters as described in detail in [35]. For the adapted RK4,
initial samples of the regulator gene’s expression profile
of length 7,,,, will be designated as history information,
which reduces the available sample size for training. It
should be noted that the step size for RK4 integration is
set at a small value, allowing the numerical integration
to capture the system dynamics accurately. Again, we use
linear spline interpolation to generate a continuous his-
tory profile. A detailed description of the modified RK4
is presented in Sec. 2.3 in the supplementary document
(Additional file 1).

Inference mechanism

Due to the intractable nature of optimization problem,
S-System parameter learning is commonly carried out
via evolutionary computation (EC), namely Genetic Algo-
rithm (GA) or Differential Evolution (DE). Recently, DE
and its variants, such as trigonometric differential evolu-
tion (TDE), have been used extensively because of their
versatility [18,19,36-38]. As an optimization tool for learn-
ing model parameters, both DE and TDE perform better
than the other conventional evolutionary computation
approaches [18,19]. In this paper, we employ a new TDE
approach for learning TDSS parameters. We also employ
the Multistage Refinement Algorithm (MRA) [19] as a
pruning mechanism for eliminating the weak regulations
from the resulting network. Details related to TDE, initial
population generation, and MRA are presented in Sec. 1.3
and Sec. 2.4 of the supplementary document (Additional
file 1).

Model evaluation criterion

To address various limitations of the regularized squared
relative error of Eqn. (4) presented in Sec. 2, we propose
a novel fitness function referred to as adaptive squared
relative error (ASRE) and given below:

T ! exp 2
xeel(t) — X (1) N
ASRE = tzgl (Xlexl’(t) +BiXCi2N_ri

(12)
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Here, r; is the total number of actual regulators. B; is a
balancing factor which is used to maintain desired balance
between the two terms of ASRE. C; is the penalty factor
for the i gene, defined as:

1 if J<ri<lI
1+(J—r)*if i <J
1+ —D*if r;>1

Ci= (13)

with I and J being the maximum and minimum in-degree
respectively. Note that in our formulation, r; and I are
restricted to be smaller than or equal to N, since a tran-
scription factor generally does not affect both its target
gene’s production and degradation simultaneously. In our
ASRE criterion, in contrast to a fixed weighting factor
¢ as in Eqn. (4), the penalty factor C; takes the form of
an inverse power-law function. This is motivated by the
fact that biological networks often have a scale-free struc-
ture, in which the node connectivity degree x distributes
according to a power-law distribution, P(x) o« x~7, with
the scaling parameter y € [2,3] for various networks in
nature, society and technology [33]. Gene regulatory net-
works generally have low in-degrees, with the number of
genes having high in-degree diminishing according to a
power-law form. Note that in our formulation, we also
enforce a minimum in-degree J, thus genes with the num-
ber of in-degree falling in-between the min-max number
of in-degree [ ], I] are not penalized (C; = 1), while genes
falling out of this region are penalized according to an
inverse power law term (C; = 1+d", where y = 2and d is
the number of missing or violated regulations). Sec. 2.4.2
and 2.4.3 in the supplementary document (Additional
file 1) explain how our algorithm adaptively adjusts the
[/,I] region during the optimization process.

Salient features
We highlight the salient features of the proposed opti-
mization framework as follows:

(i) Adaptive regulator set size: Our algorithm
adaptively and continually adjusts the values of the
min-max in-degree region [/, I]. Initially, we set

J = 0and I = a value less than or equal to N based
on the size of the network. Then, for every I
generations, we examine the smallest and largest

Table 1 S-System parameters for the 5-gene synthetic
network of [14]

Gene 1 1=5.0,g13=1.0,915=-1.0, B1=10.0, h11=2.0
Gene 2 0»=100, g21=2.0, B2=10.0, h»=2.0

Gene 3 @3=10.0,g3>=-1.0, B3=10.0, h3,=-1.0, h33=2.0
Gene 4 4=8.0,943=2.0,gs5=-1.0, B4=10.0, h44=2.0
Gene 5 a5=10.0, g54=2.0, Bs=10.0, h55=2.0

Remaining g;;=h;;=0,Vi,j =1,2...,5
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Figure 2 All three configurations of 5-gene network, both target and inferred (a) Conf-1 (Target) (b) Conf-2 (Target) (c) Conf-3 (Target) (d)
Conf-1 (Inferred) (e) Conf-2 (Inferred) (f) Conf-3 (Inferred). Arrow ended black lines and block ended gray lines indicate instantaneous activation
and suppression, respectively, while red lines indicate time-delayed regulations.

in-degree within the population respectively and set
these as new values for ] and L

(ii) Adaptive balancing factor B;: The balancing
factor B; is included in Eqn. (12) to dynamically
balance the terms corresponding to the network
accuracy and the model complexity. For the first
initial tens of generations, we set the value of B; to
zero, i.e., we emphasize on network quality first. This
allows the algorithm to quickly improve the network
accuracy as there are no constraints on complexity.
We allow the algorithm to proceed in this manner
either until a fixed 7, generations are executed or
until the squared relative error is smaller than a
specified threshold y;. When the individuals in the
population achieve stability and improved accuracy,
the value of B; is updated as follows: from the top
50% individuals in the population, we calculate the
average network accuracy ANA (first term of Eqn.
(12)) and the average model complexity AMC
(second term of Eqn. (12), i.e., 2N /(2N — r;)), then
set B; = ANA/AMC. With this, effect of the network
accuracy is maintained in ‘balance’ with model
complexity. Next, we replace the worst 50%
individuals with randomly initialized individuals, and
the optimization continues with the value of B;
computed as above.

While our preliminary studies reported earlier [19] also
used adaptation of I and /, the implementation was rather
adhoc, and had static weight factor. The proposed model

evaluation criteria represented by Eqn. (12) and Eqn. (13)
are thus novel and perform systematic adaptation of I
and J while also simultaneously carrying out adaptive
balancing of network complexity and accuracy.

Results and discussions

The proposed TDSS model is evaluated experimentally
using both synthetic and real-life networks. As the model
parameters increase quadratically with the network size,
large scale modeling with the S-System based mod-
els remains a long-standing challenge. For this reason,
like previous research on the S-System [16,19,39-41], we
mainly test our method on small and medium sized
networks. We employ two synthetic network studies of
different sizes, i.e., a small network with 5 genes and
a 20-gene medium sized network. For real-life network
studies, we present experiments on two small networks,

Table 2 Three different delay configurations of the 5-gene
synthetic network

Configuration 1 d = r,-’; = 0 (Non-delayed network)

IJ

(Conf-1) Vij=12...,5
Configuration 2 rﬁS:t§1: 392 13”2 rfs 1.0
(Conf-2) remaining r,//:r,»lj:O,V,/ =1,2...,5
Configuration3 {3 = 11,17, = 12,7, = 13,1, = 21
‘535 = ‘L’;Z =10,
(Conf-3) remaining r,ﬁ:r,f;:o, Vij=1,..., 5




Table 3 Experimental results on Conf-1 (5-gene synthetic network)

Conf-1 (No-delay network)

0% Noise 5% Noise 10% Noise 25% Noise

Su Sp p, F Su Sy P, F Su Sp p, F S Sp p, F

TDSS (Best) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.87 093 1.00 0.87 0.72 0.84
TDSS 1.00+ 1.00+ 1.00+ 1.00+ 1.00+ 098+ 0.95+ 097+ 1.00+ 0.93+ 0.84+ 091+ 1.00+ 0.84+ 0.68+ 081+

(Average+5td) 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.03 0.00 0.02 0.05 0.03 0.00 0.01 0.02 0.01
ALG [34] 1.00 0.35 0.35 0.52 1.00 0.68 0.52 0.68 092 0.65 048 0.63 091 0.64 0.46 0.60
REGARD [19] 1.00 1.00 1.00 1.00 1.00 0.97 0.93 0.96 1.00 0.92 0.80 0.86 1.00 0.84 0.68 0.81
Noman et al. [17] 1.00 045 039 027 1.00 0.73 057 044 0.92 0.75 0.57 039 0.89 0.79 061 038

Kimura [48] 1.00 0.84 0.68 0.58 - - - - - - - - - - - -

S-Tree [39] 1.00 1.00 1.00 1.00 - - - - - - - - - - - -

Hasan et al. [49] 1.00 045 0.39 0.27 1.00 0.73 0.57 044 1.00 0.68 0.52 040 - - - -
DPSO -L1 [50] 1.00 1.00 1.00 1.00 1.00 0.81 0.65 0.54 - - - - 0.89 0.75 0.55 0.32

LTV [51] 1.00 0.73 0.80 0.72 1.00 0.70 0.75 0.66 0.90 0.60 0.69 0.51 - - - -
BANJO [43] 042 0.77 0.63 0.50 042 0.70 0.56 048 042 0.70 0.56 048 033 0.70 0.50 040

BITGRN2 [42] 0.92 0.77 0.79 0.85 - - - - - - - - - - - -

961/ 1/S0LZ-L L L/WOD'[RAUIPIWOIG MMM//:d11y

961t L ‘€1L0T SonbwIojulolg DNG ‘I 12 Ainypmoyd

7T Jo £ 9bey
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namely IRMA that contains 5 genes, and SOS DNA Repair
Network in Escherichia coli containing 8 genes.

With synthetic networks, we investigate network con-
figurations having no delays (instantaneous interactions
only) and also in the presence of delays (both instanta-
neous and time-delayed). For each of these configurations,
along with noise free data, we have considered three diffe-
rent levels of Gaussian noise. The four well-known perfor-
mance measures [24,42] namely sensitivity (S,), specificity
(Sp), precision (P,) and F-score (F) have been applied
for network evaluation. For the methods with executable
code available, namely ALG [16,34] and REGARD [19],
we run the respective programs on our generated data.
For other methods where no code is available, we extract
the performance measure values from their respective
original publications for comparison where possible.

With real-life networks, for IRMA, the comparison
is carried out with 7 other approaches, namely, ALG
[16,34], REGARD [19], BITGRN2 [24,42], BANJO [43],
TDARACNE [44], NIR and TSNI [45], ARACNE [7]. For
the E. coli network, the performance has been evaluated
with ALG [34], REGARD [19], S-Tree based approach
[39], two approaches from Kimura et al. [40,46], and
several BN based approaches, e.g., [47], BANJO [43], BIT-
GRN2 [24,42] and GlobalMIT [23]. In addition, the time-
responses of the inferred networks are compared with the
actual time expression profiles to show the accuracy of
the proposed model in capturing gene expression dynam-
ics. All the inferred time-responses are shown for the best
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inference result (in terms of the objective function value,
out of 5 separate runs) with error bars indicating the 95%
confidence interval (CI).

The proposed algorithm is implemented in C++ using
a 2.16 GHz Dual-core CPU PC with 3 GB of RAM. This
code is made available upon request. The parameter val-
ues for the TDE algorithm were set as follows: Mutation
Factor F, = 0.5, Trigonometric Mutation Factor F; = 0.05,
Crossover Factor CF = 0.8, population size Pop= 100. The
number of generations when B; = 0 is set to n, = 50
and the specified threshold y; to half the value of ASRE
of the best individuals in initial population. Once B; is
reset, the in-degrees are updated with ARGC algorithm
(details in Sec. 2.4.3 of Additional file 1) in every [ = 50
generations. The pruning factor ¢ = 0.25 (details in Sec.
2.4.5 of Additional file 1) is used in both the stages of
Multistage Refinement Algorithm (MRA). For synthetic
network, M=10 datasets are used for reverse-engineering,
generated for each network from 10 different initial con-
ditions. We have executed the proposed optimization
method with TDSS for 1000 generations in the first phase
while in the the second phase, MRA is executed for 250
generations. The maximum time delay value (7,,4x) was
set to 3 time-stamps (TS) for all the synthetic networks,
as the maximum delay among all delayed regulations was
manually set to 3TS for synthetic data generation. For the
IRMA networks, tj,4x was set to 100 minutes, equiva-
lent to 10TS. For the E. coli network, we set 7, to 1h,
which is also 10TS. The experiments are carried out with
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Table 4 Experimental results on Conf-2 and Conf-3 (5-gene synthetic network)

Conf-2 (Delayed network)

0% Noise 5% Noise 10% Noise 25% Noise
S Sy p, F Su Sp P, F Su Sp p, F Su Sy p, F
TDSS (Best) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.81 0.90 1.00 0.84 0.68 0.82
TDSS 1.00+ 1.00+ 1.00+ 1.00+ 1.00+ 0.98+ 0.96+ 0.98+ 0.98+ 0.90+ 077+ 087+ 097+ 0.83+ 067+ 0.80+
(Average+5td) 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.03 0.03 0.02 0.04 0.03 0.04 0.02 0.03 0.03
ALG [34] 092 0.78 0.60 0.72 0.92 0.78 0.60 0.73 0.77 0.78 0.56 0.65 0.77 0.78 0.56 0.65
REGARD [19] 092 095 0.86 0.89 0.92 0.95 0.86 0.89 0.85 0.87 0.69 0.76 0.77 084 0.63 0.70
BANJO [43] 042 0.77 0.63 0.50 042 0.70 0.56 048 042 0.70 0.56 048 033 0.70 0.50 0.40
Conf-3 (Delayed network)
0% Noise 5% Noise 10% Noise 25% Noise
Su Sy P, F S Sy P, F Su Sp P, F Su Sp P, F
TDSS (Best) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.87 0.93 0.92 0.84 0.67 0.78
TDSS 1.00+ 1.00+ 1.00+ 1.00+ 0.99+ 0.98+ 0.94+ 0.96+ 0.99+ 0.92+ 0.83+ 0.89+ 0.88+ 0.80+ 0.60+ 071+
(Average+5Std) 0.00 0.00 0.00 0.00 0.03 0.02 0.06 0.03 0.03 0.06 0.11 0.08 0.04 0.02 0.02 0.02
ALG [34] 0.85 0.87 0.69 0.76 0.77 0.79 0.56 0.65 0.77 0.78 0.50 0.60 0.70 0.73 048 0.56
REGARD [19] 0.85 0.95 0.85 0.85 0.77 0.92 0.77 0.77 0.77 0.81 0.67 0.71 0.77 0.73 0.50 0.60
BANJO [43] 042 0.70 0.56 048 042 0.62 0.50 046 0.30 0.62 0.44 0.39 0.25 0.54 0.33 0.29
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Table 5 S-System parameters for the 20-gene synthetic
network [34]
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Table 6 Two different delay configurations of the 20-gene
synthetic network

aj, Bi 10.0

gij 9315 = —07,g951 = 10,9610 = 20,970 = 12,975 =
—08,9710 = 16,933 = —06,g94 = 0.5,g95 = 0.7, G106 =
=03, 91014 = 09,9117 = 05,g121 = 10, 91310 = —04,

91317 = 13, guan1 = =04, gisg = 05 gisi = —10,
91518 = —09, gi1612 = 20, 91713 = —05, gi1g14 = 1.2,
91912 = 14, 91917 = 06, 92014 = 1.0, go17 = 1.5, other
g/,j =0

hij 1.01if (i=)), 0.0 otherwise, Vi,j = 1,2...,20

topology, we have generated three different configurations
for testing: one network with no delay (Conf-1) and two
with delays (Conf-2 and Conf-3). The networks for all
three configurations are shown in Figure 2(a-c), while the
time delay parameter values are shown in Table 2. In all
three cases, we have evaluated the performance of TDSS
with and without the presence of noise in data.

A. Network with no-delay (Conf-1) In this configura-
tion, all the delay parameters are set to zero. In addition,

9

Configuration 4 T = r,? = 0 (Non-delayed network)

(Conf-4)

Configuration 5 13,6 = 1.1, 72, = 1.3, 17,5 = 1.6, Tips =2.1, 71411 =

g g
15,1514 = 1.9, 51, = 06,

(Conf-5) 750,14 = 10, and remaining r5=r£=0, Vij =

1,2...,20

the methods were also evaluated on noise-free data,
as well as data generated with three different levels of
Gaussian noise (5%, 10%, and 25%). The performance
metrics (Sy, Sy, Py, F) for the non-delayed network in
noise-free setting and with three different levels of noise
are shown in Table 3. The proposed method successfully
inferred all the regulations (S, = 1) even in the presence
of 25% noise level. Moreover, the other three metrics for
TDSS are also very close to the optimal value. It should
be noted that, compared to other methods reported in
Table 3 the four performance metrics for TDSS are on

Q |

Vs
i

Figure 6 20-gene networks. (a) Conf-4 (Target) (b) Conf-5 (Target) (c) Conf-4 (Inferred) (d) Conf-5 (Inferred). Arrow ended black lines and block
ended gray lines indicate instantaneous activation and suppression, respectively, while red lines indicate time-delayed regulations.




Table 7 Experimental results on the 20-gene network

Conf-4 (No-delay network)

0% Noise 5% Noise 10% Noise 25% Noise

S Sy P, F S Sp P, F Su Sp p, F S Sp P, F

TDSS (Best) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 091 0.60 0.74 091 0.90 0.53 0.67
TDSS 098+ 097+ 081+ 0.88+ 0.96+ 0.90+ 0.60+ 0.72+ 0.96+ 0.90+ 0.56+ 071+ 0.90+ 087+ 047+ 0.62+

(Average+5td) 0.01 0.03 0.13 0.01 0.03 0.06 0.23 0.19 0.01 0.01 0.02 0.02 0.01 0.01 0.03 0.03
ALG [34] 0.98 0.85 047 0.63 0.98 0.84 044 0.61 0.85 0.90 0.54 0.69 0.87 0.86 0.44 0.58
REGARD [19] 0.98 0.90 0.56 0.71 0.98 0.87 0.49 0.65 0.96 0.86 0.56 0.70 0.89 0.87 047 0.61

DPSO-L1* [50] 0.93 1.00 1.00 0.90 - - - - 0.71 1.00 1.00 0.61 - - - -
BANJO [43] 067 0.85 035 046 0.62 0.79 0.27 038 0.56 0.75 022 0.31 0.44 0.70 0.16 0.24

BITGRN2 [42] 0.70 0.85 040 0.50 0.60 0.85 038 045 0.55 0.84 030 040 - - - -

Conf-5(Delayed network)

0% Noise 5% Noise 10% Noise 25% Noise
Su Sy P, F Su Sp P, F Su Sp P, F Su Sy p, F
TDSS (Best) 1.00 0.96 0.73 0.84 0.98 0.96 0.73 0.89 0.96 0.90 0.56 0.67 093 0.89 051 0.66
TDSS 0.96+ 0.95+ 0.72+ 0.82+ 0.96+ 0.92+ 061+ 0.75+ 0.95+ 0.88+ 051+ 0.66+ 092+ 0.89+ 050+ 0.65+

(Average=+5Std) 0.02 0.01 0.07 0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01
ALG [34] 0.89 0.85 043 0.58 0.87 0.87 0.46 0.60 0.83 0.81 045 0.60 0.78 0.79 037 0.51
REGARD [19] 091 0.88 048 0.63 091 0.87 048 0.63 0.87 0.80 047 0.61 0.77 0.75 041 0.57
BANJO [43] 0.60 0.79 0.26 0.36 0.56 0.73 0.21 0.30 049 0.70 0.17 0.26 0.44 0.69 0.15 0.23

* Calculated from average result reported in the paper.
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Figure 7 Dynamics for Gene-15 of Conf-4. Solid lines and dotted lines indicate respectively target and inferred (by TDSS) time-expressions in
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par with several methods and better than most others.
Figure 3(a-d) show the time-responses of a particular gene
for all four levels of noise. In particular, we have selected
gene-1, which exhibits significant changes in expression
value over the time course. In addition to detecting all the

regulations correctly, the inferred time-responses are very
close to the target expressions. The time-responses for
another gene (gene-2) along with the inferred parameters
for TDSS (best case result for noise-free data) are shown
in Sec. 3 in the supplementary document (Additional
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Figure 8 Dynamics for Gene-15 of Conf-5. Solid lines and dotted lines indicate respectively target and inferred (by TDSS) time-expressions in (a)
Noise free data (b) 5% Noise in data (c) 10% Noise in data (d)25% Noise in data. The yellow region indicates the history information and the error

Contf-5 (with 5% noise in data)- Gene-15

Expression level
w
8
2
(7N M

———Target ----Inferred

0 001 002 003 004 005 006 007 008 009 01
Time

(b)

Conf-5 (with 25% noise in data)- Gene-15

11.00
10.00
9.00
8.00
E 7.00
§ 600
§ 5.00 Q ‘<
400 SO0
3 300 Q\\?ﬁ Target =---Inferred
2.00 //\3“
1.00
0.00 /
0 001 002 003 004 005 006 007 008 009 01
Time

(d)




Chowdhury et al. BMC Bioinformatics 2013, 14:196
http://www.biomedcentral.com/1471-2105/14/196

file 1). The inferred network for noise-free data (best case)
is shown in Figure 2(d).

B. Networks with delay (Conf-2 and Conf-3) The delay
parameters (ie, ¢ and t”) for the two time-delayed
network configurations (Conf-2 and Conf-3) are shown in
Table 2. For Conf-2, 5 out of 13 arcs were randomly cho-
sen and applied a delay of 1TS. For Conf-3, we randomly
selected six arcs and assigned random fractional delays
(in step of 0.1TS) within [0, 3] TS. The delays used in
the latter configuration (Conf-3) are designed to validate
the method on networks having fractional delays. Similar
to the no-delay configuration, we have tested the perfor-
mance of TDSS with noise-free data and also with three
different levels of noise. The four performance metrics for
TDSS along with three other existing methods are shown
in Table 4. While the previous S-System based methods
ALG [34] and REGARD [19], and the BN based approach
BANJO [43] considered all inferred edges as instanta-
neous, TDSS was able to not only infer and segregate these
interactions correctly as instantaneous or time-delayed,
but the delays were found to be in close agreement to
the actual values. The slight deviations between the pre-
dicted delays and their actual values might be due to
effect of decoupling S-System equations, and also due to
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the approximation of data with linear spline interpolation.
Since the minimum delay possible is 0.1TS, it is reasonable
to accept a deviation of +0.1TS from its predicted value.
From this point of view, an instantaneous interaction in
original network appearing with a delay of 0.1TS should
be deemed accurate. We observe that, in the presence
of noise, all the performance measures of TDSS clearly
outperform ALG [34], REGARD [19], and BANJO [43].
The time-responses for gene-1 in all conditions are shown
in Figure 4(a-d) and Figures 5(a-d) for Conf-2 and Conf-
3, respectively. From the four performance metrics and
time-responses for TDSS, it is apparent that the proposed
method is very efficient in detecting both instantaneous
and delayed regulations, as well as accurately capturing
gene expression dynamics. In Sec. 3 of the supplemen-
tary document (Additional file 1), the time responses for
one more gene and the best case parameter sets inferred
by TDSS on noise-free data for both Conf-2 and Conf-3
are shown. The inferred networks for Conf-2 and Conf-3
from noise free data (best case) are shown in Figure 2(e)
and 2(f), respectively.

Medium scale synthetic network
We now study a medium scale 20-gene synthetic net-
work investigated in [34] and [24]. This network has 20

(d) (e) (f)
Figure 9 IRMA networks(original). (a) Target (b) Inferred from ON dataset and (c) inferred from OFF dataset. IRMA networks(simplified): (d) Target
(e) Inferred from ON dataset and (f) inferred from OFF dataset. Node GAL* represents GAL4 and GAL80. Arrow ended black lines and block ended
gray lines indicate instantaneous activation and suppression, respectively, while red lines indicate time-delayed regulations. Dotted lines in (a) and
(b) indicate protein-protein interactions.
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Table 8 Experimental results for IRMA network, reconstructed from ON dataset

Original network

Simplified network

Methods Su Sp p, F Su Sp P, F
TDSS (Best) 0.85 0.86 0.69 0.76 0.80 0.92 0.80 0.80
TDSS 0.80+ 0.84+ 0.64+ 071+ 0.76+ 0.89+ 0.75+ 0.75+
(AvgStDev) 0.04 0.02 0.04 0.04 0.05 0.02 0.04 0.03
ALG [16] 0.77 0.27 0.27 040 0.80 042 0.36 0.50
REGARD [19] 0.69 0.83 0.60 0.64 0.70 0.75 0.54 061
BITGRN2 [24,42] 0.63 1.00 1.00 0.77 0.67 1.00 1.00 0.80
TDARACNE [44] 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73
ARACNE [7] 0.60 - 0.50 0.54 033 - 0.25 0.28
NIR & TSNI [45] 0.50 0.94 0.80 0.63 0.50 - 0.50 0.50
BANJO [43] 0.24 0.76 033 0.29 0.50 0.70 0.50 0.50

self-inhibitions in the degradation phase and 26 regula-
tions in the production phase. The target kinetic order and
rate constant parameters are shown in Table 5. We investi-
gate two different configurations of this network: one with
instantaneous regulations only (Conf-4), and another with
both instantaneous and time-delayed interactions (Conf-
5). The two different configurations are shown in Figure 6,
with their respective delay parameters shown in Table 6.

A. Network with no-delay (Conf-4) From Table 7, it
can be observed that, for noise-free and 5%-noise in
data, the proposed technique successfully inferred all the
regulations. While TDSS missed a few regulations with
higher levels of noise, all the performance measures are
observed to be the best among all considered methods.
We show the actual and inferred expression dynamics
for gene-15, which exhibits high variation throughout the
time course, in Figure 7(a-d) for all the four noise lev-
els. The time responses for another selected gene (gene-
18) are shown in Sec. 3 of the supplementary document
(Additional file 1). The inferred parameter set for the

selective genes on this configuration (for noise free data)
are also listed in Sec. 3 in the supplementary document
(Additional file 1).

B. Network with delay (Conf-5) This configuration is
generated in a similar manner to Conf-3 of the 5-gene syn-
thetic network, with 8 randomly assigned delayed inter-
actions. The experimental results for this configuration
are shown in Table 7. The three existing methods ALG
[19,34], and BANJO [43] do not handle time-delayed reg-
ulations, hence considered all the inferred regulations as
instantaneous. Due to the presence of time-delayed reg-
ulations, all existing methods missed various true regula-
tions (both instantaneous and time-delayed). On the other
hand, for noise-free data, TDSS has successfully recovered
the true regulations of the target network. In presence
of noise, TDSS performance gradually degraded, but still
significantly outperformed the three other techniques.
Figure 8(a-d) show the target and inferred expression
dynamics for gene-15. The time responses for another
gene (gene-8) are shown in Sec. 3 of the supplementary

Table 9 Experimental results for IRMA network, reconstructed from OFF dataset

Original network

Simplified network

Methods Su Sp P, F Sn Sy P, F
TDSS (Best) 0.85 081 065 0.73 1.00 0.92 0.83 0.91
TDSS 080+ 083+ 063+ 070+ 0.90+ 087+ 075+ 081+
(AvgStDev) 0.04 0.02 0.03 002 0.07 0.03 0.06 0.06
ALG [16] 076 0.56 038 057 0.80 075 057 067
REGARD [19] 077 076 053 063 0.80 0.79 062 0.70
BITGRN2 [24,42] 0.50 0.94 0.80 062 050 0.90 075 0.60
TDARACNE [44] 0.60 - 037 046 075 - 0.50 0.60
ARACNE [7] 033 - 025 0.8 0.60 - 0.50 0.54
NIR & TSNI [45] 038 088 0.60 047 050 0.90 0.75 0.60
BANJO [43] 038 088 0.60 046 033 0.90 067 044
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Figure 10 Dynamics for 5 genes in IRMA ON network, solid lines and dashed lines indicate target and inferred dynamics, respectively and
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document (Additional file 1). The inferred parameter set
for the selective genes on Conf-5 in noise free condition
are also listed in Sec. 3 in the supplementary document
(Additional file 1).

Real-life biological networks

The IRMA network

We now consider the well-studied IRMA network, a
real-life in-vivo synthetic network constructed within the
Saccharomyces cerevisiae yeast [12]. This is a small scale
network composed of five genes (CBF1, GAL4, SWIS,
GALS80, ASHI) having a total of 8 regulations. Two gene
expression data sets were collected from [12]: the ON
data set corresponds to the shifting of the growth medium
from glucose to galactose, while the OFF data set corre-
sponds to shifting from galactose to glucose. In the ON
(OFF) dataset, there are 16(21) time-samples which were
evenly sampled every 20(10) minutes respectively. For the
sake of uniformity with the OFF dataset, we have intrapo-
lated (using linear spline interpolation) an additional data
point between every two samples in the ON dataset to
make it a uniform 10-minute sampled data set. Moreover,

as in [39], we also consider the presence of self-inhibition
in degradation phase for each genes (i.e., #;; > 0). It is
noted that the mutual interactions between GAL4 and
GALS8O are protein-protein interactions, which, in princi-
ple, are not reflected in gene expression data. Thus,

Table 10 Regulations within the IRMA network inferred by
TDSS with corresponding 7 values

Inferred IRMA-ON IRMA-OFF
regulations lag(z) values
by TDSS Time-stamps Minutes Time-stamps Minutes
SWI5 — CBF1 94 94 9.2 92
SWI5 — GAL80 23 23 1.7 17
SWI5 — ASH1 1.8 18 1.0 10
GAL4 — SWI5 0.0 0 0.0 0
GAL4 — GAL80 0.0 0 - -
GAL80 — GAL4 0.0 0 - -
ASH1 - CBF1 - - 04 4
CBF1 — GAL4 - - 0.0 0




Table 11 “True”+“Novel” interactions of E. coli network inferred by TDSS and other state-of-the-art methods

Considering 6-gene subnetwork Considering 8-gene subnetwork
True Proposed REGARD S-Tree NGnet Kimura Proposed ALG Perrin BANJO GlobalMIT BITGRN2
positives (TDSS) [19] [39] [46] etal [53] (TDSS) [34] etal [47] [43] [23] [24]
lexA recA J Vv Vv Vv * J J J J J
lexA— lexA v v Vv v * J J J
lexA4 umuD J Vv v Vv * J J J Vv
lexA— uvrD Vv v v * v Vv v
lexA— uvrA Vv v v * Vv J Vv Vv v Vv
lexA— polB v v v * v V4
recA— lexA Vv * * v v J
lexA— uvrY v v
lexA— ruvA
Total TP inferred 6 5 6 5 0 7 6 4 2 5 4
Novel Interactions
umuD— lexA v Vv * J v v v
uvrA lexA v Vv * J J J
uvrA- recA Vv * * Vv v v
Total Novel Interactions 2 2 1 0 1 2 1 3 1 2 0

*: Inferred with incorrect regulatory sign.
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Cantone et al. [12] also considered a ‘simplified’ net-
work by combining GAL4 and GAL80, and ignoring
their mutual regulations. The IRMA original and simpli-
fied networks are shown in Figure 9(a) and Figure 9(d),
respectively.

The experimental results for the IRMA network are
shown in Tables 8 and 9. We note that, for the ON data
set, TDSS was successful in inferring a higher number
of true regulations (11 out of 13) than any other meth-
ods reported in this paper. As a result, the sensitivity
is highest amongst all the methods (S,=0.85), while the
other performance metrics S, and P, are very close to
the best values. More importantly, the F-score (F), which
is the harmonic mean of precision and sensitivity, is rel-
atively high for TDSS (second best). While considering
the simplified network, although the performance met-
rics of TDSS are not the best among the methods, they
are still very competitive and close to the best values.
The inferred network with only true regulations for both
original and simplified structure are shown in Figure 9(b)
and Figure 9(c), respectively. On the OFF data set, TDSS
also exhibits good performance, with the best S, and
F among all considered methods. Further, on the sim-
plified network, all the four performance measures are
found best for the TDSS. The TDSS time responses for
all genes on the ON data sets in Figure 10 clearly indicate
that the inferred gene expressions are very close to the
corresponding targets.

Additionally, we highlight here an interesting biologi-
cal finding made during the computational analysis. In
particular, the proposed S-System model was success-
ful in uncovering the important time-delay interaction
in the IRMA network for the activation of CBFI from
SWI5. More specifically, from observations during the
in-vivo experiment, this regulation was experimentally
characterized as a time-delayed interaction of 100 min-
utes [12]. The proposed S-System model is the first-ever
method that discovered, not only this time-delayed nature
of the interaction, but also the accurate time-delay value
(in minutes). In particular, for the IRMA-ON data set, the
SWI5 — CBFI interaction was inferred as a 94-minute
delayed regulation. The same regulation was also suc-
cessfully inferred as a delayed regulation of 92 minutes
while reconstruction was performed with the IRMA-OFF
dataset. Both the delay values are very close to the orig-
inal time delay value of 100 minutes as reported in [12].
All the inferred true regulations along with correspond-
ing time-lags are listed in Table 10. Indeed, we believe that
this interesting finding is made possible due to the novel
features present in the proposed TDSS model.

The SOS DNA repair network in Escherichia coli
Next, we consider the well-studied SOS DNA repair net-
work within Escherichia coli (E. coli). While the entire
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DNA repair system of E.coli involves more than 100 genes
[39,47], only its 30 genes contribute towards key regu-
lations at the transcription level. We make use of the
expression data set collected by Ronen et al. [52], which
contains information about 8 genes namely uvrD, lexA,
umuD, recA, uvrA, uvrY, ruvA, and polB. The data sets
are obtained from four different experiments under vari-
ous UV light conditions, with the gene expression levels
being measured at 50 instants evenly spaced at a 6-minute
interval. Following [34,40,46], we normalize the input
data by dividing the expression profile of each gene by
its maximum value. Historically, there were two versions
of this SOS network in the literature, one involving 6
genes (uvrD, lexA, umuD, recA, uvrA and polB) [19,39,46],
and another involving all the 8 genes [23,24,43,47], both
inferred from Ronen et al.’s expression data [52]. Herein,
we study both the networks.

As the exact ground truth for this network is not pre-
cisely known, it is not possible to calculate the four
performance metrics, i.e., sensitivity, specificity, precision
and F-score. However, from the functional description
of each gene in the original paper [52], it is gener-
ally recognized that suppressions of all genes from JlexA
and activation to lexA from recA are considered as
true regulations. On the 6-gene SOS network, TDSS
successfully inferred 6 out of these 7 known regula-
tions, missing only the activation recA— lexA. Authors in
[19,39,46] also considered this 6-gene SOS network and
successfully inferred 5, 6, and 5 true regulations, respec-
tively, as detailed in Table 9. The method of Kimura
et al. [53] inferred all the 7 known regulations, however,
with all incorrect regulatory signs. For the 8-gene SOS
network, ALG [34] and several BN based approaches,
namely BANJO [43], Perrin et al. [47], GlobalMIT [23],
and BITGRN2 [24] respectively inferred 6, 2, 4, 5, 4 true
regulations. The proposed TDSS successfully inferred 7

Table 12 Regulations of E. coli SOS network inferred by
TDSS with corresponding 7 values

Inferred 6-gene network 8-gene network
regulations Lag(z) values Lag(z) values

by TDSS Time-stamps Minutes Time-stamps Minutes
lexA = uvrD 1.8 10.8 1.9 114
lexA = lexA 0.7 4.2 0.6 36
lexA 4 umuD 0.0 0.0 0.1 0.6
lexA = recA 2.1 126 23 13.8
lexA = uvrA 0.0 0.0 0.0 0.0
lexA = polB 0.0 0.0 0.0 0.0
umuD — lexA 0.0 0.0 0.0 0.0
uvrA = lexA 2.1 12.6 1.9 114
lexA = uvrY - - 00 0.0
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(a)

Figure 11 True regulations inferred by TDSS considering. (a) 6-gene subnetwork. (b) 8-gene subnetwork. Solid black lines and red lines
indicate instantaneous and delayed regulations in production phase, respectively.

(b)

known regulations, as detailed in Table 11. For the 8-gene
SOS network, all the methods considered in this com-
parison, including TDSS, failed to infer the regulation
lexA—ruvA.

It should be noted that, other than the known regula-
tions reported in Table 11, considered as true positives,

the proposed TDSS also inferred some unknown regula-
tions. These can be either novel regulatory interactions,
or false positive findings. These interactions are shown as
“Novel Interactions” in Table 11. We refer to the existing
state-of-the-art methods where these unknown regula-
tions were justified. For example, the regulation of lexA
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computation time, in hours, required to infer a single gene (in decoupled S-System).
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SOS DNA

by umuD was previously discovered and discussed in [47]
and [16,34]. This regulation was also discovered by two
of our previously proposed methods REGARD [19] and
GlobalMIT [23]. This regulation is inferred by the pro-
posed TDSS on both the 6-gene and 8-gene networks.
Further, the regulation uvrA - lexA was also inferred
by TDSS for both networks. This interaction was also
previously reported in [47] and [53]. Finally, the regu-
lation uvrA - recA was inferred by 4 existing methods
[23,39,43,47], while TDSS did not discover this connec-
tion. Historically, all these three novel regulations men-
tioned in Table 11 were first reported by Perrin et al.
[47], and later re-discovered by other methods [16,43].
However, for confirming the biological validity of these
interactions, suitable wet-lab experiments are yet to be
performed. It is noted that for TDSS and other S-System
based methods, self-regulations in either or both the pro-
duction or degradation phase is normally needed to bal-
ance the model. However we clarify that, self-regulations
in DE based approaches reflect the self-dependency of a
gene expression upon its own value at a previous time
point, rather than a physical self-interaction.

For the 6-gene (8-gene) SOS network, the pro-
posed TDSS method was successful in inferring 8 (9)

” o«

“true”+“novel” regulations, including 4 (5) regulations
which were reported as time-delayed. These results indi-
cate the presence of possible delayed regulations in the
network. All the inferred true regulations are shown in
Table 12 with their corresponding time-lags. The true
regulations inferred correctly in TDSS for both the sub-
networks are shown in Figure 11(a) and Figure 11(b).
Further, Figure 12 shows that, despite the inherent noise
in real-life data, TDSS time responses for all the 6 genes
are very close to the target expression patterns.

Computational efficiency

Finally, we consider the issue of computational time. We
have compared the timing of TDSS with two other S-
System based approaches, namely REGARD [18] and ALG
[34]. The average times for these three methods to infer
the parameters of a single gene on seven networks consid-
ered in this paper are shown in Figure 13. We observe that,
despite a significant increase in the number of parame-
ters to model the time delay, TDSS was found to converge
much faster than ALG [34], and marginally faster than
REGARD [18]. This demonstrates the benefit of dynam-
ically adapting the regulatory genes cardinality (i.e., min-
imum J and maximum [ in-degrees) as explained in the

Regulatory Genes Cardinality

greater than /.

CRERRARANIIEREBRREERRE

Generations

Figure 14 Effect of | and J in the optimization. (1), (2), and (3) respectively indicate the regions where r; is less than J, within [J, /] range, and
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proposed Methods section. The adaptation of  and J nar-
rows down the search space significantly and speeds up
convergence. In Figure 14, we show the optimization pro-
cess for gene-1 of Conf-1 (5-gene network) in a particular
run.

Conclusion

Time-delayed regulations are an inherent characteristics
of all biological networks. While there have been some
recent efforts using Bayesian network (BN) approach
to simultaneously model time-delayed and instanta-
neous interactions, the current state of the art S-System
approaches cannot model time-delayed interactions. In
this paper, we have proposed a novel method to incor-
porate time-delayed interactions in the existing S-System
modeling approaches for reverse engineering genetic net-
works. The proposed Time-delayed S-System (TDSS)
model is capable of simultaneously representing both
instantaneous and time-delayed regulations. Apart from
the kinetic order and rate constant parameters as in
traditional S-System models, additional parameters for
the time delays are necessary for TDSS full descrip-
tion. To make the optimization effective and efficient
in the increased parameter space, we proposed a novel
objective function based on the sparse and scale-free
nature of genetic network. The inference method was also
redesigned, based on adaptive systematic adaptation of
the max and min in-degrees for gene cardinality, and sys-
tematic balancing between time response accuracy and
network complexity during the optimization process. The
RK4 numerical integration technique has also been suit-
ably adapted for TDSS. Investigations carried on small and
medium synthetic networks with various levels of noise,
as well as on two real-life genetic networks show that
our approach correctly captures the time-delayed inter-
actions and outperforms other existing S-System based
methods.
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